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Phoa, Decentralized markets

Abstract

Standard models of financial markets assume that transactions are
mediated by a single unit of account. However, in some real-world
markets, there is no distinguished unit of account, transactions
consist of an exchange of two assets, and arbitrage is often
possible. We attempt to define a categorical formalism for these
“decentralized” markets, and a path integral description of the
stochastic dynamics of exchange-values in such markets.
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Motivation

Categorical finance: at the intersection of...

categories

markets physics

Egypt

⋆
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Motivation

Examples of centralized markets

Figure 1: A single stock exchange

5 / 46
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Motivation

Centralized markets: the classical model

There is a single unit of account, call it $.
At each instant, every asset has a price in terms of $.
The vector X of log asset prices follows n-dim Brownian motion.
Covariance matrix bundles up the asset volatilities and correlations.

Path integral formulation (see Linetsky 1998): if m−1 = σ2,

density(γ) ∝ e−
∫

1
2
m( ˙γ(t)−µ)

2
dt

The path integral approach goes back to Dash 1988, who applied
it to option pricing, and argued that it was more fundamental than
the well-known Black-Scholes PDE.
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Motivation

Examples of decentralized markets

(a) barter (b) FX (c) crypto

Figure 2: Some decentralized markets

See: Allen 2002
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Motivation

Stocks trade on multiple venues: exchanges, dark pools,. . .

Figure 3: Market share of different equity trading venues

Source: “A deep dive into US equities trading venues” 2021

Cross-venue arbitrage in equities can persist for hundreds of milliseconds.
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Motivation

Previous efforts to analyze decentralized market structure

Figure 4: Graph structure of cryptocurrency exchanges

Source: Kabašinskas and Šutienė 2021

9 / 46



Phoa, Decentralized markets

Motivation

Previous efforts to model arbitrage in markets

Figure 5: 4-asset market, and 2-asset market evolving in time

Source: Rodrigues 2019; the approach originates with Ilinski 2001
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Motivation

What would an interesting theory be able to do?

▶ Show that classical theory is a special case

▶ Understand comovement, generalizing classical correlation

▶ Understand how shocks can lead to transitory arbitrage

▶ Realistically model elimination of arbitrage

▶ Define fundamental value and convergence to fair value

▶ Understand how merging markets affects their dynamics

▶ Efficiently carry out multi-period simulation

▶ Efficiently calibrate to observed market data
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Market structure: category theory

The model in a nutshell

“Markets in which fungible assets are exchanged for each other”

▶ A market is defined by a weighted, directed (multi)graph M

▶ Form the free weighted category (Perrone 2021) M on M
▶ A state is a functor X : M → ⟨R,+⟩

▶ Intuitively, f 7→ log(exchange ratio)

▶ A path γ is a sequence of states, with specified time step
▶ Lagrangian L(γ) with kinetic and potential energy terms

▶ Weiner measure term: each arrow f contributes kinetic energy
▶ Arbitrage at parallel pairs, loops: elastic potential energy
▶ X (f ) vs its fundamental value: gravitational potential energy

▶ The probability density of a path γ is e−
∫
L(γ) dt
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Market structure: category theory

Interpretation
ob(M) is the set of assets. Each asset A ∈ ob(M) is assumed to
be a fungible, infinitely divisible asset.

An edge f : A → B in M is an offer to provide asset B in exchange
for asset A: “owner of B sets the terms, then owner of A decides”.

▶ The mass mf represents how much the exchange ratio resists
change, i.e. how “sticky” the exchange ratio is.

Composites fn ◦ fn−1 ◦ · · · ◦ f1 in M are sequences of exchanges.

When the market state is X , the arrow f lets an owner of asset A
decide to exchange 1 unit of asset A for eX (f ) units of asset B.

NB: Change-of-units for an individual asset defines a local gauge
transformation; gauge invariance is just translation invariance.

▶ e.g. imperial to metric units; redenomination of Turkish lira
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Market structure: category theory

Definitions: numéraire, medium of exchange
A numéraire is an asset that can serve as an accounting measure.
▶ e.g. dollars, sacks of grain, ounces of silver, Ethereum.

Formally, a numéraire in M is a spanning star. An arrow
nA : N → A in the star corresponds to buying the asset A with the
numéraire asset N, at the offer price of A.

A B

N

C D

A numéraire N becomes a medium of exchange by specifying, for
every A, an arrow n′A : A → N; this corresponds to a bid for A.
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Market structure: category theory

Centralized markets

We say a market is weakly centralized by a medium of exchange.

▶ e.g. suppose the asset N is ”dollars”: it is a numéraire if
there’s always a posted offer in dollars for every (other) asset,
and a medium of exchange if there’s also always a posted bid

A medium of exchange is a perfect medium of exchange if nA and
n′A are inverses, for all assets A. Note that:

▶ This notion takes us out of the realm of free categories

▶ Any two perfect mediums of exchange are isomorphic

▶ The exchange ratio of two perfect mediums can fluctuate

▶ Perfect mediums of exchange do not exist in the real world

A market is perfectly centralized by a perfect medium of exchange.
We expect such a market to have “nearly classical behavior”.
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Market structure: category theory

Shocks; supply and demand shocks

A shock to a state X : M → ⟨R,+⟩ perturbs it to a new state X ′.
Given an asset A in M, there are two special kinds of shock:

▶ A supply shock to A affects X (f ) for all f : B → A

▶ A demand shock to A affects X (f ) for all g : A → B

(NB: classical model can’t distinguish supply and demand shocks.)

Interpretation when A is a numéraire N, e.g. fiat money:

▶ A positive demand shock for N means owners of other assets
will offer them at lower prices in terms of N; e.g. if N is fiat
money and a financial crisis triggers a flight to cash.

▶ If N is a medium of exchange, a positive supply shock for N
means owners of N will bid higher for other assets; e.g. if N is
fiat money and the central bank expands the money supply.
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Market structure: category theory

Merging markets

Let M1 and M2 be two markets; without loss of generality, we can
assume that ob(M1) = ob(M2) = M.

The merger of the two markets M1 and M2 is the pushout

M1

Mdisc M1 ⊔M2

M2

where Mdisc is the discrete category on M; note that M1 ⊔M2 is a
free category.

17 / 46



Phoa, Decentralized markets

Market structure: category theory

Markets with refunds

Given a market M, we would like to construct a market M† by
“adjoining refunds”, i.e. for each f : A → B in M there is an arrow
f † : B → A in M†. We don’t impose that f , f † are inverses.

Form the pushout in the category of weighted directed multigraphs:

M

Mdisc M†

Mop

Then we can let M† be the free weighted category on M†.

▶ Claim: M† is the free weighted dagger category on M
▶ Does the cofree dagger category (of pairs A ⇄ B) have a role?
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Market dynamics: physics, or “physics”

What terms should be in the Lagrangian?

The Lagrangian L(γ) contains the following terms:

▶ Kinetic energy : when Ẋ (f ) ̸= 0
▶ Arbitrage potential energy :

▶ Parallel pairs f , g : A ⇒ B in M, where X (f ) ̸= X (g)
▶ Loops h : A → A in M, where X (h) ̸= 0

▶ Fundamental potential energy : when X (f ) deviates from a
predetermined “fundamental value” (a.k.a. “fair value”)

γ = ⟨X0,X1, . . .Xn⟩ is discrete, so L(γ) = T
n

∑n
i=1 L(Xi−1,Xi ).

Also recall the requirement of gauge invariance: the Lagrangian
should be invariant to local change-of-units (asset redenomination).
This means L(Xi−1,Xi ) should be invariant to local translations.

19 / 46



Phoa, Decentralized markets

Market dynamics: physics, or “physics”

Terms in the Lagrangian L(Xi−1,Xi)

Kinetic energy term∑
f : A→B

mf

2
(∆iX (f ))2 where ∆iX (f ) := Xi (f )− Xi−1(f )

Arbitrage potential energy term (NB: uses m−1 rather than m)

∑
f ,g : A⇒B

(Xi (g)− Xi (f ))
2

2mfmg
+

∑
h : A→A

Xi (h)
2

2m2
h

Fundamental potential energy term∑
f : A→B

mf

2
|Xi (f )− X fair value(f )|
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Market dynamics: physics, or “physics”

A coherent notion of fair value

There is a natural constraint on the specification X fair value of
predetermined “fair value” exchange ratios: there should be no
arbitrage in a fair value state.

Call a state X : M → ⟨R,+⟩ arbitrage-free if it factors through the
quotient directed graph qM : M ↠ M̃.

If we specify an arbitrage-free fair value state X fair value, then

L(X fair value,X fair value) = 0

and the constant path γ(t) ≡ X fair value is, trivially, the most
probable state evolution starting at X fair value.
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Numerical experiments: single period

Single period simulations: a commutative square

B

A D

C

gf

h k

mf = mg = mh = mk = 1
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Numerical experiments: single period

Nearly independent pair vs arbitrage constrained pair

(a) ∆f ,∆h and ∆g◦f ,∆k◦h (b) ∆f −∆h and ∆g◦f −∆k◦h

Figure 6: Simulated distribution of f , h (blue) and g ◦ f , k ◦ h (red)
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Numerical experiments: single period

How efficient is naive sampling?

(a) weight vs kinetic energy (b) weight vs arbitrage potential

Figure 7: Distribution of sample weights – 100,000 draws
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Numerical experiments: single period

Opposite pair: how many terms in expansion do you need?

A B

f

g

(a) samples of f , g (b) weights vs. loop potential

Figure 8: Simulation results for N = 2 (orange) and N = 4 (purple)
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Numerical experiments: multiple periods

Why efficient multi-period sampling is difficult

We would like to sample mostly from the region of path space
where most of the probability density lies. Statisticians refer to this
as the “typical set”.

The typical set – i.e. the paths with modest variability and low
arbitrage along the whole path – turns out to be a small and
special region of path space.

When sampling naively, we end up sampling few or no paths with
low arbitrage throughout the path, even though these are the ones
with high probability density. That is, we sample very few paths
from the typical set – often none at all, even from ∼105 samples.

Instead, an excessively high weight is assigned to a handful of paths
which randomly happen to have lower arbitrage potential than the
others (but still not low, compared to paths in the typical set).
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Numerical experiments: multiple periods

Partly mitigating weight degeneracy via “dissipation”

Include an ad hoc “dissipation” adjustment at each time step.
Wherever there is parallel pair arbitrage or loop arbitrage, this
adjustment should make it shrink.

This is meant to be an approximation to the true dynamics (as yet
unidentified) of how arbitrage closes. The better the
approximation, the more efficiently we can sample.

In practice, imposing exponential adjustment with half-life inversely
proportional to mass works reasonably well in small examples. We
conjecture that this simple ansatz describes the true “arbitrage
dissipation” dynamics.

Even using this method, to sample even a few paths from the
typical set, we have to either (a) draw many millions of samples, or
(b) sample ∆X (f ) from a suboptimally narrow distribution.
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Numerical experiments: multiple periods

Single arrow: dependence on mass

A Bf

Figure 9: Simulated paths, mf = 0.5 (blue) versus mf = 2 (red)
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Numerical experiments: multiple periods

Single arrow: impact of reversion to fair value

A Bf

Figure 10: Free (blue) versus reverting to fair value Xf = 0 (yellow)
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Numerical experiments: multiple periods

Single arrow: reversion to fair value after a shock

A Bf

Figure 11: Reversion to fair value after an initial shock
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Numerical experiments: multiple periods

Parallel pair: dynamics limited by arbitrage

A B

f

g

Figure 12: Simulated paths for f , g (blue, red) and their difference (green)
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Numerical experiments: multiple periods

Parallel pair: with reversion to fair value

A B

f

g

Figure 13: Simulated paths for f , g (blue, red) and their difference (green)
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Numerical experiments: multiple periods

Parallel pair: reversion to fair value after a shock to f

A B

f

g

Figure 14: Simulated paths for f , g (blue, red) and their difference (green)
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Numerical experiments: multiple periods

Opposite pair: dynamics limited by arbitrage

A B

f

g

Figure 15: Simulated paths for f , g (blue, red) and g ◦ f (green); N = 2
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Numerical experiments: multiple periods

Opposite pair: simulation has severe weight degeneracy

Figure 16: Path weight vs terminal value of X (f ) (blue), X (g) (red)
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Volatility and correlation structure: single period

Single arrow: dependence of volatility on mass

A Bf

36 / 46



Phoa, Decentralized markets

Volatility and correlation structure: single period

Two linked arrows: dependence of correlation on link mass

B

A

C

h

f

g

(a) mf = mg = 1 (b) mf = mg = 10
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Volatility and correlation structure: single period

Opposite pair: dependence of correlation on mass

A B

f

g
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Volatility and correlation structure: single period

Correlation matrix generated by a diagram (m = 1)

B

A D

C

gf

h

j

k



f h g k g ◦ f k ◦ h j

f 1.00 −0.40 −0.69 0.59 0.36 0.32 0.36
h −0.40 1.00 0.58 −0.79 0.26 0.28 0.27
g −0.69 0.58 1.00 −0.27 0.43 0.46 0.42
k 0.59 −0.79 −0.27 1.00 0.38 0.36 0.37
g ◦ f 0.36 0.26 0.43 0.38 1.00 0.99 0.99
k ◦ h 0.32 0.28 0.46 0.36 0.99 1.00 0.99
j 0.36 0.27 0.42 0.37 0.99 0.99 1.00
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Next steps

Better sampling for multi-period simulation

Most important open issue: how can we avoid weight degeneracy
in multi-period simulation?

The dissipation heuristic only seems to help for very small markets.
What about adopting the opposite approach, i.e. drawing
arbitrage-free paths first, and then introducing random arbitrage?

Proposed procedure for drawing a random path:

1. Sample a path γ̃ of arbitrage-free states X̃i : M̃ → ⟨R,+⟩
2. Xi := X̃i ◦ qM : M ↠ M̃ → ⟨R,+⟩ is a path γ for M
3. Compute the kinetic energy EK (γ) of γ

4. Modify the Xi by adding small arbitrages, such that the
arbitrage potential energy of the new path is ≪EK (γ)

In practice, we can probably repeat step 4. many times for each γ.
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Next steps

Coupling terms increase modeling flexibility

The above framework cannot model the following phenomena:

1. Negatively correlated assets – e.g. stocks vs. bonds

2. Short positions and leveraged positions

An ad hoc approach: add coupling terms to the Lagrangian:

1. To force a correlation between f : A → B and g : A → C , add
a term ∝ (∆iX (f )− λ∆iX (g))2; e.g. λ = −1 forces ρ < 1

2. Given f : A → B, adjoin a derived asset Bλf , a new edge
fλ : A → Bλf and a coupling term ∝ (∆iX (fλ)− λ∆iX (f ))2

▶ One can think of Bλf as wrapping the notion of a “λ×
leveraged position in B, financed by A” in a synthetic asset
such as an ETF; the coupling strength controls tracking error.
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Next steps

Dependence of correlation and volatility on coupling λ

B

A

C

f

g

(c) correlation of X (f ),X (g) (d) volatility of X (g)

Figure 17: Dependence on λ (mf = mg = 1, coupling strength = 25)
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Next steps

Dependence on coupling strength

B

A

C

f

g

(a) correlation of X (f ),X (g) (b) volatility of X (g)

Figure 18: Dependence on coupling strength (mf = mg = 1, λ = 1)
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Next steps

Other open issues: theory, simulation, applications

▶ Describe stochastic evolution by a Fokker-Planck equation

▶ Find efficient ways to calibrate to real world market data

▶ Formulate a tractable notion of impulse-response function

▶ Model how shocks create arbitrages, and how arbitrage closes

▶ Define notions of borrowing, discounting, own rates of interest

▶ Develop financial math: option pricing, portfolio theory
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Next steps
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Next steps

Copyright and disclaimer

Copyright © Wesley Phoa 2022

This presentation and the work it describes were prepared in the
author’s personal capacity. The views expressed are the author’s
own, and do not reflect the views of any organization, including
Capital Group or Topos Institute.
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