Looking for a ruler to measure complexity

Antonio Montalbán

U.C. Berkeley

May 2022 Topos Institute Berkeley, California

Objective: Study the complexity of countably infinite mathematical objects.

Objective: Study the complexity of countably infinite mathematical objects.

The tools come from:

- For finite objects: Computer Science.
- For countably infinite objects: Computability Theory.
- For uncountable objects: Set Theory.

Objective: Study the complexity of countably infinite mathematical objects.

The tools come from:

- For finite objects: Computer Science.
- For countably infinite objects: Computability Theory.
- For uncountable objects: Set Theory.

Definition: A function $f \colon \mathbb{N} \to \mathbb{N}$ is *computable*

if there is a computer program that, on input n, calculates f(n).

Objective: Study the complexity of countably infinite mathematical objects.

The tools come from:

- For finite objects: Computer Science.
- For countably infinite objects: Computability Theory.
- For uncountable objects: Set Theory.

Definition: A function $f \colon \mathbb{N} \to \mathbb{N}$ is *computable*

if there is a computer program that, on input n, calculates f(n).

Definition: A set $A \subseteq \mathbb{N}$ is *computable*

if its characteristic function $\chi_A \colon \mathbb{N} \to \{0, 1\}$ is computable.

Objective: Study the complexity of countably infinite mathematical objects.

The tools come from:

- For finite objects: Computer Science.
- For countably infinite objects: Computability Theory.
- For uncountable objects: Set Theory.

Definition: A function $f \colon \mathbb{N} \to \mathbb{N}$ is *computable*

if there is a computer program that, on input n, calculates f(n).

Definition: A set $A \subseteq \mathbb{N}$ is *computable*

if its characteristic function $\chi_A \colon \mathbb{N} \to \{0, 1\}$ is computable.

First idea: Computable is easy —vs— Not computable is <u>hard</u>

Objective: Study the complexity of countably infinite mathematical objects.

The tools come from:

- For finite objects: Computer Science.
- For countably infinite objects: Computability Theory.
- For uncountable objects: Set Theory.

Definition: A function $f \colon \mathbb{N} \to \mathbb{N}$ is *computable*

if there is a computer program that, on input n, calculates f(n).

Definition: A set $A \subseteq \mathbb{N}$ is *computable*

if its characteristic function $\chi_A \colon \mathbb{N} \to \{0, 1\}$ is computable.

First idea: Computable is easy —vs— Not computable is hard

(Every finite object can be coded by a natural number.)

HT: 10^{th} Hilbert's problem: Polynomials in $\mathbb{Z}[x_1, x_2, ...]$ with integer roots.

HT: 10th Hilbert's problem: Polynomials in $\mathbb{Z}[x_1, x_2, ...]$ with integer roots.

K: *Halting problem:* The set of programs that do **not** run forever.

HT: 10th Hilbert's problem: Polynomials in $\mathbb{Z}[x_1, x_2, ...]$ with integer roots.

K: *Halting problem:* The set of programs that do **not** run forever.

TF: Finite presentations $((a_1, ..., a_k), (R_1, ..., R_\ell))$ of *torsion free* groups.

HT: 10th Hilbert's problem: Polynomials in $\mathbb{Z}[x_1, x_2, ...]$ with integer roots.

K: *Halting problem:* The set of programs that do **not** run forever.

TF: Finite presentations $((a_1, ..., a_k), (R_1, ..., R_\ell))$ of *torsion free* groups.

COF: Polynomials in $\mathbb{Z}[x, y_0, y_1, y_2, ...]$ with integer roots for <u>almost</u> every $x \in \mathbb{N}$.

HT: 10th Hilbert's problem: Polynomials in $\mathbb{Z}[x_1, x_2, ...]$ with integer roots.

K: *Halting problem:* The set of programs that do **not** run forever.

TF: Finite presentations $((a_1, ..., a_k), (R_1, ..., R_\ell))$ of *torsion free* groups.

COF: Polynomials in $\mathbb{Z}[x, y_0, y_1, y_2, ...]$ with integer roots for <u>almost</u> every $x \in \mathbb{N}$.

TA: *True* first-order sentences about $(\mathbb{N}; 0, 1, +, \times)$

HT: 10^{th} Hilbert's problem: Polynomials in $\mathbb{Z}[x_1, x_2, ...]$ with integer roots.

K: *Halting problem:* The set of programs that do **not** run forever.

TF: Finite presentations $((a_1, ..., a_k), (R_1, ..., R_\ell))$ of *torsion free* groups.

COF: Polynomials in $\mathbb{Z}[x, y_0, y_1, y_2, ...]$ with integer roots for <u>almost</u> every $x \in \mathbb{N}$.

TA: *True* first-order sentences about $(\mathbb{N}; 0, 1, +, \times)$

WF: Programs **p** for which there is a $(a_n)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathbf{p}(a_{i+1}) = a_i$.

Objetive: Find a ruler to measure complexity

K HT TF COF TA WF.

Objetive: Find a ruler to measure complexity

K HT TF COF TA WF.

(1) We define an order \leq_T in $\mathcal{P}(\mathbb{N})$ to compare the complexity of sets.

Objetive: Find a ruler to measure complexity

K HT TF COF TA WF.

(1) We define an order \leq_T in $\mathcal{P}(\mathbb{N})$ to compare the complexity of sets.

(2) Properties of $(\mathcal{P}(\mathbb{N}): \leq_T)$

Objetive: Find a ruler to measure complexity

K HT TF COF TA WF.

(1) We define an order \leq_T in $\mathcal{P}(\mathbb{N})$ to compare the complexity of sets.

(2) Properties of $(\mathcal{P}(\mathbb{N}): \leq_T)$

chaos!

Objetive: Find a ruler to measure complexity

K HT TF COF TA WF.

(1) We define an order \leq_T in $\mathcal{P}(\mathbb{N})$ to compare the complexity of sets.

(2) Properties of $(\mathcal{P}(\mathbb{N}): \leq_T)$

chaos!

(3) The structure underneath the chaos: Martin's conjecture

Idea: To define an order relation \leq_T such that:

Idea: To define an order relation \leq_T such that:

 $B \leq_T A$ if A contains enough information to calculate B (A is complicated as B)

Idea: To define an order relation \leq_T such that: $B \leq_T A$ if A contains enough information to calculate B (A is complicated as B)

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \to \mathbb{N}$ is computable in Aif there exists a program that calculates f using χ_A as primitive function. $(\chi_A: \mathbb{N} \to \{0, 1\}$ is the characteristic function of A)

Idea: To define an order relation \leq_T such that: $B \leq_T A$ if A contains enough information to calculate B (A is complicated as B) Definition: Let $A \subseteq \mathbb{N}$. A function $f \colon \mathbb{N} \to \mathbb{N}$ is computable in Aif there exists a program that calculates f using χ_A as primitive function. $(\chi_A \colon \mathbb{N} \to \{0, 1\}$ is the characteristic function of A)

We write $f \leq_T A$.

Idea: To define an order relation \leq_T such that: $B \leq_T A$ if A contains enough information to calculate B (A is complicated as B)

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \to \mathbb{N}$ is computable in Aif there exists a program that calculates f using χ_A as primitive function. $(\chi_A: \mathbb{N} \to \{0, 1\}$ is the characteristic function of A) We write $f \leq_T A$.

Example: $\mathbf{HT} \leq_T \mathbf{K}$

HT: Hilbert's 10^{th} : Polynomials in $\mathbb{Z}[x_1, x_2, ...]$ with integer roots. **K**: The halting problem: The set of programs that do **not** run forever.

Idea: To define an order relation \leq_T such that: $B \leq_T A$ if A contains enough information to calculate B (A is complicated as B)

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \to \mathbb{N}$ is computable in Aif there exists a program that calculates f using χ_A as primitive function. $(\chi_A: \mathbb{N} \to \{0, 1\}$ is the characteristic function of A) We write $f \leq_T A$.

Example: $\mathbf{HT} \leq_T \mathbf{K}$

HT: Hilbert's 10^{th} : Polynomials in $\mathbb{Z}[x_1, x_2, ...]$ with integer roots. **K**: The halting problem: The set of programs that do **not** run forever.

Proof:

Idea: To define an order relation \leq_T such that: $B \leq_T A$ if A contains enough information to calculate B (A is complicated as B)

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \to \mathbb{N}$ is computable in Aif there exists a program that calculates f using χ_A as primitive function. $(\chi_A: \mathbb{N} \to \{0, 1\}$ is the characteristic function of A) We write $f \leq_T A$.

Example: $\mathbf{HT} \leq_T \mathbf{K}$

HT: Hilbert's 10^{th} : Polynomials in $\mathbb{Z}[x_1, x_2, ...]$ with integer roots. **K**: The halting problem: The set of programs that do **not** run forever.

Proof: Given a polynomial $p(x_1, ..., x_k) \in \mathbb{Z}[x_1, x_2, ...]$

Idea: To define an order relation \leq_T such that: $B \leq_T A$ if A contains enough information to calculate B (A is complicated as B)

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \to \mathbb{N}$ is *computable in* Aif there exists a program that calculates f using χ_A as primitive function. $(\chi_A: \mathbb{N} \to \{0, 1\}$ is the characteristic function of A) We write $f \leq_T A$.

Example: $\mathbf{HT} \leq_T \mathbf{K}$

HT: Hilbert's 10^{th} : Polynomials in $\mathbb{Z}[x_1, x_2, ...]$ with integer roots. **K**: The halting problem: The set of programs that do **not** run forever.

Proof: Given a polynomial $p(x_1, ..., x_k) \in \mathbb{Z}[x_1, x_2, ...]$ write a program q_p that enumerates all k-tuples $(a_1, ..., a_k) \in \mathbb{Z}^k$ and checks if they are roots of $p(x_1, ..., x_k)$.

Idea: To define an order relation \leq_T such that: $B \leq_T A$ if A contains enough information to calculate B (A is complicated as B)

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \to \mathbb{N}$ is *computable in* Aif there exists a program that calculates f using χ_A as primitive function. $(\chi_A: \mathbb{N} \to \{0, 1\}$ is the characteristic function of A) We write $f \leq_T A$.

Example: $\mathbf{HT} \leq_T \mathbf{K}$

HT: Hilbert's 10th: Polynomials in $\mathbb{Z}[x_1, x_2, ...]$ with integer roots. **K**: The halting problem: The set of programs that do **not** run forever.

Proof: Given a polynomial $p(x_1, ..., x_k) \in \mathbb{Z}[x_1, x_2, ...]$ write a program \mathbf{q}_p that enumerates all k-tuples $(a_1, ..., a_k) \in \mathbb{Z}^k$ and checks if they are roots of $p(x_1, ..., x_k)$. If it finds one, the program stops.

Idea: To define an order relation \leq_T such that:

 $B \leq_T A$ if A contains enough information to calculate B (A is complicated as B)

Definition: Let $A \subseteq \mathbb{N}$. A function $f \colon \mathbb{N} \to \mathbb{N}$ is computable in Aif there exists a program that calculates f using χ_A as primitive function. $(\chi_A \colon \mathbb{N} \to \{0, 1\}$ is the characteristic function of A) We write $f \leq_T A$.

Example: $\mathbf{HT} \leq_T \mathbf{K}$

HT: Hilbert's 10^{th} : Polynomials in $\mathbb{Z}[x_1, x_2, ...]$ with integer roots. **K**: The halting problem: The set of programs that do **not** run forever.

Proof: Given a polynomial $p(x_1, ..., x_k) \in \mathbb{Z}[x_1, x_2, ...]$ write a program q_p that enumerates all k-tuples $(a_1, ..., a_k) \in \mathbb{Z}^k$ and checks if they are roots of $p(x_1, ..., x_k)$. If it finds one, the program stops. To know if $p(x_1, ..., x_k)$ has integer roots, ask **K** if this program q_p ever halts or not.

HT: 10th Hilbert's problem: Polynomials in $\mathbb{Z}[x_1, x_2, ...]$ with integer roots.

HT: 10th Hilbert's problem: Polynomials in $\mathbb{Z}[x_1, x_2, ...]$ with integer roots.

K: *Halting problem:* The set of programs that do **not** run forever.

HT: 10th Hilbert's problem: Polynomials in $\mathbb{Z}[x_1, x_2, ...]$ with integer roots.

K: *Halting problem:* The set of programs that do **not** run forever.

TF: Finite presentations $((a_1, ..., a_k), (R_1, ..., R_\ell))$ of *torsion free* groups.

HT: 10th Hilbert's problem: Polynomials in $\mathbb{Z}[x_1, x_2, ...]$ with integer roots.

K: *Halting problem:* The set of programs that do **not** run forever.

TF: Finite presentations $((a_1, ..., a_k), (R_1, ..., R_\ell))$ of *torsion free* groups.

COF: Polynomials in $\mathbb{Z}[x, y_0, y_1, y_2, ...]$ with integer roots for <u>almost</u> every $x \in \mathbb{N}$.

HT: 10^{th} Hilbert's problem: Polynomials in $\mathbb{Z}[x_1, x_2, ...]$ with integer roots.

K: *Halting problem:* The set of programs that do **not** run forever.

TF: Finite presentations $((a_1, ..., a_k), (R_1, ..., R_\ell))$ of *torsion free* groups.

COF: Polynomials in $\mathbb{Z}[x, y_0, y_1, y_2, ...]$ with integer roots for <u>almost</u> every $x \in \mathbb{N}$.

TA: *True* first-order sentences about $(\mathbb{N}; 0, 1, +, \times)$

HT: 10^{th} Hilbert's problem: Polynomials in $\mathbb{Z}[x_1, x_2, ...]$ with integer roots.

K: *Halting problem:* The set of programs that do **not** run forever.

TF: Finite presentations $((a_1, ..., a_k), (R_1, ..., R_\ell))$ of *torsion free* groups.

COF: Polynomials in $\mathbb{Z}[x, y_0, y_1, y_2, ...]$ with integer roots for <u>almost</u> every $x \in \mathbb{N}$.

TA: *True* first-order sentences about $(\mathbb{N}; 0, 1, +, \times)$

WF: Programs **p** for which there is a $(a_n)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathbf{p}(a_{i+1}) = a_i$.

Definition: Let $A \subseteq \mathbb{N}$. A function $f \colon \mathbb{N} \to \mathbb{N}$ is computable in Aif there exists a program that calculates f using χ_A as a primitive function. $(\chi_A \colon \mathbb{N} \to \{0, 1\}$ is the characteristic function of A) We write $f \leq_T A$.

Definition: Let $A \subseteq \mathbb{N}$. A function $f \colon \mathbb{N} \to \mathbb{N}$ is computable in Aif there exists a program that calculates f using χ_A as a primitive function. $(\chi_A \colon \mathbb{N} \to \{0, 1\}$ is the characteristic function of A) We write $f \leq_T A$.

Definition: A and B are *Turing-equivalent* $(A \equiv_T B)$ if $A \leq_T B$ and $B \leq_T A$.

Definition: Let $A \subseteq \mathbb{N}$. A function $f \colon \mathbb{N} \to \mathbb{N}$ is computable in Aif there exists a program that calculates f using χ_A as a primitive function. $(\chi_A \colon \mathbb{N} \to \{0, 1\}$ is the characteristic function of A) We write $f \leq_T A$.

Definition: A and B are *Turing-equivalent* $(A \equiv_T B)$ if $A \leq_T B$ and $B \leq_T A$.

A *Turing degrees* is a \equiv_T -equivalence class.

Definition: Let $A \subseteq \mathbb{N}$. A function $f \colon \mathbb{N} \to \mathbb{N}$ is computable in Aif there exists a program that calculates f using χ_A as a primitive function. $(\chi_A \colon \mathbb{N} \to \{0, 1\}$ is the characteristic function of A) We write $f \leq_T A$.

Definition: A and B are Turing-equivalent $(A \equiv_T B)$ if $\mathcal{A} \leq_T B$ and $B \leq_T A$.

A *Turing degrees* is a \equiv_T -equivalence class.

 \leq_T is a partial order in $\mathcal{P}(\mathbb{N})/\equiv_T$.

(transitive and anti-symmetic)

Definition: Let $A \subseteq \mathbb{N}$. A function $f \colon \mathbb{N} \to \mathbb{N}$ is computable in Aif there exists a program that calculates f using χ_A as a primitive function. $(\chi_A \colon \mathbb{N} \to \{0, 1\}$ is the characteristic function of A) We write $f \leq_T A$.

Definition: A and B are Turing-equivalent $(A \equiv_T B)$ if $A \leq_T B$ and $B \leq_T A$.

A *Turing degrees* is a \equiv_T -equivalence class.

 \leq_T is a partial order in $\mathcal{P}(\mathbb{N})/\equiv_T$.

(transitive and anti-symmetic)

Definition: Let $A \subseteq \mathbb{N}$. A function $f : \mathbb{N} \to \mathbb{N}$ is computable in Aif there exists a program that calculates f using χ_A as a primitive function. $(\chi_A : \mathbb{N} \to \{0, 1\}$ is the characteristic function of A) We write $f \leq_T A$.

Definition: A and B are Turing-equivalent $(A \equiv_T B)$ if $A \leq_T B$ and $B \leq_T A$.

A *Turing degrees* is a \equiv_T -equivalence class.

 \leq_T is a partial order in $\mathcal{P}(\mathbb{N})/\equiv_T$.

(transitive and anti-symmetic)

Basic observations:

() A and $\mathbb{N} \setminus A$ are Turing-equivalent.

Definition: Let $A \subseteq \mathbb{N}$. A function $f \colon \mathbb{N} \to \mathbb{N}$ is computable in Aif there exists a program that calculates f using χ_A as a primitive function. $(\chi_A \colon \mathbb{N} \to \{0, 1\}$ is the characteristic function of A) We write $f \leq_T A$.

Definition: A and B are Turing-equivalent $(A \equiv_T B)$ if $A \leq_T B$ and $B \leq_T A$.

A *Turing degrees* is a \equiv_T -equivalence class.

 \leq_T is a partial order in $\mathcal{P}(\mathbb{N})/\equiv_T$.

(transitive and anti-symmetic)

- **1** A and $\mathbb{N} \setminus A$ are Turing-equivalent.
- **2** if A is computable, $A \leq_T B$ for every $B \subseteq \mathbb{N}$.

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \to \mathbb{N}$ is computable in Aif there exists a program that calculates f using χ_A as a primitive function. $(\chi_A: \mathbb{N} \to \{0, 1\}$ is the characteristic function of A) We write $f \leq_T A$.

Definition: A and B are Turing-equivalent $(A \equiv_T B)$ if $A \leq_T B$ and $B \leq_T A$.

A *Turing degrees* is a \equiv_T -equivalence class.

 \leq_T is a partial order in $\mathcal{P}(\mathbb{N})/\equiv_T$.

(transitive and anti-symmetic)

- **()** A and $\mathbb{N} \setminus A$ are Turing-equivalent.
- 2) if A is computable, $A \leq_T B$ for every $B \subseteq \mathbb{N}$.
- **3** Given B, the set $\{A \subseteq \mathbb{N} : A \leq_T B\}$ is countable.

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \to \mathbb{N}$ is computable in Aif there exists a program that calculates f using χ_A as a primitive function. $(\chi_A: \mathbb{N} \to \{0, 1\}$ is the characteristic function of A) We write $f \leq_T A$.

Definition: A and B are Turing-equivalent $(A \equiv_T B)$ if $A \leq_T B$ and $B \leq_T A$.

A *Turing degrees* is a \equiv_T -equivalence class.

 \leq_T is a partial order in $\mathcal{P}(\mathbb{N})/\equiv_T$.

(transitive and anti-symmetic)

- **1** A and $\mathbb{N} \setminus A$ are Turing-equivalent.
- **2** if A is computable, $A \leq_T B$ for every $B \subseteq \mathbb{N}$.
- **3** Given B, the set $\{A \subseteq \mathbb{N} : A \leq_T B\}$ is countable.
- $\mathbb{P}(\mathbb{N}) / \equiv_T \text{ is uncountable.}$

Until now, all examples are linearly ordered...

Until now, all examples are linearly ordered...

BUT...

Until now, all examples are linearly ordered...

BUT...

Theorem: [Kleene, Post] There are $A, B \subseteq \mathbb{N}$ such that $A \not\leq_T B$ and $B \not\leq_T A$.

Until now, all examples are linearly ordered...

BUT...

Theorem: [Kleene, Post] There are $A, B \subseteq \mathbb{N}$ such that $A \not\leq_T B$ and $B \not\leq_T A$. Even worst, there are uncountable \leq_T - antichains.

Until now, all examples are linearly ordered...

BUT...

Theorem: [Kleene, Post] There are $A, B \subseteq \mathbb{N}$ such that $A \not\leq_T B$ and $B \not\leq_T A$. Even worst, there are uncountable \leq_T - antichains.

Theorem: [Kleene, Post][Lachlan–Shore, Nerode] Every countable partial ordering can be embedded in the Turing degrees.

Until now, all examples are linearly ordered...

BUT...

Theorem: [Kleene, Post] There are $A, B \subseteq \mathbb{N}$ such that $A \not\leq_T B$ and $B \not\leq_T A$. Even worst, there are uncountable \leq_T - antichains.

Theorem: [Kleene, Post][Lachlan-Shore, Nerode] Every countable partial ordering can be embedded in the Turing degrees. Even worst, it can be embedded below K.

Until now, all examples are linearly ordered...

BUT...

Theorem: [Kleene, Post] There are $A, B \subseteq \mathbb{N}$ such that $A \not\leq_T B$ and $B \not\leq_T A$. Even worst, there are uncountable \leq_T - antichains.

Theorem: [Kleene, Post][Lachlan–Shore, Nerode] Every countable partial ordering can be embedded in the Turing degrees. Even worst, it can be embedded below K.

There are many more results showing that $(\mathcal{P}(\mathbb{N}); \leq_T)$ is extremely complex.

0

 $\substack{\leq T \\ \Leftarrow \text{ Natural examples} \\ \text{ All the sets } \Rightarrow$

Mathematically, we don't have a definition of "natural example".

Mathematically, we don't have a definition of "natural example".

We know that all natural examples are:

- constructible
- relativizable

Observación: The functions that are computable in A behave "like" the computable functions.

Observación: The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Observación: The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

Observación: The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

 \mathbf{K} = The set of program s p that eventually halt.

Observación: The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

 \mathbf{K} = The set of programs \mathbf{p} that eventually halt. \mathbf{K}^{A} = The set of programs \mathbf{p}^{A} that use the function χ_{A} and eventually stop.

Observación: The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

 \mathbf{K}^{A} = The set of programs \mathbf{p}^{A} that use the function χ_{A} and eventually stop.

FIN = The set of programs p(x) such that $\{x \in \mathbb{N} : p(x) \text{ halts}\}$ is finite.

Observación: The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

 \mathbf{K}^{A} = The set of programs \mathbf{p}^{A} that use the function χ_{A} and eventually stop.

FIN = The set of programs p(x) such that $\{x \in \mathbb{N} : p(x) \text{ halts}\}$ is finite. $(\equiv_T \mathbf{TF})$

Observación: The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

 \mathbf{K}^{A} = The set of program s \mathbf{p}^{A} that use the function χ_{A} and eventually stop.

FIN^A = The set of programs $p^A(x)$ such that $\{x \in \mathbb{N} : p(x)^A \text{ halts}\}$ is finite.

Observación: The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

 \mathbf{K}^{A} = The set of program s \mathbf{p}^{A} that use the function χ_{A} and eventually stop.

FIN^A = The set of programs $p^A(x)$ such that $\{x \in \mathbb{N} : p(x)^A \text{ halts}\}$ is finite.

 \mathbf{COF}^A = The set of program s $\mathbf{p}^A(x)$ that halts for almost every $x \in \mathbb{N}$.

Observación: The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

 \mathbf{K}^{A} = The set of program s \mathbf{p}^{A} that use the function χ_{A} and eventually stop.

FIN^A = The set of programs $p^A(x)$ such that $\{x \in \mathbb{N} : p(x)^A \text{ halts}\}$ is finite.

 \mathbf{COF}^A = The set of program s $\mathbf{p}^A(x)$ that halts for almost every $x \in \mathbb{N}$.

TA^A: True first order sentence about $(\mathbb{N}; A, 0, 1, +, \times)$

Observación: The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

 \mathbf{K}^{A} = The set of program s \mathbf{p}^{A} that use the function χ_{A} and eventually stop.

FIN^A = The set of programs $p^A(x)$ such that $\{x \in \mathbb{N} : p(x)^A \text{ halts}\}$ is finite.

 \mathbf{COF}^A = The set of program s $\mathbf{p}^A(x)$ that halts for almost every $x \in \mathbb{N}$.

TA^A: True first order sentence about $(\mathbb{N}; A, 0, 1, +, \times)$

 \mathbf{WF}^{A} : Programs \mathbf{p}^{A} for which there exists $(a_{n})_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathbf{p}^{A}(a_{i+1}) = a_{i}$.

Observación:

The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A. Examples:

 $\mathbf{K}^{A} = \text{The set of programss } \mathbf{p}^{A}$ that use the function χ_{A} and eventually stop. $\mathbf{FIN}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ such that $\{x \in \mathbb{N} : \mathbf{p}(x)^{A} \text{ halts}\}$ is finite. $\mathbf{COF}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$. \mathbf{TA}^{A} : True first order sentence about $(\mathbb{N}; A, 0, 1, +, \times)$ \mathbf{WF}^{A} : Programs \mathbf{p}^{A} for which there exists $(a_{n})_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathbf{p}^{A}(a_{i+1}) = a_{i}$.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

 $\mathbf{K}^{A} = \text{The set of programss } \mathbf{p}^{A}$ that use the function χ_{A} and eventually stop. $\mathbf{FIN}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ such that $\{x \in \mathbb{N} : \mathbf{p}(x)^{A} \text{ halts}\}$ is finite. $\mathbf{COF}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$. \mathbf{TA}^{A} : True first order sentence about $(\mathbb{N}; A, 0, 1, +, \times)$

 \mathbf{WF}^{A} : Programs \mathbf{p}^{A} for which there exists $(a_{n})_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathbf{p}^{A}(a_{i+1}) = a_{i}$.

Examples:

 \mathbf{K}^{A} = The set of programs \mathbf{p}^{A} that use the function χ_{A} and eventually stop. **FIN**^A = The set of programs $\mathbf{p}^{A}(x)$ such that { $x \in \mathbb{N} : \mathbf{p}(x)^{A}$ halts} is finite.

 \mathbf{COF}^A = The set of program s $\mathbf{p}^A(x)$ that halts for almost every $x \in \mathbb{N}$.

 \mathbf{TA}^A : True first order sentence about $(\mathbb{N}; A, 0, 1, +, \times)$

WF^A: Programs \mathbf{p}^A for which there exists $(a_n)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathbf{p}^A(a_{i+1}) = a_i$.

Examples:

 $\mathbf{K}^{A} = \text{The set of programss } \mathbf{p}^{A}$ that use the function χ_{A} and eventually stop. $\mathbf{FIN}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ such that $\{x \in \mathbb{N} : \mathbf{p}(x)^{A} \text{ halts}\}$ is finite. $\mathbf{COF}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$. \mathbf{TA}^{A} : True first order sentence about $(\mathbb{N}; A, 0, 1, +, \times)$

WF^A: Programs \mathbf{p}^A for which there exists $(a_n)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathbf{p}^A(a_{i+1}) = a_i$.

 $0 <_T \mathbf{K} <_T \mathbf{FIN} <_T \mathbf{COF} <_T \cdots <_T \mathbf{TA} <_T \cdots <_T \mathbf{WF}$

Examples:

 $\mathbf{K}^{A} = \text{The set of programss } \mathbf{p}^{A}$ that use the function χ_{A} and eventually stop. $\mathbf{FIN}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ such that $\{x \in \mathbb{N} : \mathbf{p}(x)^{A} \text{ halts}\}$ is finite. $\mathbf{COF}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$. \mathbf{TA}^{A} : True first order sentence about $(\mathbb{N}; A, 0, 1, +, \times)$

WF^A: Programs \mathbf{p}^A for which there exists $(a_n)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathbf{p}^A(a_{i+1}) = a_i$.

 $A <_T \mathbf{K}^A <_T \mathbf{FIN}^A <_T \mathbf{COF}^A <_T \cdots <_T \mathbf{TA}^A <_T \cdots <_T \mathbf{WF}^A$

Examples:

 $\mathbf{K}^{A} = \text{The set of programss } \mathbf{p}^{A}$ that use the function χ_{A} and eventually stop. $\mathbf{FIN}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ such that $\{x \in \mathbb{N} : \mathbf{p}(x)^{A} \text{ halts}\}$ is finite. $\mathbf{COF}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$. \mathbf{TA}^{A} : True first order sentence about $(\mathbb{N}; A, 0, 1, +, \times)$

WF^A: Programs \mathbf{p}^A for which there exists $(a_n)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathbf{p}^A(a_{i+1}) = a_i$.

$$A <_T \mathbf{K}^A <_T \mathbf{FIN}^A <_T \mathbf{COF}^A <_T \cdots <_T \mathbf{TA}^A <_T \cdots <_T \mathbf{WF}^A$$

Definition: The function $A \mapsto \mathbf{K}^A : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is called the *Turing jump*.

Examples:

4

 $\mathbf{K}^{A} = \text{The set of programss } \mathbf{p}^{A}$ that use the function χ_{A} and eventually stop. $\mathbf{FIN}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ such that $\{x \in \mathbb{N} : \mathbf{p}(x)^{A} \text{ halts}\}$ is finite. $\mathbf{COF}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$. \mathbf{TA}^{A} : True first order sentence about $(\mathbb{N}; A, 0, 1, +, \times)$

WF^A: Programs \mathbf{p}^A for which there exists $(a_n)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathbf{p}^A(a_{i+1}) = a_i$.

$$A <_T \mathbf{K}^A <_T \mathbf{FIN}^A <_T \mathbf{COF}^A <_T \cdots <_T \mathbf{TA}^A <_T \cdots <_T \mathbf{WF}^A$$

Definition: The function $A \mapsto \mathbf{K}^A \colon \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is called the *Turing jump*.

• For every A, $A <_T \mathbf{K}^A$.

Examples:

4

 $\mathbf{K}^{A} = \text{The set of programss } \mathbf{p}^{A}$ that use the function χ_{A} and eventually stop. $\mathbf{FIN}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ such that $\{x \in \mathbb{N} : \mathbf{p}(x)^{A} \text{ halts}\}$ is finite. $\mathbf{COF}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$. \mathbf{TA}^{A} : True first order sentence about $(\mathbb{N}; A, 0, 1, +, \times)$

 \mathbf{WF}^{A} : Programs \mathbf{p}^{A} for which there exists $(a_{n})_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathbf{p}^{A}(a_{i+1}) = a_{i}$.

$$A <_T \mathbf{K}^A <_T \mathbf{FIN}^A <_T \mathbf{COF}^A <_T \cdots <_T \mathbf{TA}^A <_T \cdots <_T \mathbf{WF}^A$$

Definition: The function $A \mapsto \mathbf{K}^A \colon \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is called the *Turing jump*.

- For every A, $A <_T \mathbf{K}^A$.
- if $A \equiv_T B$, $\mathbf{K}^A \equiv_T \mathbf{K}^B$

Examples:

 $\mathbf{K}^{A} = \text{The set of programss } \mathbf{p}^{A}$ that use the function χ_{A} and eventually stop. $\mathbf{FIN}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ such that $\{x \in \mathbb{N} : \mathbf{p}(x)^{A} \text{ halts}\}$ is finite. $\mathbf{COF}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$. \mathbf{TA}^{A} : True first order sentence about $(\mathbb{N}; A, 0, 1, +, \times)$

 \mathbf{WF}^{A} : Programs \mathbf{p}^{A} for which there exists $(a_{n})_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathbf{p}^{A}(a_{i+1}) = a_{i}$.

$$A <_T \mathbf{K}^A <_T \mathbf{FIN}^A <_T \mathbf{COF}^A <_T \cdots <_T \mathbf{TA}^A <_T \cdots <_T \mathbf{WF}^A$$

Definition: The function $A \mapsto \mathbf{K}^A \colon \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is called the *Turing jump*.

• For every A, $A <_T \mathbf{K}^A$. • if $A \equiv_T B$, $\mathbf{K}^A \equiv_T \mathbf{K}^B$

Examples:

 $\mathbf{K}^{A} = \text{The set of programss } \mathbf{p}^{A}$ that use the function χ_{A} and eventually stop. $\mathbf{FIN}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ such that $\{x \in \mathbb{N} : \mathbf{p}(x)^{A} \text{ halts}\}$ is finite. $\mathbf{COF}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$. \mathbf{TA}^{A} : True first order sentence about $(\mathbb{N}; A, 0, 1, +, \times)$

 \mathbf{WF}^{A} : Programs \mathbf{p}^{A} for which there exists $(a_{n})_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathbf{p}^{A}(a_{i+1}) = a_{i}$.

$$A <_T \mathbf{K}^A <_T \mathbf{FIN}^A <_T \mathbf{COF}^A <_T \cdots <_T \mathbf{TA}^A <_T \cdots <_T \mathbf{WF}^A$$

Definition: The function $A \mapsto \mathbf{K}^A \colon \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is called the *Turing jump*.

• For every A, $A <_T \mathbf{K}^A$. • if $A \equiv_T B$, $\mathbf{K}^A \equiv_T \mathbf{K}^B$

Examples:

 $\mathbf{K}^{A} = \text{The set of programss } \mathbf{p}^{A}$ that use the function χ_{A} and eventually stop. $\mathbf{FIN}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ such that $\{x \in \mathbb{N} : \mathbf{p}(x)^{A} \text{ halts}\}$ is finite. $\mathbf{COF}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$. \mathbf{TA}^{A} : True first order sentence about $(\mathbb{N}; A, 0, 1, +, \times)$

 \mathbf{WF}^{A} : Programs \mathbf{p}^{A} for which there exists $(a_{n})_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathbf{p}^{A}(a_{i+1}) = a_{i}$.

$$A <_T \mathbf{K}^A <_T \mathbf{FIN}^A <_T \mathbf{COF}^A <_T \cdots <_T \mathbf{TA}^A <_T \cdots <_T \mathbf{WF}^A$$

Definition: The function $A \mapsto \mathbf{K}^A \colon \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is called the *Turing jump*.

• For every A, $A <_T \mathbf{K}^A$. • if $A \equiv_T B$, $\mathbf{K}^A \equiv_T \mathbf{K}^B$ • $\mathbf{K}^{\mathbf{FIN}} \equiv_T$

Examples:

 $\mathbf{K}^{A} = \text{The set of programss } \mathbf{p}^{A}$ that use the function χ_{A} and eventually stop. $\mathbf{FIN}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ such that $\{x \in \mathbb{N} : \mathbf{p}(x)^{A} \text{ halts}\}$ is finite. $\mathbf{COF}^{A} = \text{The set of programss } \mathbf{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$. \mathbf{TA}^{A} : True first order sentence about $(\mathbb{N}; A, 0, 1, +, \times)$

 \mathbf{WF}^{A} : Programs \mathbf{p}^{A} for which there exists $(a_{n})_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathbf{p}^{A}(a_{i+1}) = a_{i}$.

$$A <_T \mathbf{K}^A <_T \mathbf{FIN}^A <_T \mathbf{COF}^A <_T \cdots <_T \mathbf{TA}^A <_T \cdots <_T \mathbf{WF}^A$$

Definition: The function $A \mapsto \mathbf{K}^A \colon \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is called the *Turing jump*.

• For every A, $A <_T \mathbf{K}^A$. • if $A \equiv_T B$, $\mathbf{K}^A \equiv_T \mathbf{K}^B$ • $\mathbf{K}^{\mathbf{FIN}} \equiv_T \mathbf{COF}$

(all rings are countable, commutative, and with unity)

Theorem: Every ring $(D; 0, 1, +, \times)$ has a maximal ideal.

(all rings are countable, commutative, and with unity)

Theorem: Every ring $(D; 0, 1, +, \times)$ has a maximal ideal.

Question ¿How hard is it to find it?

(all rings are countable, commutative, and with unity)

Theorem: Every ring $(D; 0, 1, +, \times)$ has a maximal ideal.

Question ¿How hard is it to find it?

Given $A \in \mathcal{P}(A)$, let $\mathbf{MI}(A)$ be the least Turing degree such that

every ring computable in A has a maximal ideal computable in MI(A)

(all rings are countable, commutative, and with unity)

Theorem: Every ring $(D; 0, 1, +, \times)$ has a maximal ideal.

Question ¿How hard is it to find it?

Given $A \in \mathcal{P}(A)$, let $\mathbf{MI}(A)$ be the least Turing degree such that every ring computable in A has a maximal ideal computable in $\mathbf{MI}(A)$

Theorem: [Friedman, Simpson, Smith '85] For every A, $\mathbf{MI}(A) \equiv_T \mathbf{K}^A$.

(all rings are countable, commutative, and with unity)

Theorem: Every ring $(D; 0, 1, +, \times)$ has a maximal ideal.

Question ¿How hard is it to find it?

Given $A \in \mathcal{P}(A)$, let $\mathbf{MI}(A)$ be the least Turing degree such that every ring computable in A has a maximal ideal computable in $\mathbf{MI}(A)$

Theorem: [Friedman, Simpson, Smith '85] For every A, $\mathbf{MI}(A) \equiv_T \mathbf{K}^A$.

The Jacobson ideal is the intersection of all the maximal ideals.

(all rings are countable, commutative, and with unity)

Theorem: Every ring $(D; 0, 1, +, \times)$ has a maximal ideal.

Question ¿How hard is it to find it?

Given $A \in \mathcal{P}(A)$, let $\mathbf{MI}(A)$ be the least Turing degree such that every ring computable in A has a maximal ideal computable in $\mathbf{MI}(A)$

Theorem: [Friedman, Simpson, Smith '85] For every A, $\mathbf{MI}(A) \equiv_T \mathbf{K}^A$.

The Jacobson ideal is the intersection of all the maximal ideals.

Given $A \in \mathcal{P}(A)$, let $\mathbf{JI}(A)$ be the least Turing degree such that

for every ring computable in A, its Jacobson ideal is computable in $\mathbf{JI}(A)$

(all rings are countable, commutative, and with unity)

Theorem: Every ring $(D; 0, 1, +, \times)$ has a maximal ideal.

Question ¿How hard is it to find it?

Given $A \in \mathcal{P}(A)$, let $\mathbf{MI}(A)$ be the least Turing degree such that every ring computable in A has a maximal ideal computable in $\mathbf{MI}(A)$

Theorem: [Friedman, Simpson, Smith '85] For every A, $\mathbf{MI}(A) \equiv_T \mathbf{K}^A$.

The Jacobson ideal is the intersection of all the maximal ideals.

Given $A \in \mathcal{P}(A)$, let $\mathbf{JI}(A)$ be the least Turing degree such that

for every ring computable in A, its Jacobson ideal is computable in $\mathbf{JI}(A)$

Theorem: [Downey, Lempp, Mileti '07] For every A, $\mathbf{JI}(A) \equiv_T \mathbf{K}^{\mathbf{K}^A}$.

Antonio Montalbán (U.C. Berkeley)

Martin's conjectrue

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Examples: \mathbf{K}^{\odot} , \mathbf{FIN}^{\odot} , \mathbf{COF}^{\odot} , \mathbf{TA}^{\odot} , \mathbf{WF}^{\odot} , $\mathbf{MI}(\odot)$, $\mathbf{JI}(\odot)$,....

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Examples: \mathbf{K}^{\odot} , \mathbf{FIN}^{\odot} , \mathbf{COF}^{\odot} , \mathbf{TA}^{\odot} , \mathbf{WF}^{\odot} , $\mathbf{MI}(\odot)$, $\mathbf{JI}(\odot)$,....

Empirical observation: Natural Turing degrees induce \equiv_T -invariant functions.

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Examples: \mathbf{K}^{\odot} , \mathbf{FIN}^{\odot} , \mathbf{COF}^{\odot} , \mathbf{TA}^{\odot} , \mathbf{WF}^{\odot} , $\mathbf{MI}(\odot)$, $\mathbf{JI}(\odot)$,....

Empirical observation: Natural Turing degrees induce \equiv_T -invariant functions.

Definition: Given $F, G: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$, we say that $F \leq_T G$ if, for every $B, \quad F(B) \leq_T G(B)$.

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Examples: \mathbf{K}^{\odot} , \mathbf{FIN}^{\odot} , \mathbf{COF}^{\odot} , \mathbf{TA}^{\odot} , \mathbf{WF}^{\odot} , $\mathbf{MI}(\odot)$, $\mathbf{JI}(\odot)$,.... Empirical observation: Natural Turing degrees induce \equiv_T -invariant functions.

Definition: Given $F, G: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$, we say that $F \leq_T G$ if, for every B, $F(B) \leq_T G(B)$.

We know that for every B

 $0 <_T \mathbf{K}^B \equiv_T \mathbf{MI}(B) <_T \mathbf{FIN}^B \equiv_T \mathbf{JI}(B) <_T \mathbf{COF}^B <_T \mathbf{TA}^B <_T \mathbf{WF}^B$

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Examples: \mathbf{K}^{\odot} , \mathbf{FIN}^{\odot} , \mathbf{COF}^{\odot} , \mathbf{TA}^{\odot} , \mathbf{WF}^{\odot} , $\mathbf{MI}(\odot)$, $\mathbf{JI}(\odot)$,.... Empirical observation: Natural Turing degrees induce \equiv_T -invariant functions.

Definition: Given $F, G: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$, we say that $F \leq_T G$ if, for every B, $F(B) \leq_T G(B)$.

We know that for every B

$$0 <_T \mathbf{K}^B \equiv_T \mathbf{MI}(B) <_T \mathbf{FIN}^B \equiv_T \mathbf{JI}(B) <_T \mathbf{COF}^B <_T \mathbf{TA}^B <_T \mathbf{WF}^B$$

thus, if we look at the corresponding functions:

$$0 <_T \mathbf{K}^{\odot} \equiv_T \mathbf{MI}(\odot) <_T \mathbf{FIN}^{\odot} \equiv_T \mathbf{JI}(\odot) <_T \mathbf{COF}^{\odot} <_T \mathbf{TA}^{\odot} <_T \mathbf{WF}^{\odot}$$

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Examples: \mathbf{K}^{\odot} , \mathbf{FIN}^{\odot} , \mathbf{COF}^{\odot} , \mathbf{TA}^{\odot} , \mathbf{WF}^{\odot} , $\mathbf{MI}(\odot)$, $\mathbf{JI}(\odot)$,.... Empirical observation: Natural Turing degrees induce \equiv_T -invariant functions.

Definition: Given $F, G: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$, we say that $F \leq_T G$ if, for every B, $F(B) \leq_T G(B)$.

We know that for every B

$$0 <_T \mathbf{K}^B \equiv_T \mathbf{MI}(B) <_T \mathbf{FIN}^B \equiv_T \mathbf{JI}(B) <_T \mathbf{COF}^B <_T \mathbf{TA}^B <_T \mathbf{WF}^B$$

thus, if we look at the corresponding functions:

$$0 <_T \mathbf{K}^{\odot} \equiv_T \mathbf{MI}(\odot) <_T \mathbf{FIN}^{\odot} \equiv_T \mathbf{JI}(\odot) <_T \mathbf{COF}^{\odot} <_T \mathbf{TA}^{\odot} <_T \mathbf{WF}^{\odot}$$

Problem: There are \equiv_T -invariant functions of all shapes and colors.

Martin's conjectrue

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Examples: \mathbf{K}^{\odot} , \mathbf{FIN}^{\odot} , \mathbf{COF}^{\odot} , \mathbf{TA}^{\odot} , \mathbf{WF}^{\odot} , $\mathbf{MI}(\odot)$, $\mathbf{JI}(\odot)$,.... Empirical observation: Natural Turing degrees induce \equiv_T -invariant functions.

Definition: Given $F, G: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$, we say that $F \leq_T G$ if, for every $B, \quad F(B) \leq_T G(B)$.

We know that for every B

$$0 <_T \mathbf{K}^B \equiv_T \mathbf{MI}(B) <_T \mathbf{FIN}^B \equiv_T \mathbf{JI}(B) <_T \mathbf{COF}^B <_T \mathbf{TA}^B <_T \mathbf{WF}^B$$

thus, if we look at the corresponding functions:

$$0 <_T \mathbf{K}^{\odot} \equiv_T \mathbf{MI}(\odot) <_T \mathbf{FIN}^{\odot} \equiv_T \mathbf{JI}(\odot) <_T \mathbf{COF}^{\odot} <_T \mathbf{TA}^{\odot} <_T \mathbf{WF}^{\odot}$$

Problem: There are \equiv_T -invariant functions of all shapes and colors.

...but not if we compare them at the "limit".

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Definition: $F \leq_T^{\nabla} G$ if there exists A such that, for every $B \geq_T A$, $F(B) \leq_T G(B)$.

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Definition: $F \leq_T^{\nabla} G$ if there exists A such that, for every $B \geq_T A$, $F(B) \leq_T G(B)$.

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Definition: $F \leq_T^{\nabla} G$ if there exists A such that, for every $B \geq_T A$, $F(B) \leq_T G(B)$.

Let's use \mathbf{K}^F to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F.

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Definition: $F \leq_T^{\nabla} G$ if there exists A such that,	\mathbf{k}^{F}
for every $B \ge_T A$, $F(B) \le_T G(B)$.	K ⊳E
	$\overset{\circ}{F}$

Let's use \mathbf{K}^F to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F. Recall that $F <_T \mathbf{K}^F$.

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Definition: $F \leq_T^{\nabla} G$ if there exists A such that,	\mathbf{K}^{F}
for every $B \ge_T A$, $F(B) \le_T G(B)$.	
	$\overset{\circ}{F}$

Let's use \mathbf{K}^F to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F. Recall that $F <_T \mathbf{K}^F$.

Conjectura of Martin: (ZF+AD+DC)

13 / 15

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Definition: $F \leq_T^{\nabla} G$ if there exists A such that, for every $B \geq_T A$, $F(B) \leq_T G(B)$.

Let's use \mathbf{K}^F to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F. Recall that $F <_T \mathbf{K}^F$.

Conjectura of Martin: (ZF+AD+DC)

● Every \equiv_T -invariant function is \equiv_T^{\triangledown} -equivalent to one that is constant or increasing.

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Definition: $F \leq_T^{\nabla} G$ if there exists A such that, for every $B \geq_T A$, $F(B) \leq_T G(B)$.

Let's use \mathbf{K}^F to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F. Recall that $F <_T \mathbf{K}^F$.

Conjectura of Martin: (ZF+AD+DC)

- Every ≡_T-invariant function is ≡[∇]_T-equivalent to one that is constant or increasing.
- $e if F, G are \equiv_T invariant increasing functions \implies G \leq_T^{\nabla} F \quad o \quad \mathbf{K}^F \leq_T^{\nabla} G.$

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Definition: $F \leq_T^{\nabla} G$ if there exists A such that, for every $B \geq_T A$, $F(B) \leq_T G(B)$.

Let's use \mathbf{K}^F to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F. Recall that $F <_T \mathbf{K}^F$.

Conjectura of Martin: (ZF+AD+DC)

- Every ≡_T-invariant function is ≡[∇]_T-equivalent to one that is constant or increasing.
- $e if F, G are \equiv_T invariant increasing functions \implies G \leq_T^{\nabla} F \quad o \quad \mathbf{K}^F \leq_T^{\nabla} G.$

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Definition: $F \leq_T^{\nabla} G$ if there exists A such that, for every $B \geq_T A$, $F(B) \leq_T G(B)$.

Let's use \mathbf{K}^F to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F. Recall that $F <_T \mathbf{K}^F$.

Conjectura of Martin: (ZF+AD+DC)

- Every ≡_T-invariant function is ≡[∇]_T-equivalent to one that is constant or increasing.
- $e if F, G are \equiv_T invariant increasing functions \implies G \leq_T^{\nabla} F \quad o \quad \mathbf{K}^F \leq_T^{\nabla} G.$

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Definition: $F \leq_T^{\nabla} G$ if there exists A such that, for every $B \geq_T A$, $F(B) \leq_T G(B)$.

Let's use \mathbf{K}^F to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F. Recall that $F <_T \mathbf{K}^F$.

Conjectura of Martin: (ZF+AD+DC)

- Every \equiv_T -invariant function is \equiv_T^{\forall} -equivalent to one that is constant or increasing.
- $e if F, G are \equiv_T invariant increasing functions \implies G \leq_T^{\nabla} F \quad o \quad \mathbf{K}^F \leq_T^{\nabla} G.$

Thm: [Steel 82] [Slaman-Steel 88] It's true for the uniformly \equiv_T -invariant functions.

Martin's conjecture

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Definition: $F \leq_T^{\nabla} G$ if there exists A such that, for every $B \geq_T A$, $F(B) \leq_T G(B)$.

Let's use \mathbf{K}^F to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F. Recall that $F <_T \mathbf{K}^F$.

Conjectura of Martin: (ZF+AD+DC)

- Severy ≡_T-invariant function is ≡[∇]_T-equivalent to one that is constant or increasing.
- $e if F, G are \equiv_T invariant increasing functions \implies G \leq_T^{\nabla} F \quad o \quad \mathbf{K}^F \leq_T^{\nabla} G.$

Thm: [Steel 82] [Slaman-Steel 88] It's true for the uniformly \equiv_T -invariant functions.

Thm: [Kihara-Montalbán 18]: Connect natural many-one degrees and Wadge degrees.

Martin's conjecture

Definition: $F: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is \equiv_T -invariant if $A \equiv_T B \implies F(A) \equiv_T F(B)$.

Definition: $F \leq_T^{\nabla} G$ if there exists A such that, for every $B \geq_T A$, $F(B) \leq_T G(B)$.

Let's use \mathbf{K}^F to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F. Recall that $F <_T \mathbf{K}^F$.

Conjectura of Martin: (ZF+AD+DC)

- Severy ≡_T-invariant function is ≡[∇]_T-equivalent to one that is constant or increasing.
- $e if F, G are \equiv_T invariant increasing functions \implies G \leq_T^{\nabla} F \quad o \quad \mathbf{K}^F \leq_T^{\nabla} G.$

Thm: [Steel 82] [Slaman-Steel 88] It's true for the uniformly \equiv_T -invariant functions.

Thm: [Kihara-Montalbán 18]: Connect natural many-one degrees and Wadge degrees.

The conjecture is still open for the general case.

Antonio Montalbán (U.C. Berkeley)

Martin's conjectrue

 \mathbf{K}^{F}

Consider the Baire Space: $\mathbb{N}^{\mathbb{N}}=\{f\colon\mathbb{N}\to\mathbb{N}\}$ with the product topology.

Consider the *Baire Space*: $\mathbb{N}^{\mathbb{N}} = \{f : \mathbb{N} \to \mathbb{N}\}\$ with the product topology.

Obs: $\mathbb{N}^{\mathbb{N}}$ is homeomorphic to $\mathbb{R}^+ \setminus \mathbb{Q}$ via $f \mapsto f(0) + \frac{1}{1+f(1)+\frac{1}{1+f(2)+\cdots}}$

Consider the *Baire Space*: $\mathbb{N}^{\mathbb{N}} = \{f : \mathbb{N} \to \mathbb{N}\}$ with the product topology.

Obs: $\mathbb{N}^{\mathbb{N}}$ is homeomorphic to $\mathbb{R}^+ \setminus \mathbb{Q}$ via $f \mapsto f(0) + \frac{1}{1 + f(1) + \frac{1}{1 + f(2) + \cdots}}$

Definition: For $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, A is Wadge reducible to $B, A \leq_w B$ if there is a continuous $f \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ s.t. $(\forall X \in 2^{\mathbb{N}}), X \in A \iff f(X) \in B$.

Consider the *Baire Space*: $\mathbb{N}^{\mathbb{N}} = \{f : \mathbb{N} \to \mathbb{N}\}$ with the product topology.

Obs: $\mathbb{N}^{\mathbb{N}}$ is homeomorphic to $\mathbb{R}^+ \setminus \mathbb{Q}$ via $f \mapsto f(0) + \frac{1}{1 + f(1) + \frac{1}{1 + f(2) + \cdots}}$

Definition: For $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, A is Wadge reducible to $B, A \leq_w B$ if there is a continuous $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ s.t. $(\forall X \in 2^{\mathbb{N}}), X \in A \iff f(X) \in B$.

Theorem: [Wadge 83](AD) The Wadge degrees are almost linearly ordered:

- For every $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, either $A \leq_w B$ or $B \leq_w A^c$.
- For every $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, if $A <_w B$, then $A <_w B^c$.

Theorem: (AD) [Martin] The Wadge degrees are well founded.

Definition: A set $A \subseteq \mathbb{N}$ is *many-one reducible* to $B \subseteq \mathbb{N}$ $(A \leq_m B)$, if there is a computable $f: \mathbb{N} \to \mathbb{N}$ such that $n \in A \iff f(n) \in B$ $(\forall n)$.

Definition: A set $A \subseteq \mathbb{N}$ is *many-one reducible* to $B \subseteq \mathbb{N}$ $(A \leq_m B)$, if there is a computable $f : \mathbb{N} \to \mathbb{N}$ such that $n \in A \iff f(n) \in B$ $(\forall n)$.

Definition: A function $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is (\equiv_T, \equiv_m) -uniformly invariant (UI) if $X \equiv_T Y \Longrightarrow f(X) \equiv_m f(Y)$ and

Definition: A set $A \subseteq \mathbb{N}$ is *many-one reducible* to $B \subseteq \mathbb{N}$ $(A \leq_m B)$, if there is a computable $f : \mathbb{N} \to \mathbb{N}$ such that $n \in A \iff f(n) \in B$ $(\forall n)$.

Definition: A function $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is (\equiv_T, \equiv_m) -uniformly invariant (UI) if $X \equiv_T Y \Longrightarrow f(X) \equiv_m f(Y)$ and

there is $u: \mathbb{N}^2 \to \mathbb{N}^2$, s.t., if $X \equiv_T Y$ via Φ_i and Φ_j , then $f(X) \equiv_m f(Y)$ via $\Phi_{u_0(i,j)}$ and $\Phi_{u_1(i,j)}$.

Definition: A set $A \subseteq \mathbb{N}$ is *many-one reducible* to $B \subseteq \mathbb{N}$ $(A \leq_m B)$, if there is a computable $f : \mathbb{N} \to \mathbb{N}$ such that $n \in A \iff f(n) \in B$ $(\forall n)$.

Definition: A function $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is (\equiv_T, \equiv_m) -uniformly invariant (UI) if $X \equiv_T Y \Longrightarrow f(X) \equiv_m f(Y)$ and

there is $u \colon \mathbb{N}^2 \to \mathbb{N}^2$, s.t., if $X \equiv_T Y$ via Φ_i and Φ_j , then $f(X) \equiv_m f(Y)$ via $\Phi_{u_0(i,j)}$ and $\Phi_{u_1(i,j)}$.

Def: For $A, B \subseteq \mathbb{N}$, A is many-one reducible^Z to B, written $A \leq_m^Z B$, if there is a Z-computable $f: \mathbb{N} \to \mathbb{N}$ s.t. $(\forall x \in \mathbb{N}), x \in A \iff f(x) \in B$.

Definition: A set $A \subseteq \mathbb{N}$ is *many-one reducible* to $B \subseteq \mathbb{N}$ $(A \leq_m B)$, if there is a computable $f : \mathbb{N} \to \mathbb{N}$ such that $n \in A \iff f(n) \in B$ $(\forall n)$.

Definition: A function $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is (\equiv_T, \equiv_m) -uniformly invariant (UI) if $X \equiv_T Y \Longrightarrow f(X) \equiv_m f(Y)$ and

there is $u \colon \mathbb{N}^2 \to \mathbb{N}^2$, s.t., if $X \equiv_T Y$ via Φ_i and Φ_j , then $f(X) \equiv_m f(Y)$ via $\Phi_{u_0(i,j)}$ and $\Phi_{u_1(i,j)}$.

Def: For $A, B \subseteq \mathbb{N}$, A is many-one reducible^Z to B, written $A \leq_m^Z B$, if there is a Z-computable $f : \mathbb{N} \to \mathbb{N}$ s.t. $(\forall x \in \mathbb{N}), x \in A \iff f(x) \in B$.

Def: $f \leq_{\mathbf{m}}^{\nabla} g$ if $(\exists C \in 2^{\mathbb{N}})$ such that $f(X) \leq_{m}^{C} g(X)$ for every $X \geq_{T} C$.

Definition: A set $A \subseteq \mathbb{N}$ is *many-one reducible* to $B \subseteq \mathbb{N}$ $(A \leq_m B)$, if there is a computable $f : \mathbb{N} \to \mathbb{N}$ such that $n \in A \iff f(n) \in B$ $(\forall n)$.

Definition: A function $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is (\equiv_T, \equiv_m) -uniformly invariant (UI) if $X \equiv_T Y \Longrightarrow f(X) \equiv_m f(Y)$ and

there is $u: \mathbb{N}^2 \to \mathbb{N}^2$, s.t., if $X \equiv_T Y$ via Φ_i and Φ_j , then $f(X) \equiv_m f(Y)$ via $\Phi_{u_0(i,j)}$ and $\Phi_{u_1(i,j)}$.

Def: For $A, B \subseteq \mathbb{N}$, A is many-one reducible^Z to B, written $A \leq_m^Z B$, if there is a Z-computable $f : \mathbb{N} \to \mathbb{N}$ s.t. $(\forall x \in \mathbb{N}), x \in A \iff f(x) \in B$.

Def: $f \leq_{\mathbf{m}}^{\nabla} g$ if $(\exists C \in 2^{\mathbb{N}})$ such that $f(X) \leq_{m}^{C} g(X)$ for every $X \geq_{T} C$.

Theorem: [Kihara, M.] There is a one-to-one correspondence between (\equiv_T, \equiv_m) -UI functions ordered by $\leq_{\mathbf{m}}^{\triangledown}$ and $\mathcal{P}(2^{\mathbb{N}})$ ordered by Wadge reducibility.