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Computability Theory

Objective: Study the complexity of countably infinite mathematical objects.

The tools come from:
• For finite objects: Computer Science.
• For countably infinite objects: Computability Theory.
• For uncountable objects: Set Theory.

Definition: A function f : N→ N is computable
if there is a computer program that, on input n, calculates f(n).

Definition: A set A ⊆ N is computable
if its characteristic funciton χA : N→ {0, 1} is computable.

First idea: Computable is easy —vs— Not computable is hard

(Every finite object can be coded by a natural number.)
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Examples: not computable sets

HT: 10th Hilbert’s problem: Polynomials in Z[x1, x2, ...] with integer roots.

K: Halting problem: The set of programs that do not run forever.

TF: Finite presentations ((a1, ..., ak), (R1, ...., R`)) of torsion free groups.

COF: Polynomials in Z[x, y0, y1, y2, ...] with integer roots for almost every x ∈ N.

TA: True first-order sentences about (N; 0, 1,+,×)

WF: Programs p for which there is a (an)n∈N ⊆ N such that p(ai+1) = ai.
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Summary of the talk

Objetive: Find a ruler to measure complexity

K HT TF COF TA WF.

(1) We define an order ≤T in P(N) to compare the complexity of sets.

(2) Properties of (P(N): ≤T)

chaos!

(3) The structure underneath the chaos: Martin’s conjecture
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Relative computability

Idea: To define an order relation ≤T such that:

B ≤TA if A contains enough information to calculate B (A is complicated as B)

Definition: Let A ⊆ N. A function f : N→ N is computable in A
if there exists a program that calculates f using χA as primitive function.

(χA : N→ {0, 1} is the characteristic function of A)

We write f ≤TA.

Example: HT ≤TK

HT: Hilbert’s 10th: Polynomials in Z[x1, x2, ...] with integer roots.

K: The halting problem: The set of programs that do not run forever.

Proof: Given a polynomial p(x1, ..., xk) ∈ Z[x1, x2, ...] write a program qp that enumerates all

k-tuples (a1, ..., ak) ∈ Zk and checks if they are roots of p(x1, ..., xk). If it finds one, the

program stops. To know if p(x1, ..., xk) has integer roots, ask K if this program qp ever halts

or not.
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Examples

0 <T HT ≡T K <T TF <T COF <T TA <T WF.

HT: 10th Hilbert’s problem: Polynomials in Z[x1, x2, ...] with integer roots.

K: Halting problem: The set of programs that do not run forever.

TF: Finite presentations ((a1, ..., ak), (R1, ...., R`)) of torsion free groups.

COF: Polynomials in Z[x, y0, y1, y2, ...] with integer roots for almost every x ∈ N.

TA: True first-order sentences about (N; 0, 1,+,×)

WF: Programs p for which there is a (an)n∈N ⊆ N such that p(ai+1) = ai.
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Turing degrees

Definition: Let A ⊆ N. A function f : N→ N is computable in A
if there exists a program that calculates f using χA as a primitive function.

(χA : N→ {0, 1} is the characteristic function ofA)

We write f ≤TA.

Definition: A and B are Turing-equivalent (A ≡T B) if A ≤TB and B ≤TA.

A Turing degrees is a ≡T -equivalence class.

≤T is a partial order in P(N)/ ≡T . (transitive and anti-symmetic)

Basic observations:

1 A and N \A are Turing-equivalent.

2 if A is computable, A ≤TB for every B ⊆ N.

3 Given B, the set {A ⊆ N : A ≤TB} is countable.

4 P(N)/ ≡T is uncountable.
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Chaos

Until now, all examples are linearly ordered...

BUT...

Theorem: [Kleene, Post] There are A,B ⊆ N such that A 6≤TB and B 6≤TA.

Even worst, there are uncountable ≤T - antichains.

Theorem: [Kleene, Post][Lachlan–Shore, Nerode]

Every countable partial ordering can be embedded in the Turing degrees.

Even worst, it can be embedded below K.

There are many more results showing that (P(N);≤T) is extremely complex.
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Natural examples

≤T

⇐ Natural examples
All the sets ⇒

Mathematically, we don’t have a
definition of “natural example”.

We know that
all natural examples are:
• constructible

• relativizable

Plan: relativizable functions P(N)→ P(N)
examples ⇐⇒ ≡T -invariants

⇐
⇒

⇐
⇒

ordered by ≤T ⇐⇒ Ordered by ≤O
T
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Relativization

Observación:
The functions that are computable in A behave “like” the computable functions.

Relativize a construction, a theorem, or a proof to a set A
means to change the notion of computable for that of computable in A.

Examples:

K

A

= The set of programas p that eventually halt.

FIN

A

= The set of programas p(x)

A

such that {x ∈ N : p(x) halts} is finite. (≡T TF)

COFA = The set of programas pA(x) that halts for almost every x ∈ N.

TAA: True first order sentence about (N;A, 0, 1,+,×)

WFA: Programs pA for which there exists (an)n∈N ⊆ N such that pA(ai+1) = ai.
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Relativize a construction, a theorem, or a proof to a set A
means to change the notion of computable for that of computable in A.
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FINA = The set of programas pA(x) such that {x ∈ N : p(x)A halts} is finite.
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TAA: True first order sentence about (N;A, 0, 1,+,×)

WFA: Programs pA for which there exists (an)n∈N ⊆ N such that pA(ai+1) = ai.

0 <T K

A

<T FIN

A

<T COF

A

<T · · · <T TA

A

<T · · · <T WF

A

Definition: The function A 7→ KA : P(N)→ P(N) is called the Turing jump.

• For every A, A <T KA.

• if A ≡T B, KA ≡T KB

• KK ≡T FIN

• KFIN ≡T COF
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Example of relativization in algebra

(all rings are countable, commutative, and with unity)

Theorem: Every ring (D; 0, 1,+,×) has a maximal ideal.

Question ¿How hard is it to find it?

Given A ∈ P(A), let MI(A) be the least Turing degree such that

every ring computable in A has a maximal ideal computable in MI(A)

Theorem: [Friedman, Simpson, Smith ’85] For every A, MI(A) ≡T KA.

The Jacobson ideal is the intersection of all the maximal ideals.

Given A ∈ P(A), let JI(A) be the least Turing degree such that

for every ring computable in A, its Jacobson ideal is computable in JI(A)

Theorem: [Downey, Lempp, Mileti ’07] For every A, JI(A) ≡T KKA

.
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Invariant functions

Definition: F : P(N)→ P(N) is ≡T -invariant if A ≡T B =⇒ F (A) ≡T F (B).

Examples: K�, FIN�, COF�, TA�, WF�, MI(�), JI(�),....

Empirical observation: Natural Turing degrees induce ≡T -invariant functions.

Definition: Given F,G : P(N)→ P(N), we say that F ≤TG if,

for every B, F (B) ≤TG(B).

We know that for every B

0 <T KB ≡T MI(B) <T FINB ≡T JI(B) <T COFB <T TAB <T WFB

thus, if we look at the corresponding functions:

0 <T K� ≡T MI(�) <T FIN� ≡T JI(�) <T COF� <T TA� <T WF�

Problem: There are ≡T -invariant functions of all shapes and colors.
...but not if we compare them at the “limit”.
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Martin’s conjecture

Definition: F : P(N)→ P(N) is ≡T -invariant if A ≡T B =⇒ F (A) ≡T F (B).

F is increasing if F (A) ≥T A for every A.

≡T -invariants increasing
Functions

⇐ ordered by ≤T

ordered by ≤O
T ⇒

Definition: F ≤O
T G if there exists A such that,

for every B ≥T A, F (B) ≤TG(B).

Let’s use KF to call the function A 7→ KF (A), the Turing jump of F .

Recall that F <T KF .

G

KF

F

≤
O T

G

Conjectura of Martin: (ZF+AD+DC)

1 Every ≡T -invariant function is ≡O
T -equivalent to one that is constant or

increasing.

2 if F,G are ≡T -invariant increasing functions =⇒ G ≤O
T F o KF ≤O

T G.

Thm:[Steel 82][Slaman-Steel 88] It’s true for the uniformly ≡T -invariant functions.

Thm:[Kihara-Montalbán 18]: Connect natural many-one degrees and Wadge degrees.

The conjecture is still open for the general case.
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Definition: F : P(N)→ P(N) is ≡T -invariant if A ≡T B =⇒ F (A) ≡T F (B).

Definition: F ≤O
T G if there exists A such that,

for every B ≥T A, F (B) ≤TG(B).

Let’s use KF to call the function A 7→ KF (A), the Turing jump of F .

Recall that F <T KF .
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Wadge degrees

Consider the Baire Space: NN = {f : N→ N} with the product topology.

Obs: NN is homeomorphic to R+ \Q via f 7→ f(0) + 1

1+f(1)+ 1
1+f(2)+···

Definition: For A,B ⊆ NN, A is Wadge reducible to B, A ≤w B if there is a
continuous f : NN → NN s.t. (∀X ∈ 2N), X ∈ A ⇐⇒ f(X) ∈ B.

Theorem: [Wadge 83](AD) The Wadge degrees are almost linearly ordered:
• For every A,B ⊆ NN, either A ≤w B or B ≤w Ac.

• For every A,B ⊆ NN, if A <w B, then A <w Bc.

Theorem: (AD) [Martin] The Wadge degrees are well founded.
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Natural many-one degrees ⇐⇒ Wadge degrees

Definition: A set A ⊆ N is many-one reducible to B ⊆ N (A ≤m B),
if there is a computable f : N→ N such that n ∈ A ⇐⇒ f(n) ∈ B (∀n).

Definition: A function f : 2N → 2N is (≡T ,≡m)-uniformly invariant (UI) if
X ≡T Y =⇒ f(X) ≡m f(Y ) and

there is u : N2 → N2, s.t., if X ≡T Y via Φi and Φj , then f(X) ≡m f(Y ) via Φu0(i,j) and Φu1(i,j).

Def: For A,B ⊆ N, A is many-one reducibleZ to B, written A ≤Z
m B, if

there is a Z-computable f : N→ N s.t. (∀x ∈ N), x ∈ A ⇐⇒ f(x) ∈ B.

Def: f ≤O
m g if (∃C ∈ 2N) such that f(X) ≤C

m g(X) for every X ≥T C.

Theorem: [Kihara, M.] There is a one-to-one correspondence between (≡T ,≡m)-UI
functions ordered by ≤O

m and P(2N) ordered by Wadge reducibility.
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