Looking for a ruler to measure complexity

Antonio Montalbán
U.C. Berkeley

May 2022
Topos Institute
Berkeley, California

Computability Theory

Computability Theory

Objective: Study the complexity of countably infinite mathematical objects.

Computability Theory

Objective: Study the complexity of countably infinite mathematical objects.
The tools come from:

- For finite objects: Computer Science.
- For countably infinite objects: Computability Theory.
- For uncountable objects: Set Theory.

Computability Theory

Objective: Study the complexity of countably infinite mathematical objects.
The tools come from:

- For finite objects: Computer Science.
- For countably infinite objects: Computability Theory.
- For uncountable objects: Set Theory.

Definition: A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable
if there is a computer program that, on input n, calculates $f(n)$.

Computability Theory

Objective: Study the complexity of countably infinite mathematical objects.
The tools come from:

- For finite objects: Computer Science.
- For countably infinite objects: Computability Theory.
- For uncountable objects: Set Theory.

Definition: A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable
if there is a computer program that, on input n, calculates $f(n)$.

Definition: A set $A \subseteq \mathbb{N}$ is computable
if its characteristic funciton $\chi_{A}: \mathbb{N} \rightarrow\{0,1\}$ is computable.

Computability Theory

Objective: Study the complexity of countably infinite mathematical objects.
The tools come from:

- For finite objects: Computer Science.
- For countably infinite objects: Computability Theory.
- For uncountable objects: Set Theory.

> Definition: A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable $$
\text { if there is a computer program that, on input } n \text {, calculates } f(n) .
$$

Definition: A set $A \subseteq \mathbb{N}$ is computable
if its characteristic funciton $\chi_{A}: \mathbb{N} \rightarrow\{0,1\}$ is computable.

First idea: Computable is easy -vs- Not computable is hard

Computability Theory

Objective: Study the complexity of countably infinite mathematical objects.
The tools come from:

- For finite objects: Computer Science.
- For countably infinite objects: Computability Theory.
- For uncountable objects: Set Theory.

Definition: A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable
if there is a computer program that, on input n, calculates $f(n)$.

Definition: A set $A \subseteq \mathbb{N}$ is computable
if its characteristic funciton $\chi_{A}: \mathbb{N} \rightarrow\{0,1\}$ is computable.

First idea: Computable is easy -vs- Not computable is hard
(Every finite object can be coded by a natural number.)

Examples: not computable sets

HT: $10^{\text {th }}$ Hilbert's problem: Polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ with integer roots.

Examples: not computable sets

HT: $10^{\text {th }}$ Hilbert's problem: Polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ with integer roots.

K: Halting problem: The set of programs that do not run forever.

Examples: not computable sets

HT: $10^{\text {th }}$ Hilbert's problem: Polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ with integer roots.

K: Halting problem: The set of programs that do not run forever.

TF: Finite presentations $\left(\left(a_{1}, \ldots, a_{k}\right),\left(R_{1}, \ldots, R_{\ell}\right)\right)$ of torsion free groups.

Examples: not computable sets

HT: $10^{\text {th }}$ Hilbert's problem: Polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ with integer roots.

K: Halting problem: The set of programs that do not run forever.

TF: Finite presentations $\left(\left(a_{1}, \ldots, a_{k}\right),\left(R_{1}, \ldots ., R_{\ell}\right)\right)$ of torsion free groups.

COF: Polynomials in $\mathbb{Z}\left[x, y_{0}, y_{1}, y_{2}, \ldots\right]$ with integer roots for almost every $x \in \mathbb{N}$.

Examples: not computable sets

HT: $10^{\text {th }}$ Hilbert's problem: Polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ with integer roots.

K: Halting problem: The set of programs that do not run forever.

TF: Finite presentations $\left(\left(a_{1}, \ldots, a_{k}\right),\left(R_{1}, \ldots, R_{\ell}\right)\right)$ of torsion free groups.

COF: Polynomials in $\mathbb{Z}\left[x, y_{0}, y_{1}, y_{2}, \ldots\right]$ with integer roots for almost every $x \in \mathbb{N}$.

TA: True first-order sentences about $(\mathbb{N} ; 0,1,+, \times)$

Examples: not computable sets

HT: $10^{\text {th }}$ Hilbert's problem: Polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ with integer roots.

K: Halting problem: The set of programs that do not run forever.

TF: Finite presentations $\left(\left(a_{1}, \ldots, a_{k}\right),\left(R_{1}, \ldots, R_{\ell}\right)\right)$ of torsion free groups.

COF: Polynomials in $\mathbb{Z}\left[x, y_{0}, y_{1}, y_{2}, \ldots\right]$ with integer roots for almost every $x \in \mathbb{N}$.

TA: True first-order sentences about $(\mathbb{N} ; 0,1,+, \times)$

WF: Programs p for which there is a $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathrm{p}\left(a_{i+1}\right)=a_{i}$.

Summary of the talk

Summary of the talk

Objetive: Find a ruler to measure complexity

Summary of the talk

Objetive: Find a ruler to measure complexity

(1) We define an order \leq_{T} in $\mathcal{P}(\mathbb{N})$ to compare the complexity of sets.

Summary of the talk

Objetive: Find a ruler to measure complexity

(1) We define an order \leq_{T} in $\mathcal{P}(\mathbb{N})$ to compare the complexity of sets.
(2) Properties of $\left(\mathcal{P}(\mathbb{N}): \leq_{T}\right)$

Summary of the talk

Objetive: Find a ruler to measure complexity

(1) We define an order \leq_{T} in $\mathcal{P}(\mathbb{N})$ to compare the complexity of sets.
(2) Properties of $\left(\mathcal{P}(\mathbb{N}): \leq_{T}\right)$ chaos!

Summary of the talk

Objetive: Find a ruler to measure complexity
K HT TF COF TA WF.

(1) We define an order \leq_{T} in $\mathcal{P}(\mathbb{N})$ to compare the complexity of sets.
(2) Properties of $\left(\mathcal{P}(\mathbb{N}): \leq_{T}\right)$ chaos!

(3) The structure underneath the chaos: Martin's conjecture

Relative computability

Idea: To define an order relation \leq_{T} such that:

Relative computability

Idea: To define an order relation \leq_{T} such that:
$B \leq_{T} A$ if A contains enough information to calculate B
(A is complicated as B)

Relative computability

Idea: To define an order relation \leq_{T} such that:
$B \leq_{T} A$ if A contains enough information to calculate B

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable in A if there exists a program that calculates f using χ_{A} as primitive function.
$\left(\chi_{A}: \mathbb{N} \rightarrow\{0,1\}\right.$ is the characteristic function of $\left.A\right)$

Relative computability

Idea: To define an order relation \leq_{T} such that:
$B \leq_{T} A$ if A contains enough information to calculate B

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable in A if there exists a program that calculates f using χ_{A} as primitive function.
$\left(\chi_{A}: \mathbb{N} \rightarrow\{0,1\}\right.$ is the characteristic function of $\left.A\right)$
We write $f \leq_{T} A$.

Relative computability

Idea: To define an order relation \leq_{T} such that:
$B \leq_{T} A$ if A contains enough information to calculate B

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable in A
if there exists a program that calculates f using χ_{A} as primitive function.
$\left(\chi_{A}: \mathbb{N} \rightarrow\{0,1\}\right.$ is the characteristic function of $\left.A\right)$
We write $f \leq_{T} A$.

Example: $\mathbf{H T} \leq_{T} \mathbf{K}$
HT: Hilbert's $10^{t h}$: Polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ with integer roots.
\mathbf{K} : The halting problem: The set of programs that do not run forever.

Relative computability

Idea: To define an order relation \leq_{T} such that:
$B \leq_{T} A$ if A contains enough information to calculate B

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable in A
if there exists a program that calculates f using χ_{A} as primitive function.
$\left(\chi_{A}: \mathbb{N} \rightarrow\{0,1\}\right.$ is the characteristic function of $\left.A\right)$
We write $f \leq_{T} A$.

Example: $\mathbf{H T} \leq_{T} \mathbf{K}$
HT: Hilbert's $10^{t h}$: Polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ with integer roots.
\mathbf{K} : The halting problem: The set of programs that do not run forever.
Proof:

Relative computability

Idea: To define an order relation \leq_{T} such that:
$B \leq_{T} A$ if A contains enough information to calculate B

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable in A
if there exists a program that calculates f using χ_{A} as primitive function.
$\left(\chi_{A}: \mathbb{N} \rightarrow\{0,1\}\right.$ is the characteristic function of $\left.A\right)$
We write $f \leq_{T} A$.

Example: $\mathbf{H T} \leq_{T} \mathbf{K}$

HT: Hilbert's $10^{t h}$: Polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ with integer roots.
K: The halting problem: The set of programs that do not run forever.
Proof: Given a polynomial $p\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$

Relative computability

Idea: To define an order relation \leq_{T} such that:
$B \leq_{T} A$ if A contains enough information to calculate B

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable in A if there exists a program that calculates f using χ_{A} as primitive function.
$\left(\chi_{A}: \mathbb{N} \rightarrow\{0,1\}\right.$ is the characteristic function of $\left.A\right)$
We write $f \leq_{T} A$.

Example: $\mathbf{H T} \leq_{T} \mathbf{K}$

HT: Hilbert's $10^{t h}$: Polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ with integer roots.
\mathbf{K} : The halting problem: The set of programs that do not run forever.
Proof: Given a polynomial $p\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ write a program q_{p} that enumerates all k-tuples $\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}^{k}$ and checks if they are roots of $p\left(x_{1}, \ldots, x_{k}\right)$.

Relative computability

Idea: To define an order relation \leq_{T} such that:
$B \leq_{T} A$ if A contains enough information to calculate B

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable in A
if there exists a program that calculates f using χ_{A} as primitive function.
$\left(\chi_{A}: \mathbb{N} \rightarrow\{0,1\}\right.$ is the characteristic function of $\left.A\right)$
We write $f \leq_{T} A$.

Example: $\mathbf{H T} \leq_{T} \mathbf{K}$

HT: Hilbert's $10^{t h}$: Polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ with integer roots.
\mathbf{K} : The halting problem: The set of programs that do not run forever.
Proof: Given a polynomial $p\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ write a program q_{p} that enumerates all k-tuples $\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}^{k}$ and checks if they are roots of $p\left(x_{1}, \ldots, x_{k}\right)$. If it finds one, the program stops.

Relative computability

Idea: To define an order relation \leq_{T} such that:
$B \leq_{T} A$ if A contains enough information to calculate B

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable in A if there exists a program that calculates f using χ_{A} as primitive function.
$\left(\chi_{A}: \mathbb{N} \rightarrow\{0,1\}\right.$ is the characteristic function of $\left.A\right)$
We write $f \leq_{T} A$.

Example: $\mathbf{H T} \leq_{T} \mathbf{K}$

HT: Hilbert's $10^{t h}$: Polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ with integer roots.
\mathbf{K} : The halting problem: The set of programs that do not run forever.
Proof: Given a polynomial $p\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ write a program q_{p} that enumerates all k-tuples $\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{Z}^{k}$ and checks if they are roots of $p\left(x_{1}, \ldots, x_{k}\right)$. If it finds one, the program stops. To know if $p\left(x_{1}, \ldots, x_{k}\right)$ has integer roots, ask \mathbf{K} if this program q_{p} ever halts or not.

Examples

$0<_{T} \mathbf{H T} \equiv_{T} \mathbf{K}<_{T}$ TF $<_{T} \mathbf{C O F}<_{T}$ TA $<_{T}$ WF.

HT: $10^{\text {th }}$ Hilbert's problem: Polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ with integer roots.

Examples

$0<_{T} \mathbf{H T} \equiv_{T} \mathbf{K}<_{T}$ TF $<_{T} \mathbf{C O F}<_{T}$ TA $<_{T}$ WF.

HT: $10^{\text {th }}$ Hilbert's problem: Polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ with integer roots.

K: Halting problem: The set of programs that do not run forever.

Examples

$0<_{T} \mathbf{H T} \equiv_{T} \mathbf{K}<_{T}$ TF $<_{T} \mathbf{C O F}<_{T}$ TA $<_{T}$ WF.

HT: $10^{\text {th }}$ Hilbert's problem: Polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ with integer roots.
\mathbf{K} : Halting problem: The set of programs that do not run forever.
TF: Finite presentations $\left(\left(a_{1}, \ldots, a_{k}\right),\left(R_{1}, \ldots, R_{\ell}\right)\right)$ of torsion free groups.

Examples

$0<_{T} \mathbf{H T} \equiv_{T} \mathbf{K}<_{T}$ TF $<_{T} \mathbf{C O F}<_{T}$ TA $<_{T}$ WF.

HT: $10^{\text {th }}$ Hilbert's problem: Polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ with integer roots.

K: Halting problem: The set of programs that do not run forever.

TF: Finite presentations $\left(\left(a_{1}, \ldots, a_{k}\right),\left(R_{1}, \ldots, R_{\ell}\right)\right)$ of torsion free groups.
COF: Polynomials in $\mathbb{Z}\left[x, y_{0}, y_{1}, y_{2}, \ldots\right]$ with integer roots for almost every $x \in \mathbb{N}$.

Examples

$0<_{T} \mathbf{H T} \equiv_{T} \mathbf{K}<_{T}$ TF $<_{T} \mathbf{C O F}<_{T}$ TA $<_{T}$ WF.

HT: $10^{\text {th }}$ Hilbert's problem: Polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ with integer roots.

K: Halting problem: The set of programs that do not run forever.

TF: Finite presentations $\left(\left(a_{1}, \ldots, a_{k}\right),\left(R_{1}, \ldots, R_{\ell}\right)\right)$ of torsion free groups.
COF: Polynomials in $\mathbb{Z}\left[x, y_{0}, y_{1}, y_{2}, \ldots\right]$ with integer roots for almost every $x \in \mathbb{N}$.
TA: True first-order sentences about $(\mathbb{N} ; 0,1,+, \times)$

Examples

$0<_{T} \mathbf{H T} \equiv_{T} \mathbf{K}<_{T}$ TF $<_{T} \mathbf{C O F}<_{T}$ TA $<_{T}$ WF.

HT: $10^{\text {th }}$ Hilbert's problem: Polynomials in $\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ with integer roots.
K: Halting problem: The set of programs that do not run forever.

TF: Finite presentations $\left(\left(a_{1}, \ldots, a_{k}\right),\left(R_{1}, \ldots, R_{\ell}\right)\right)$ of torsion free groups.
COF: Polynomials in $\mathbb{Z}\left[x, y_{0}, y_{1}, y_{2}, \ldots\right]$ with integer roots for almost every $x \in \mathbb{N}$.
TA: True first-order sentences about $(\mathbb{N} ; 0,1,+, \times)$

WF: Programs p for which there is a $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathrm{p}\left(a_{i+1}\right)=a_{i}$.

Turing degrees

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable in A if there exists a program that calculates f using χ_{A} as a primitive function.
$\left(\chi_{A}: \mathbb{N} \rightarrow\{0,1\}\right.$ is the characteristic function of $\left.A\right)$ We write $f \leq_{T} A$.

Turing degrees

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable in A if there exists a program that calculates f using χ_{A} as a primitive function.
$\left(\chi_{A}: \mathbb{N} \rightarrow\{0,1\}\right.$ is the characteristic function of $\left.A\right)$
We write $f \leq_{T} A$.

Definition: A and B are Turing-equivalent $\left(A \equiv_{T} B\right)$ if $\mathcal{A} \leq_{T} B$ and $B \leq_{T} A$.

Turing degrees

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable in A if there exists a program that calculates f using χ_{A} as a primitive function.
$\left(\chi_{A}: \mathbb{N} \rightarrow\{0,1\}\right.$ is the characteristic function of $\left.A\right)$
We write $f \leq_{T} A$.

Definition: A and B are Turing-equivalent $\left(A \equiv_{T} B\right)$ if $\mathcal{A} \leq_{T} B$ and $B \leq_{T} A$.
A Turing degrees is a \equiv_{T}-equivalence class.

Turing degrees

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable in A if there exists a program that calculates f using χ_{A} as a primitive function.
$\left(\chi_{A}: \mathbb{N} \rightarrow\{0,1\}\right.$ is the characteristic function of $\left.A\right)$
We write $f \leq_{T} A$.

Definition: A and B are Turing-equivalent $\left(A \equiv_{T} B\right)$ if $\mathcal{A} \leq_{T} B$ and $B \leq_{T} A$.
A Turing degrees is a \equiv_{T}-equivalence class.
\leq_{T} is a partial order in $\mathcal{P}(\mathbb{N}) / \equiv_{T}$.
(transitive and anti-symmetic)

Turing degrees

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable in A if there exists a program that calculates f using χ_{A} as a primitive function.
$\left(\chi_{A}: \mathbb{N} \rightarrow\{0,1\}\right.$ is the characteristic function of $\left.A\right)$
We write $f \leq_{T} A$.

Definition: A and B are Turing-equivalent $\left(A \equiv_{T} B\right)$ if $\mathcal{A} \leq_{T} B$ and $B \leq_{T} A$.
A Turing degrees is a \equiv_{T}-equivalence class.
\leq_{T} is a partial order in $\mathcal{P}(\mathbb{N}) / \equiv_{T}$.
(transitive and anti-symmetic)
Basic observations:

Turing degrees

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable in A if there exists a program that calculates f using χ_{A} as a primitive function.
$\left(\chi_{A}: \mathbb{N} \rightarrow\{0,1\}\right.$ is the characteristic function of $\left.A\right)$
We write $f \leq_{T} A$.

Definition: A and B are Turing-equivalent $\left(A \equiv_{T} B\right)$ if $\mathcal{A} \leq_{T} B$ and $B \leq_{T} A$.
A Turing degrees is a \equiv_{T}-equivalence class.
\leq_{T} is a partial order in $\mathcal{P}(\mathbb{N}) / \equiv_{T}$.
Basic observations:
(1) A and $\mathbb{N} \backslash A$ are Turing-equivalent.

Turing degrees

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable in A if there exists a program that calculates f using χ_{A} as a primitive function.
$\left(\chi_{A}: \mathbb{N} \rightarrow\{0,1\}\right.$ is the characteristic function of $\left.A\right)$
We write $f \leq_{T} A$.

Definition: A and B are Turing-equivalent $\left(A \equiv_{T} B\right)$ if $\mathcal{A} \leq_{T} B$ and $B \leq_{T} A$.
A Turing degrees is a \equiv_{T}-equivalence class.
\leq_{T} is a partial order in $\mathcal{P}(\mathbb{N}) / \equiv_{T}$.
Basic observations:
(1) A and $\mathbb{N} \backslash A$ are Turing-equivalent.
(2) if A is computable, $A \leq_{T} B$ for every $B \subseteq \mathbb{N}$.

Turing degrees

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable in A if there exists a program that calculates f using χ_{A} as a primitive function.
$\left(\chi_{A}: \mathbb{N} \rightarrow\{0,1\}\right.$ is the characteristic function of $\left.A\right)$
We write $f \leq_{T} A$.

Definition: A and B are Turing-equivalent $\left(A \equiv_{T} B\right)$ if $\mathcal{A} \leq_{T} B$ and $B \leq_{T} A$.
A Turing degrees is a \equiv_{T}-equivalence class.
\leq_{T} is a partial order in $\mathcal{P}(\mathbb{N}) / \equiv_{T}$.
Basic observations:
(1) A and $\mathbb{N} \backslash A$ are Turing-equivalent.
(2) if A is computable, $A \leq_{T} B$ for every $B \subseteq \mathbb{N}$.
(3) Given B, the set $\left\{A \subseteq \mathbb{N}: A \leq_{T} B\right\}$ is countable.

Turing degrees

Definition: Let $A \subseteq \mathbb{N}$. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable in A if there exists a program that calculates f using χ_{A} as a primitive function.
$\left(\chi_{A}: \mathbb{N} \rightarrow\{0,1\}\right.$ is the characteristic function of $\left.A\right)$
We write $f \leq_{T} A$.

Definition: A and B are Turing-equivalent $\left(A \equiv_{T} B\right)$ if $\mathcal{A} \leq_{T} B$ and $B \leq_{T} A$.
A Turing degrees is a \equiv_{T}-equivalence class.
\leq_{T} is a partial order in $\mathcal{P}(\mathbb{N}) / \equiv_{T}$.
Basic observations:
(1) A and $\mathbb{N} \backslash A$ are Turing-equivalent.
(2) if A is computable, $A \leq_{T} B$ for every $B \subseteq \mathbb{N}$.
(3) Given B, the set $\left\{A \subseteq \mathbb{N}: A \leq_{T} B\right\}$ is countable.
(1) $\mathcal{P}(\mathbb{N}) / \equiv_{T}$ is uncountable.

Chaos

Until now, all examples are linearly ordered...

Chaos

Until now, all examples are linearly ordered...

BUT...

Chaos

Until now, all examples are linearly ordered...
BUT...

Theorem: [Kleene, Post] There are $A, B \subseteq \mathbb{N}$ such that $A \not \mathbb{Z}_{T} B$ and $B \not \mathbb{Z}_{T} A$.

Chaos

Until now, all examples are linearly ordered...
BUT...

Theorem: [Kleene, Post] There are $A, B \subseteq \mathbb{N}$ such that $A \not \mathbb{Z}_{T} B$ and $B \not \mathbb{Z}_{T} A$. Even worst, there are uncountable $\leq_{T^{-}}$antichains.

Chaos

Until now, all examples are linearly ordered...
BUT...

Theorem: [Kleene, Post] There are $A, B \subseteq \mathbb{N}$ such that $A \not \mathbb{Z}_{T} B$ and $B \not \mathbb{Z}_{T} A$. Even worst, there are uncountable $\leq_{T^{-}}$antichains.

Theorem: [Kleene, Post][Lachlan-Shore, Nerode]
Every countable partial ordering can be embedded in the Turing degrees.

Chaos

Until now, all examples are linearly ordered...
BUT...

Theorem: [Kleene, Post] There are $A, B \subseteq \mathbb{N}$ such that $A \not \mathbb{Z}_{T} B$ and $B \not \mathbb{Z}_{T} A$.
Even worst, there are uncountable $\leq_{T^{-}}$antichains.

Theorem: [Kleene, Post]|Lachlan-Shore, Nerode]
Every countable partial ordering can be embedded in the Turing degrees.
Even worst, it can be embedded below K.

Chaos

Until now, all examples are linearly ordered...
BUT...

Theorem: [Kleene, Post] There are $A, B \subseteq \mathbb{N}$ such that $A \not \mathbb{Z}_{T} B$ and $B \not \mathbb{Z}_{T} A$. Even worst, there are uncountable \leq_{T} - antichains.

Theorem: [Kleene, Post]|Lachlan-Shore, Nerode]
Every countable partial ordering can be embedded in the Turing degrees.
Even worst, it can be embedded below K.

There are many more results showing that $\left(\mathcal{P}(\mathbb{N}) ; \leq_{T}\right)$ is extremely complex.

Natural examples

Natural examples

\leq_{T}
\Leftarrow Natural examples
All the sets \Rightarrow
Mathematically, we don't have a definition of "natural example".

Natural examples

\leq_{T}
\Leftarrow Natural examples
All the sets \Rightarrow
Mathematically, we don't have a definition of "natural example".
We know that
all natural examples are:
- constructible
- relativizable

Natural examples

$$
\begin{gathered}
\leq_{T} \\
\Leftarrow \text { Natural examples } \\
\text { All the sets } \Rightarrow
\end{gathered}
$$

Mathematically, we don't have a definition of "natural example".

We know that all natural examples are:

- constructible
- relativizable

Plan: relativizable
examples

ordered by \leq_{T}
functions $\mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$
\equiv_{T}-invariants

Ordered by \leq_{T}^{∇}

Relativization

Observación:
The functions that are computable in A behave "like" the computable functions.

Relativization

Observación:
The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Relativization

Observación:
The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

Relativization

Observación:
The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

$\mathbf{K}=$ The set of programas p that eventually halt.

Relativization

Observación:
The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

$\mathbf{K}=$ The set of programas p that eventually halt.
$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop.

Relativization

Observación:
The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop.
FIN $=$ The set of programas $\mathrm{p}(x)$ such that $\{x \in \mathbb{N}: \mathrm{p}(x)$ halts $\}$ is finite.

Relativization

Observación:
The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop.
FIN $=$ The set of programas $\mathrm{p}(x)$ such that $\{x \in \mathbb{N}: \mathrm{p}(x)$ halts $\}$ is finite. $\quad\left(\equiv_{T} \mathbf{T F}\right)$

Relativization

Observación:
The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop.
FIN $^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ such that $\left\{x \in \mathbb{N}: \mathrm{p}(x)^{A}\right.$ halts $\}$ is finite.

Relativization

Observación:
The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop.
FIN $^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ such that $\left\{x \in \mathbb{N}: \mathrm{p}(x)^{A}\right.$ halts $\}$ is finite.
$\operatorname{COF}^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$.

Relativization

Observación:
The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop.
FIN $^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ such that $\left\{x \in \mathbb{N}: \mathrm{p}(x)^{A}\right.$ halts $\}$ is finite.
$\operatorname{COF}^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$.
$\mathbf{T A}^{A}$: True first order sentence about $(\mathbb{N} ; A, 0,1,+, \times)$

Relativization

Observación:
The functions that are computable in A behave "like" the computable functions.

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop.
FIN $^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ such that $\left\{x \in \mathbb{N}: \mathrm{p}(x)^{A}\right.$ halts $\}$ is finite.
$\operatorname{COF}^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$.
$\mathbf{T A}^{A}$: True first order sentence about $(\mathbb{N} ; A, 0,1,+, \times)$
$\mathbf{W F}^{A}:$ Programs p^{A} for which there exists $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathrm{p}^{A}\left(a_{i+1}\right)=a_{i}$.

Relativization

Observación:
The functions that are computable in A behave "like" the computable functions.
Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop. $\mathbf{F I N}^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ such that $\left\{x \in \mathbb{N}: \mathrm{p}(x)^{A}\right.$ halts $\}$ is finite.
$\operatorname{COF}^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$.
$\mathbf{T A}^{A}$: True first order sentence about ($\mathbb{N} ; A, 0,1,+, \times$)
$\mathbf{W F}^{A}:$ Programs p^{A} for which there exists $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathrm{p}^{A}\left(a_{i+1}\right)=a_{i}$.

Relativization

Relativize a construction, a theorem, or a proof to a set A means to change the notion of computable for that of computable in A.

Examples:

$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop.
FIN $^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ such that $\left\{x \in \mathbb{N}: \mathrm{p}(x)^{A}\right.$ halts $\}$ is finite.
$\operatorname{COF}^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$.
$\mathbf{T A}^{A}$: True first order sentence about $(\mathbb{N} ; A, 0,1,+, \times)$
$\mathbf{W F}^{A}:$ Programs \mathbf{p}^{A} for which there exists $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathbf{p}^{A}\left(a_{i+1}\right)=a_{i}$.

Relativization

Examples:

$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop.
FIN $^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ such that $\left\{x \in \mathbb{N}: \mathrm{p}(x)^{A}\right.$ halts $\}$ is finite.
$\operatorname{COF}^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$.
$\mathbf{T A}^{A}$: True first order sentence about ($\mathbb{N} ; A, 0,1,+, \times$)
$\mathbf{W F}^{A}:$ Programs p^{A} for which there exists $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathrm{p}^{A}\left(a_{i+1}\right)=a_{i}$.

Relativization

Examples:

$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop.
FIN $^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ such that $\left\{x \in \mathbb{N}: \mathrm{p}(x)^{A}\right.$ halts $\}$ is finite.
$\operatorname{COF}^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$.
$\mathbf{T A}^{A}$: True first order sentence about ($\mathbb{N} ; A, 0,1,+, \times$)
$\mathbf{W F}^{A}:$ Programs p^{A} for which there exists $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathrm{p}^{A}\left(a_{i+1}\right)=a_{i}$.

$$
0<_{T} \text { K }<_{T} \text { FIN }<_{T} \text { COF }<_{T} \cdots<_{T} \text { TA }<_{T} \cdots<_{T} \text { WF }
$$

Relativization

Examples:

$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop.
FIN $^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ such that $\left\{x \in \mathbb{N}: \mathrm{p}(x)^{A}\right.$ halts $\}$ is finite.
$\operatorname{COF}^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$.
$\mathbf{T A}^{A}$: True first order sentence about $(\mathbb{N} ; A, 0,1,+, \times)$
$\mathbf{W F}^{A}:$ Programs p^{A} for which there exists $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathrm{p}^{A}\left(a_{i+1}\right)=a_{i}$.

$$
A<_{T} \mathbf{K}^{A}<_{T} \text { FIN }^{A}<_{T} \mathbf{C O F}^{A}<_{T} \cdots<_{T} \mathbf{T A}^{A}<_{T} \cdots<_{T} \mathbf{W F}^{A}
$$

Relativization

Examples:

$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop.
FIN $^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ such that $\left\{x \in \mathbb{N}: \mathrm{p}(x)^{A}\right.$ halts $\}$ is finite.
$\operatorname{COF}^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$.
$\mathbf{T A}^{A}$: True first order sentence about $(\mathbb{N} ; A, 0,1,+, \times)$
$\mathbf{W F}^{A}:$ Programs \mathbf{p}^{A} for which there exists $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathrm{p}^{A}\left(a_{i+1}\right)=a_{i}$.

$$
A<_{T} \mathbf{K}^{A}<_{T} \text { FIN }^{A}<_{T} \mathbf{C O F}^{A}<_{T} \cdots<_{T} \mathbf{T A}^{A}<_{T} \cdots<_{T} \mathbf{W F}^{A}
$$

Definition: The function $A \mapsto \mathbf{K}^{A}: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is called the Turing jump.

Relativization

Examples:

$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop.
FIN $^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ such that $\left\{x \in \mathbb{N}: \mathrm{p}(x)^{A}\right.$ halts $\}$ is finite.
$\operatorname{COF}^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$.
$\mathbf{T A}^{A}$: True first order sentence about $(\mathbb{N} ; A, 0,1,+, \times)$
$\mathbf{W F}^{A}:$ Programs \mathbf{p}^{A} for which there exists $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathrm{p}^{A}\left(a_{i+1}\right)=a_{i}$.

$$
A<_{T} \mathbf{K}^{A}<_{T} \text { FIN }^{A}<_{T} \mathbf{C O F}^{A}<_{T} \cdots<_{T} \mathbf{T A}^{A}<_{T} \cdots<_{T} \mathbf{W F}^{A}
$$

Definition: The function $A \mapsto \mathbf{K}^{A}: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is called the Turing jump.

- For every $A, \quad A<_{T} \mathbf{K}^{A}$.

Relativization

Examples:

$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop.
FIN $^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ such that $\left\{x \in \mathbb{N}: \mathrm{p}(x)^{A}\right.$ halts $\}$ is finite.
$\operatorname{COF}^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$.
$\mathbf{T A}^{A}$: True first order sentence about $(\mathbb{N} ; A, 0,1,+, \times)$
$\mathbf{W F}^{A}:$ Programs \mathbf{p}^{A} for which there exists $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathrm{p}^{A}\left(a_{i+1}\right)=a_{i}$.

$$
A<_{T} \mathbf{K}^{A}<_{T} \text { FIN }^{A}<_{T} \mathbf{C O F}^{A}<_{T} \cdots<_{T} \mathbf{T A}^{A}<_{T} \cdots<_{T} \mathbf{W F}^{A}
$$

Definition: The function $A \mapsto \mathbf{K}^{A}: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is called the Turing jump.

- For every $A, \quad A<_{T} \mathbf{K}^{A}$.
- if $A \equiv_{T} B, \quad \mathbf{K}^{A} \equiv_{T} \mathbf{K}^{B}$

Relativization

Examples:

$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop.
FIN $^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ such that $\left\{x \in \mathbb{N}: \mathrm{p}(x)^{A}\right.$ halts $\}$ is finite.
$\operatorname{COF}^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$.
$\mathbf{T A}^{A}$: True first order sentence about $(\mathbb{N} ; A, 0,1,+, \times)$
$\mathbf{W F}^{A}:$ Programs \mathbf{p}^{A} for which there exists $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathrm{p}^{A}\left(a_{i+1}\right)=a_{i}$.

$$
A<_{T} \mathbf{K}^{A}<_{T} \text { FIN }^{A}<_{T} \mathbf{C O F}^{A}<_{T} \cdots<_{T} \mathbf{T A}^{A}<_{T} \cdots<_{T} \mathbf{W F}^{A}
$$

Definition: The function $A \mapsto \mathbf{K}^{A}: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is called the Turing jump.

- For every $A, \quad A<_{T} \mathbf{K}^{A}$.
- $\mathbf{K}^{\mathbf{K}} \equiv_{T}$
- if $A \equiv{ }_{T} B, \quad \mathbf{K}^{A} \equiv_{T} \mathbf{K}^{B}$

Relativization

Examples:

$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop.
FIN $^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ such that $\left\{x \in \mathbb{N}: \mathrm{p}(x)^{A}\right.$ halts $\}$ is finite.
$\operatorname{COF}^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$.
$\mathbf{T A}^{A}$: True first order sentence about $(\mathbb{N} ; A, 0,1,+, \times)$
$\mathbf{W F}^{A}:$ Programs \mathbf{p}^{A} for which there exists $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathrm{p}^{A}\left(a_{i+1}\right)=a_{i}$.

$$
A<_{T} \mathbf{K}^{A}<_{T} \text { FIN }^{A}<_{T} \mathbf{C O F}^{A}<_{T} \cdots<_{T} \mathbf{T A}^{A}<_{T} \cdots<_{T} \mathbf{W F}^{A}
$$

Definition: The function $A \mapsto \mathbf{K}^{A}: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is called the Turing jump.

- For every $A, \quad A<_{T} \mathbf{K}^{A}$.
- $\mathbf{K}^{\mathbf{K}} \equiv_{T}$ FIN
- if $A \equiv_{T} B, \quad \mathbf{K}^{A} \equiv_{T} \mathbf{K}^{B}$

Relativization

Examples:

$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop.
FIN $^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ such that $\left\{x \in \mathbb{N}: \mathrm{p}(x)^{A}\right.$ halts $\}$ is finite.
$\operatorname{COF}^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$.
$\mathbf{T A}^{A}$: True first order sentence about $(\mathbb{N} ; A, 0,1,+, \times)$
$\mathbf{W F}^{A}:$ Programs \mathbf{p}^{A} for which there exists $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathrm{p}^{A}\left(a_{i+1}\right)=a_{i}$.

$$
A<_{T} \mathbf{K}^{A}<_{T} \text { FIN }^{A}<_{T} \mathbf{C O F}^{A}<_{T} \cdots<_{T} \mathbf{T A}^{A}<_{T} \cdots<_{T} \mathbf{W F}^{A}
$$

Definition: The function $A \mapsto \mathbf{K}^{A}: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is called the Turing jump.

- For every $A, \quad A<_{T} \mathbf{K}^{A}$.
- if $A \equiv_{T} B, \quad \mathbf{K}^{A} \equiv_{T} \mathbf{K}^{B}$
- $\mathbf{K}^{\mathbf{K}} \equiv_{T}$ FIN
- $\mathbf{K}^{\text {FIN }} \equiv_{T}$

Relativization

Examples:

$\mathbf{K}^{A}=$ The set of programas p^{A} that use the funciton χ_{A} and eventually stop.
FIN $^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ such that $\left\{x \in \mathbb{N}: \mathrm{p}(x)^{A}\right.$ halts $\}$ is finite.
$\operatorname{COF}^{A}=$ The set of programas $\mathrm{p}^{A}(x)$ that halts for almost every $x \in \mathbb{N}$.
$\mathbf{T A}^{A}$: True first order sentence about $(\mathbb{N} ; A, 0,1,+, \times)$
$\mathbf{W F}^{A}:$ Programs \mathbf{p}^{A} for which there exists $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{N}$ such that $\mathrm{p}^{A}\left(a_{i+1}\right)=a_{i}$.

$$
A<_{T} \mathbf{K}^{A}<_{T} \text { FIN }^{A}<_{T} \mathbf{C O F}^{A}<_{T} \cdots<_{T} \mathbf{T A}^{A}<_{T} \cdots<_{T} \mathbf{W F}^{A}
$$

Definition: The function $A \mapsto \mathbf{K}^{A}: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is called the Turing jump.

- For every $A, \quad A<_{T} \mathbf{K}^{A}$.
- if $A \equiv_{T} B, \quad \mathbf{K}^{A} \equiv_{T} \mathbf{K}^{B}$
- $\mathbf{K}^{\mathbf{K}} \equiv_{T}$ FIN
- $\mathbf{K}^{\mathrm{FIN}} \equiv_{T} \mathbf{C O F}$

Example of relativization in algebra

(all rings are countable, commutative, and with unity)
Theorem: Every ring $(D ; 0,1,+, \times)$ has a maximal ideal.

Example of relativization in algebra

> (all rings are countable, commutative, and with unity)

Theorem: Every ring $(D ; 0,1,+, \times)$ has a maximal ideal.

Question ¿How hard is it to find it?

Example of relativization in algebra

> (all rings are countable, commutative, and with unity)

Theorem: Every ring $(D ; 0,1,+, \times)$ has a maximal ideal.

Question ¿How hard is it to find it?
Given $A \in \mathcal{P}(A)$, let $\mathbf{M I}(A)$ be the least Turing degree such that every ring computable in A has a maximal ideal computable in $\mathbf{M I}(A)$

Example of relativization in algebra

(all rings are countable, commutative, and with unity)
Theorem: Every ring $(D ; 0,1,+, \times)$ has a maximal ideal.

Question ¿How hard is it to find it?
Given $A \in \mathcal{P}(A)$, let $\mathbf{M I}(A)$ be the least Turing degree such that every ring computable in A has a maximal ideal computable in $\mathbf{M I}(A)$

Theorem: [Friedman, Simpson, Smith '85] For every $A, \quad \mathbf{M I}(A) \equiv_{T} \mathbf{K}^{A}$.

Example of relativization in algebra

(all rings are countable, commutative, and with unity)
Theorem: Every ring $(D ; 0,1,+, \times)$ has a maximal ideal.
Question ¿How hard is it to find it?
Given $A \in \mathcal{P}(A)$, let $\mathbf{M I}(A)$ be the least Turing degree such that every ring computable in A has a maximal ideal computable in $\mathbf{M I}(A)$

Theorem: [Friedman, Simpson, Smith '85] For every $A, \quad \mathbf{M I}(A) \equiv_{T} \mathbf{K}^{A}$.

The Jacobson ideal is the intersection of all the maximal ideals.

Example of relativization in algebra

(all rings are countable, commutative, and with unity)
Theorem: Every ring $(D ; 0,1,+, \times)$ has a maximal ideal.
Question ¿How hard is it to find it?
Given $A \in \mathcal{P}(A)$, let $\mathbf{M I}(A)$ be the least Turing degree such that every ring computable in A has a maximal ideal computable in $\mathbf{M I}(A)$

Theorem: [Friedman, Simpson, Smith '85] For every $A, \quad \mathbf{M I}(A) \equiv_{T} \mathbf{K}^{A}$.

The Jacobson ideal is the intersection of all the maximal ideals.
Given $A \in \mathcal{P}(A)$, let $\mathbf{J I}(A)$ be the least Turing degree such that
for every ring computable in A, its Jacobson ideal is computable in $\mathbf{J I}(A)$

Example of relativization in algebra

(all rings are countable, commutative, and with unity)

Theorem: Every ring $(D ; 0,1,+, \times)$ has a maximal ideal.

Question ¿How hard is it to find it?
Given $A \in \mathcal{P}(A)$, let $\mathbf{M I}(A)$ be the least Turing degree such that every ring computable in A has a maximal ideal computable in $\mathbf{M I}(A)$

Theorem: [Friedman, Simpson, Smith '85] For every $A, \quad \mathbf{M I}(A) \equiv_{T} \mathbf{K}^{A}$.

The Jacobson ideal is the intersection of all the maximal ideals.
Given $A \in \mathcal{P}(A)$, let $\mathbf{J I}(A)$ be the least Turing degree such that
for every ring computable in A, its Jacobson ideal is computable in $\mathbf{J I}(A)$

Theorem: [Downey, Lempp, Mileti '07] For every $A, \quad \mathbf{J I}(A) \equiv_{T} \mathbf{K}^{\mathbf{K}^{A}}$.

Invariant functions

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.

Invariant functions

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.
Examples: $\mathbf{K}^{\odot}, \mathbf{F I N}^{\odot}, \mathbf{C O F}^{\odot}, \mathbf{T A}^{\odot}, \mathbf{W F}^{\odot}, \mathbf{M I}(\odot), \mathbf{J I}(\odot), \ldots$.

Invariant functions

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.
Examples: $\mathbf{K}^{\odot}, \mathbf{F I N}^{\odot}, \mathbf{C O F}^{\odot}, \mathbf{T A}^{\odot}, \mathbf{W F}^{\odot}, \mathbf{M I}(\odot), \mathbf{J I}(\odot), \ldots$.
Empirical observation: Natural Turing degrees induce \equiv_{T}-invariant functions.

Invariant functions

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.
Examples: $\mathbf{K}^{\odot}, \mathbf{F I N}^{\odot}, \mathbf{C O F}^{\odot}, \mathbf{T A}^{\odot}, \mathbf{W F}^{\odot}, \mathbf{M I}(\odot), \mathbf{J I}(\odot), \ldots$.
Empirical observation: Natural Turing degrees induce \equiv_{T}-invariant functions.

Definition: Given $F, G: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$, we say that $F \leq_{T} G$ if, for every $B, \quad F(B) \leq{ }_{T} G(B)$.

Invariant functions

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.
Examples: $\mathbf{K}^{\odot}, \mathbf{F I N}^{\odot}, \mathbf{C O F}^{\odot}, \mathbf{T A}^{\odot}, \mathbf{W F}^{\odot}, \mathbf{M I}(\odot), \mathbf{J I}(\odot), \ldots$.
Empirical observation: Natural Turing degrees induce \equiv_{T}-invariant functions.
Definition: Given $F, G: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$, we say that $F \leq_{T} G$ if, for every $B, \quad F(B) \leq{ }_{T} G(B)$.

We know that for every B

$$
0<_{T} \mathbf{K}^{B} \equiv_{T} \mathbf{M I}(B)<_{T} \operatorname{FIN}^{B} \equiv_{T} \mathbf{J I}(B)<_{T} \mathbf{C O F}^{B}<_{T} \mathbf{T A}^{B}<_{T} \mathbf{W F}^{B}
$$

Invariant functions

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.
Examples: $\mathbf{K}^{\odot}, \mathbf{F I N}^{\odot}, \mathbf{C O F}^{\odot}, \mathbf{T A}^{\odot}, \mathbf{W F}^{\odot}, \mathbf{M I}(\odot), \mathbf{J I}(\odot), \ldots$.
Empirical observation: Natural Turing degrees induce \equiv_{T}-invariant functions.
Definition: Given $F, G: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$, we say that $F \leq_{T} G$ if, for every $B, \quad F(B) \leq{ }_{T} G(B)$.

We know that for every B

$$
0<_{T} \mathbf{K}^{B} \equiv_{T} \mathbf{M I}(B)<_{T} \mathbf{F I N}^{B} \equiv_{T} \mathbf{J I}(B)<_{T} \mathbf{C O F}^{B}<_{T} \mathbf{T A}^{B}<_{T} \mathbf{W F}^{B}
$$

thus, if we look at the corresponding functions:
$0<_{T} \mathbf{K}^{\odot} \equiv_{T} \mathbf{M I}(\odot) \quad<_{T} \mathbf{F I N}^{\odot} \equiv_{T} \mathbf{J I}(\odot)<_{T} \mathbf{C O F}^{\odot}<_{T} \mathbf{T A}^{\odot}<_{T} \mathbf{W F}^{\odot}$

Invariant functions

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.
Examples: $\mathbf{K}^{\odot}, \mathbf{F I N}^{\odot}, \mathbf{C O F}^{\odot}, \mathbf{T A}^{\odot}, \mathbf{W F}^{\odot}, \mathbf{M I}(\odot), \mathbf{J I}(\odot), \ldots$.
Empirical observation: Natural Turing degrees induce \equiv_{T}-invariant functions.
Definition: Given $F, G: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$, we say that $F \leq_{T} G$ if,

$$
\text { for every } B, \quad F(B) \leq_{T} G(B) .
$$

We know that for every B

$$
0<_{T} \mathbf{K}^{B} \equiv_{T} \mathbf{M I}(B)<_{T} \mathbf{F I N}^{B} \equiv_{T} \mathbf{J I}(B)<_{T} \mathbf{C O F}^{B}<_{T} \mathbf{T A}^{B}<_{T} \mathbf{W F}^{B}
$$

thus, if we look at the corresponding functions:

$$
0<_{T} \mathbf{K}^{\odot} \equiv_{T} \mathbf{M I}(\odot) \quad<_{T} \mathbf{F I N}{ }^{\odot} \equiv_{T} \mathbf{J I}(\odot)<_{T} \mathbf{C O F}^{\odot}<_{T} \mathbf{T A}^{\odot}<_{T} \quad \mathbf{W F}{ }^{\odot}
$$

Problem: There are \equiv_{T}-invariant functions of all shapes and colors.

Invariant functions

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.
Examples: $\mathbf{K}^{\odot}, \mathbf{F I N}^{\odot}, \mathbf{C O F}^{\odot}, \mathbf{T A}^{\odot}, \mathbf{W F}^{\odot}, \mathbf{M I}(\odot), \mathbf{J I}(\odot), \ldots$.
Empirical observation: Natural Turing degrees induce \equiv_{T}-invariant functions.

Definition: Given $F, G: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$, we say that $F \leq_{T} G$ if, for every $B, \quad F(B) \leq{ }_{T} G(B)$.

We know that for every B

$$
0<_{T} \mathbf{K}^{B} \equiv_{T} \mathbf{M I}(B)<_{T} \operatorname{FIN}^{B} \equiv_{T} \mathbf{J I}(B)<_{T} \mathbf{C O F}^{B}<_{T} \mathbf{T A}^{B}<_{T} \mathbf{W F}^{B}
$$

thus, if we look at the corresponding functions:

$$
0<_{T} \mathbf{K}^{\odot} \equiv_{T} \mathbf{M I}(\odot)<_{T} \mathbf{F I N}^{\odot} \equiv_{T} \mathbf{J I}(\odot)<_{T} \mathbf{C O F}^{\odot}<_{T} \mathbf{T A}^{\odot}<_{T} \quad \mathbf{W F}{ }^{\odot}
$$

Problem: There are \equiv_{T}-invariant functions of all shapes and colors.
...but not if we compare them at the "limit".

Martin's conjecture

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.

Martin's conjecture

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.

Martin's conjecture

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.

Martin's conjecture

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.

Definition: $F \leq_{T}^{\nabla} G$ if there exists A such that,

$$
\text { for every } B \geq_{T} A, F(B) \leq_{T} G(B)
$$

Martin's conjecture

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.

Definition: $F \leq_{T}^{\nabla} G$ if there exists A such that, for every $B \geq_{T} A, F(B) \leq_{T} G(B)$.

Martin's conjecture

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.

Definition: $F \leq_{T}^{\nabla} G$ if there exists A such that, for every $B \geq_{T} A, F(B) \leq_{T} G(B)$.

Martin's conjecture

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.

Definition: $F \leq_{T}^{\nabla} G$ if there exists A such that,

$$
\text { for every } B \geq_{T} A, F(B) \leq_{T} G(B) \text {. }
$$

Let's use \mathbf{K}^{F} to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F.

Martin's conjecture

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.

Definition: $F \leq_{T}^{\nabla} G$ if there exists A such that,

$$
\text { for every } B \geq_{T} A, F(B) \leq_{T} G(B) \text {. }
$$

Let's use \mathbf{K}^{F} to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F. Recall that $F<_{T} \mathbf{K}^{F}$.

Martin's conjecture

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.

Definition: $F \leq_{T}^{\nabla} G$ if there exists A such that,

Let's use \mathbf{K}^{F} to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F.
for every $B \geq_{T} A, F(B) \leq_{T} G(B)$.

Recall that $F<_{T} \mathbf{K}^{F}$.

Conjectura of Martin: (ZF+AD+DC)

Martin's conjecture

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.

Definition: $F \leq_{T}^{\nabla} G$ if there exists A such that,

$$
\text { for every } B \geq_{T} A, F(B) \leq_{T} G(B) .
$$

Let's use \mathbf{K}^{F} to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F. Recall that $F<_{T} \mathbf{K}^{F}$.

Conjectura of Martin: $(\mathrm{ZF}+\mathrm{AD}+\mathrm{DC})$
(1) Every \equiv_{T}-invariant function is \equiv_{T}^{∇}-equivalent to one that is constant or increasing.

Martin's conjecture

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.

Definition: $F \leq_{T}^{\nabla} G$ if there exists A such that,

$$
\text { for every } B \geq_{T} A, F(B) \leq_{T} G(B) .
$$

Let's use \mathbf{K}^{F} to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F. Recall that $F<_{T} \mathbf{K}^{F}$.

Conjectura of Martin: $(\mathrm{ZF}+\mathrm{AD}+\mathrm{DC})$
(1) Every \equiv_{T}-invariant function is \equiv_{T}^{∇}-equivalent to one that is constant or increasing.
(2) if F, G are \equiv_{T}-invariant increasing functions $\Longrightarrow \quad G \leq_{T}^{\nabla} F \quad$ o $\quad \mathbf{K}^{F} \leq_{T}^{\nabla} G$.

Martin's conjecture

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.

Definition: $F \leq_{T}^{\nabla} G$ if there exists A such that,

$$
\text { for every } B \geq_{T} A, F(B) \leq_{T} G(B) \text {. }
$$

Let's use \mathbf{K}^{F} to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F. Recall that $F<_{T} \mathbf{K}^{F}$.

Conjectura of Martin: $(\mathrm{ZF}+\mathrm{AD}+\mathrm{DC})$
(1) Every \equiv_{T}-invariant function is \equiv_{T}^{∇}-equivalent to one that is constant or increasing.
(2) if F, G are \equiv_{T}-invariant increasing functions $\Longrightarrow \quad G \leq_{T}^{\nabla} F \quad$ o $\quad \mathbf{K}^{F} \leq_{T}^{\nabla} G$.

Martin's conjecture

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.

Definition: $F \leq_{T}^{\nabla} G$ if there exists A such that,

$$
\text { for every } B \geq_{T} A, F(B) \leq_{T} G(B) \text {. }
$$

Let's use \mathbf{K}^{F} to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F. Recall that $F<_{T} \mathbf{K}^{F}$.

Conjectura of Martin: $(\mathrm{ZF}+\mathrm{AD}+\mathrm{DC})$
(1) Every \equiv_{T}-invariant function is \equiv_{T}^{∇}-equivalent to one that is constant or increasing.
(2) if F, G are \equiv_{T}-invariant increasing functions $\Longrightarrow \quad G \leq_{T}^{\nabla} F \quad$ o $\quad \mathbf{K}^{F} \leq_{T}^{\nabla} G$.

Martin's conjecture

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.

Definition: $F \leq_{T}^{\nabla} G$ if there exists A such that,

$$
\text { for every } B \geq_{T} A, F(B) \leq_{T} G(B) \text {. }
$$

Let's use \mathbf{K}^{F} to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F. Recall that $F<_{T} \mathbf{K}^{F}$.

Conjectura of Martin: $(\mathrm{ZF}+\mathrm{AD}+\mathrm{DC})$
(1) Every \equiv_{T}-invariant function is \equiv_{T}^{∇}-equivalent to one that is constant or increasing.
(2) if F, G are \equiv_{T}-invariant increasing functions $\Longrightarrow \quad G \leq_{T}^{\nabla} F \quad$ o $\quad \mathbf{K}^{F} \leq_{T}^{\nabla} G$.

Thm:[Steel 82][Slaman-Steel 88] It's true for the uniformly \equiv_{T}-invariant functions.

Martin's conjecture

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.

Definition: $F \leq_{T}^{\nabla} G$ if there exists A such that,

$$
\text { for every } B \geq_{T} A, F(B) \leq_{T} G(B)
$$

Let's use \mathbf{K}^{F} to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F. Recall that $F<_{T} \mathbf{K}^{F}$.

Conjectura of Martin: $(\mathrm{ZF}+\mathrm{AD}+\mathrm{DC})$
(1) Every \equiv_{T}-invariant function is \equiv_{T}^{∇}-equivalent to one that is constant or increasing.
(2) if F, G are \equiv_{T}-invariant increasing functions $\Longrightarrow \quad G \leq_{T}^{\nabla} F \quad$ o $\quad \mathbf{K}^{F} \leq_{T}^{\nabla} G$.

Thm:[Steel 82][Slaman-Steel 88] It's true for the uniformly \equiv_{T}-invariant functions.
Thm:[Kihara-Montalbán 18]: Connect natural many-one degrees and Wadge degrees.

Martin's conjecture

Definition: $F: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is \equiv_{T}-invariant if $A \equiv_{T} B \Longrightarrow F(A) \equiv_{T} F(B)$.

Definition: $F \leq_{T}^{\nabla} G$ if there exists A such that,

$$
\text { for every } B \geq_{T} A, F(B) \leq_{T} G(B) .
$$

Let's use \mathbf{K}^{F} to call the function $A \mapsto \mathbf{K}^{F(A)}$, the Turing jump of F. Recall that $F<_{T} \mathbf{K}^{F}$.

Conjectura of Martin: $(\mathrm{ZF}+\mathrm{AD}+\mathrm{DC})$
(1) Every \equiv_{T}-invariant function is \equiv_{T}^{∇}-equivalent to one that is constant or increasing.
(2) if F, G are \equiv_{T}-invariant increasing functions $\Longrightarrow \quad G \leq_{T}^{\nabla} F \quad$ o $\quad \mathbf{K}^{F} \leq_{T}^{\nabla} G$.

Thm:[Steel 82][Slaman-Steel 88] It's true for the uniformly \equiv_{T}-invariant functions.
Thm:[Kihara-Montalbán 18]: Connect natural many-one degrees and Wadge degrees.
The conjecture is still open for the general case.

Wadge degrees

Consider the Baire Space: $\mathbb{N}^{\mathbb{N}}=\{f: \mathbb{N} \rightarrow \mathbb{N}\}$ with the product topology.

Wadge degrees

Consider the Baire Space: $\mathbb{N}^{\mathbb{N}}=\{f: \mathbb{N} \rightarrow \mathbb{N}\}$ with the product topology.

Obs: $\mathbb{N}^{\mathbb{N}}$ is homeomorphic to $\mathbb{R}^{+} \backslash \mathbb{Q}$ via $f \mapsto f(0)+\frac{1}{1+f(1)+\frac{1}{1+f(2)+\ldots}}$

Wadge degrees

Consider the Baire Space: $\mathbb{N}^{\mathbb{N}}=\{f: \mathbb{N} \rightarrow \mathbb{N}\}$ with the product topology.

Obs: $\mathbb{N}^{\mathbb{N}}$ is homeomorphic to $\mathbb{R}^{+} \backslash \mathbb{Q}$ via $f \mapsto f(0)+\frac{1}{1+f(1)+\frac{1}{1+f(2)+\cdots}}$

Definition: For $A, B \subseteq \mathbb{N}^{\mathbb{N}}, A$ is Wadge reducible to $B, A \leq_{w} B$ if there is a continuous $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ s.t. $\left(\forall X \in 2^{\mathbb{N}}\right), X \in A \Longleftrightarrow f(X) \in B$.

Wadge degrees

Consider the Baire Space: $\mathbb{N}^{\mathbb{N}}=\{f: \mathbb{N} \rightarrow \mathbb{N}\}$ with the product topology.

Obs: $\mathbb{N}^{\mathbb{N}}$ is homeomorphic to $\mathbb{R}^{+} \backslash \mathbb{Q}$ via $f \mapsto f(0)+\frac{1}{1+f(1)+\frac{1}{1+f(2)+\ldots}}$

Definition: For $A, B \subseteq \mathbb{N}^{\mathbb{N}}, A$ is Wadge reducible to $B, A \leq_{w} B$ if there is a continuous $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ s.t. $\left(\forall X \in 2^{\mathbb{N}}\right), X \in A \Longleftrightarrow f(X) \in B$.

Theorem: [Wadge 83](AD) The Wadge degrees are almost linearly ordered:

- For every $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, either $A \leq_{w} B$ or $B \leq_{w} A^{c}$.
- For every $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, if $A<_{w} B$, then $A<_{w} B^{c}$.

Theorem: (AD) [Martin] The Wadge degrees are well founded.

Natural many-one degrees \Longleftrightarrow Wadge degrees

Natural many-one degrees \Longleftrightarrow Wadge degrees

Definition: A set $A \subseteq \mathbb{N}$ is many-one reducible to $B \subseteq \mathbb{N}\left(A \leq_{m} B\right)$, if there is a computable $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $n \in A \Longleftrightarrow f(n) \in B \quad(\forall n)$.

Natural many-one degrees \Longleftrightarrow Wadge degrees

Definition: A set $A \subseteq \mathbb{N}$ is many-one reducible to $B \subseteq \mathbb{N}\left(A \leq_{m} B\right)$, if there is a computable $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $n \in A \Longleftrightarrow f(n) \in B \quad(\forall n)$.

Definition: A function $f: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ is $\left(\equiv_{T}, \equiv_{m}\right)$-uniformly invariant (UI) if

$$
X \equiv_{T} Y \Longrightarrow f(X) \equiv_{m} f(Y) \quad \text { and }
$$

Natural many-one degrees \Longleftrightarrow Wadge degrees

Definition: A set $A \subseteq \mathbb{N}$ is many-one reducible to $B \subseteq \mathbb{N}\left(A \leq_{m} B\right)$, if there is a computable $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $n \in A \Longleftrightarrow f(n) \in B \quad(\forall n)$.

Definition: A function $f: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ is $\left(\equiv_{T}, \equiv_{m}\right)$-uniformly invariant (UI) if

$$
X \equiv_{T} Y \Longrightarrow f(X) \equiv_{m} f(Y) \text { and }
$$

there is $u: \mathbb{N}^{2} \rightarrow \mathbb{N}^{2}$, s.t., if $X \equiv_{T} Y$ via Φ_{i} and Φ_{j}, then $f(X) \equiv{ }_{m} f(Y)$ via $\Phi_{u_{0}(i, j)}$ and $\Phi_{u_{1}(i, j)}$.

Natural many-one degrees \Longleftrightarrow Wadge degrees

Definition: A set $A \subseteq \mathbb{N}$ is many-one reducible to $B \subseteq \mathbb{N}\left(A \leq_{m} B\right)$, if there is a computable $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $n \in A \Longleftrightarrow f(n) \in B \quad(\forall n)$.

Definition: A function $f: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ is $\left(\equiv_{T}, \equiv_{m}\right)$-uniformly invariant (UI) if

$$
X \equiv_{T} Y \Longrightarrow f(X) \equiv_{m} f(Y) \quad \text { and }
$$

there is $u: \mathbb{N}^{2} \rightarrow \mathbb{N}^{2}$, s.t., if $X \equiv_{T} Y$ via Φ_{i} and Φ_{j}, then $f(X) \equiv{ }_{m} f(Y)$ via $\Phi_{u_{0}(i, j)}$ and $\Phi_{u_{1}(i, j)}$.

Def: For $A, B \subseteq \mathbb{N}, A$ is many-one reducible ${ }^{Z}$ to B, written $A \leq_{m}^{Z} B$, if there is a Z-computable $f: \mathbb{N} \rightarrow \mathbb{N}$ s.t. $(\forall x \in \mathbb{N}), x \in A \Longleftrightarrow \bar{f}(x) \in B$.

Natural many-one degrees \Longleftrightarrow Wadge degrees

Definition: A set $A \subseteq \mathbb{N}$ is many-one reducible to $B \subseteq \mathbb{N}\left(A \leq_{m} B\right)$, if there is a computable $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $n \in A \Longleftrightarrow f(n) \in B \quad(\forall n)$.

Definition: A function $f: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ is $\left(\equiv_{T}, \equiv_{m}\right)$-uniformly invariant (UI) if

$$
X \equiv_{T} Y \Longrightarrow f(X) \equiv_{m} f(Y) \quad \text { and }
$$

there is $u: \mathbb{N}^{2} \rightarrow \mathbb{N}^{2}$, s.t., if $X \equiv_{T} Y$ via Φ_{i} and Φ_{j}, then $f(X) \equiv_{m} f(Y)$ via $\Phi_{u_{0}(i, j)}$ and $\Phi_{u_{1}(i, j)}$.

Def: For $A, B \subseteq \mathbb{N}, A$ is many-one reducible ${ }^{Z}$ to B, written $A \leq_{m}^{Z} B$, if there is a Z-computable $f: \mathbb{N} \rightarrow \mathbb{N}$ s.t. $(\forall x \in \mathbb{N}), x \in A \Longleftrightarrow \bar{f}(x) \in B$.

Def: $f \leq_{\mathbf{m}}^{\nabla} g$ if $\left(\exists C \in 2^{\mathbb{N}}\right)$ such that $f(X) \leq_{m}^{C} g(X)$ for every $X \geq_{T} C$.

Natural many-one degrees \Longleftrightarrow Wadge degrees

Definition: A set $A \subseteq \mathbb{N}$ is many-one reducible to $B \subseteq \mathbb{N}\left(A \leq_{m} B\right)$, if there is a computable $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $n \in A \Longleftrightarrow f(n) \in B \quad(\forall n)$.

Definition: A function $f: 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ is $\left(\equiv_{T}, \equiv_{m}\right)$-uniformly invariant (UI) if

$$
X \equiv_{T} Y \Longrightarrow f(X) \equiv_{m} f(Y) \quad \text { and }
$$

there is $u: \mathbb{N}^{2} \rightarrow \mathbb{N}^{2}$, s.t., if $X \equiv_{T} Y$ via Φ_{i} and Φ_{j}, then $f(X) \equiv_{m} f(Y)$ via $\Phi_{u_{0}(i, j)}$ and $\Phi_{u_{1}(i, j)}$.

Def: For $A, B \subseteq \mathbb{N}, A$ is many-one reducible ${ }^{Z}$ to B, written $A \leq{ }_{m}^{Z} B$, if there is a Z-computable $f: \mathbb{N} \rightarrow \mathbb{N}$ s.t. $(\forall x \in \mathbb{N}), x \in A \Longleftrightarrow \bar{f}(x) \in B$.

Def: $f \leq_{\mathbf{m}}^{\nabla} g$ if $\left(\exists C \in 2^{\mathbb{N}}\right)$ such that $f(X) \leq_{m}^{C} g(X)$ for every $X \geq_{T} C$.

Theorem: [Kihara, M.] There is a one-to-one correspondence between (\equiv_{T}, \equiv_{m})-UI functions ordered by $\leq_{\mathbf{m}}^{\nabla} \quad$ and $\quad \mathcal{P}\left(2^{\mathbb{N}}\right)$ ordered by Wadge reducibility.

