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What is Economics?

▶ Lionel Robbins (1932): “Economics is the science which
studies human behaviour as a relationship between ends and
scarce means which have alternative uses.”

▶ It puts at equal footing “ends” and “scarcity”. But then, does
this mean that in Star Trek’s Federation (or the Romulan
Empire, or for the Borg, etc.) Economics does not make
sense? (see Manu Saadia’s Trekonomics: the Economics of
Star Trek).

▶ A more general definition is that Economics studies the
interaction among intentional entities (no wonder that other
social scientists think that Economics is “imperialistic”!).
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Why a categorical treatment?

▶ While tools ranging from Calculus and Linear Algebra to
Functional Analysis and Algebraic Topology have been used to
analyze economic problems, interactions, be they of a single
agent with different entities or between several agents, have
been rather hard to formalize.

▶ We claim that CT provides tools for the description and
analysis of settings in which different goals guide the
interactions.
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This presentation

▶ The main problem we want to address is the impossibility of
separating different “local” interactions as if all the others
remained fixed.

▶ That is, we want to get rid of the cæteris paribus clause
frequently applied by economists in their analyses.

▶ One instance of the problem arises when we try to see
whether agenthood is well-defined.

▶ Another instance appears when we want to see whether the
intended solutions to interaction problems scale up with their
aggregation.

▶ Both instances of the original problem reveals the need for a
level-agnostic (or continuous with respect to subagents)
Economic Theory.



Single agents and different economic problems

▶ Mainstream Economics has a notion of agent defined in terms
of a given preference over the space of alternatives.

▶ The agent is said rational if she chooses the most preferred
alternatives among those that are feasible for her.

▶ Behavioral economists weaken this definition by allowing the
agent to choose what it seems to her to be the most preferred
alternative.

▶ In applications of this model it is customary to reduce the
analysis to a subspace of the space of alternatives, simplifying
the problem of making a decision.

▶ This requires to assume the independence of the preferences
over the subspace from the preferences over the rest of the
larger space of alternatives.
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Local problems
▶ Consider a family of local problems each with its own domain,

say Di and each with a problem-specific function ui .

▶ Hypothesis: there exist a global function U over D (Di ⊆ D
for all i).

▶ Then, U must be such that ui = U|Di
for each i .

▶ To recover the hypothetical U, we must be able to patch
together the local restrictions in a consistent way.



Decision-making: local vs. global

▶ Let L be a space of possible options that an agent may select.

▶ Each x ∈ L is evaluated by means of a utility function,
U : L → R.

▶ Given a family of constraints limiting the set of options for the
agent to L̂ ⊆ L, the goal of the agent is to find some x∗ that
yield the highest value of U over L̂.



Decision-making: local vs. global

▶ Consider a family {Lk}κ
k=0 of closed linear subspaces of L.

▶ Let us define
Projk : L → Lk

such that Projk(x) = xk , is the projection of x on Lk .

▶ The projection of a global solution x∗ onto Lk will return the
point in Lk that is closer to x∗.



Decision-making: local vs. global

▶ In case the projection does not return a local solution,
however, we can still define an operator, which we call Γk(x)
that formalizes the idea of “best choice” within a local
problem.

▶ Let us define a new correspondence, Γk : L̂→ L̂k :

Γk(x) = {xk ∈ X̂k : xk ∈ argminy∈X̂k |y − Projk(x)|}.



The category of local problems

Definition
A local problem is sk = ⟨Lk , L̂k , uk , X̂k⟩, where X̂k is the class of
“highest values” of a utility function uk over a compact set
L̂k ⊆ Lk .



The category of local problems

Definition
Let PR be the category of local problems, where

▶ Obj(PR) is the class of objects. Each one is a problem sk .

▶ a morphism ρkj : sk → s j exists if two conditions are fulfilled:

▶ L̂k ⊆ L̂j , uk = uj |Lk and
▶ dim(Lk ) ≤ dim(Lj ).

▶ Given two morphisms ρkj : sk → s j and ρjl : s j → s l there
exists their composition ρjl ◦ ρkl = ρkl .



A sheaf of local problems

▶ We can also define P(L) as the category in which the objects
are subsets of L and morphisms are composable
correspondences (multivalued functions).

▶ We can now define a functor

Σ : PR −→ P(L)

which assigns to a problem sk the subset Σ(sk) ⊆ L:

Σ(sk) = {y ∈ L | Γk(y) ∈ X̂k}



A sheaf of local problems

Σ(sk)
L

Γk

xk^

Lk

Lk^



The sheaf of local problems
▶ A section σk over sk assigns the elements of Σ(sk) to sk :

σk : sk 7→ Σ(sk).

▶ Given two problems, sk and s j , let us write sk ◁ s j iff there
exists a morphism sk → s j in PR (sk ◁ s j indicates that sk is
a restriction of s j).

▶ Given ρkj : sk → s j , the correspondence r jk is such that

r jk = Σ(ρkj ) : Σ(s j )→ Σ(sk)

such that r jk(Σ(s
j ) = Γ−1k [projk(Σ(s j ))] = Σ(sk).



A sheaf of local problems

Γ−1(L1)1
^ Γ−1(Ln)n

^

Σ(s1)

Σ(sj)
Σ(sn)

Γ−1(Lk)k
^

Σ(sk)

x1^
xk^ xn^

L1^

L1
Lk^

Lk

Ln^

Ln



Example
Consider L to be R3 (the three-dimensional real Euclidean space) and
the utility function:

U(x , y , z) = 3− 2x2 − y2 − 3z2

It has a single global solution X̂ = {(0, 0, 0)}.

Consider now two possible

local problems:

▶ s1: L1 = {(x , y , z) : z = 0}, with u1(x , y , z)=U|L1 =3− 2x2 − y2

over L̂1 = {(x , y , 0) ∈ L1 : x2 + y2 = 1}. The solutions are

X̂1 = {(0, 1, 0), (0,−1, 0)}.
▶ s2: L2 = {(x , y , z) : (x , y , z) · (1,−1, 1) = 0}, with

u2(x , y , z) = 3− 3x2 − 4z2 − 2xz over

L̂2 = {(x , y , z) : 2x2 + 2z2 + 2xz = 1}. The solution set is:

X̂2 = {(−
√

1
3 ,−

1
2
√
3
− 1

2 ,
1

2
√
3
− 1

2 ), (
√

1
3 ,

1
2
√
3
+ 1
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1
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Example

Then, Γ1(0, 0, 0) = X̂1 and Γ2(0, 0, 0) = X̂2 .
Consider a new problem s0, the optimization of U over the surface
of the three-dimensional sphere
L̂0 = {(x , y , z) : x2 + y2 + z2 = 1} and thus,
X̂0 = {(0, 1, 0), (0,−1, 0)}.



Example
We define Σ : PR → P(L), summarized by the following table
(each row being a section σi , i = 0, 1, 2):

Problems a1 b1 a2 b2

s1 X − X −

s2 − X − X

s0 X − X −

The range of Σ is based only of four elements in L:

a1 = (0, 1, 0) a2 = (0,−1, 0)
and

b1 = (−
√
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where a1 and a2 are the R3 solutions of problems s0 and s1 while b1 and

b2 are those of s2.
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Example

It is easy to check that s i ◁ s0 for i = 1, 2, since on one hand each

problem s i can be seen as the maximization of U restricted to subsets of

the domain of problem s0. On the other hand, f 0i (Σ(s
0)) = Σ(s i ).

▶ For s1 it is clear that this is the case.

▶ For s2, let us note that b1, b2 are the solutions of the problem s0

restricted to L̂2, seen as the inverse projection over the surface L̂0.



A sheaf of local problems

Σ(sj)
Σ(sk)

L
r j

k

Γj
Γk

Lj
Lj^

Lk^ Lk

xk^

xj^



A sheaf of local problems

▶ Σ is a presheaf (i.e. a contravariant functor between PR and
P(L)).

▶ A family {sk}k∈K ⊆ Obj(PR) is said to be a cover of
problem s j if sk ◁ s j for each k ∈ K and L̂j ⊆ ∪k∈K L̂k .

▶ The family of sections {σk}k∈K is said to be compatible if for
any pair k, l ∈ K ,

Γk(Σ(sk)) ∩ Γl (Σ(sk)) = Γk(Σ(s l )) ∩ Γl (Σ(s l ))



A sheaf of local problems

▶ Given a cover {sk}k∈K of a problem s j with compatible
sections, Σ is then sheaf if there exists a unique σj = Σ(s j )
such that for each k ∈ K ,

σk = σj ∩ Γ−1k (X̂k)

▶ Intuitively, Σ is a sheaf if σj in fact “glues” together all the
assignments σk in P(L).



Example

We can check that in our example {σ1, σ2} is a compatible family
of sections. Notice that L̂1 ∩ L̂2 does not include the solutions to
either problem. Then, the sections satisfy, trivially, the
compatibility condition.
Then, Σ satisfies the sheaf condition.



Always a sheaf?

▶ Given Σ : PR → P(L), is the sheaf condition always
satisfied?.

▶ Given a problem s, the sheaf condition implies that its
solution remains independent of other solutions and thus it
disregards their contextual relevance.

▶ If we consider two sequences s1, . . . , sn and s1
′
, . . . , sn

′
in

Obj(PR), such that sn=s= sn
′
, understood as two different

paths (of problems previously solved), the sheaf condition
implies that the solution to s is independent of the path
followed. That is, the solution is purely local.



Always a sheaf?

Proposition

If for every sk in PR

▶ The elements in X̃k are the maximizers of uk and

▶ uk is the constraint of a single function (U) over Lk .

Then Σ : PR → P(L) is a sheaf.



Always a sheaf?

▶ To establish this claim we start by defining a functor
Λ : P(L)→ PR.

▶ For any X ∈ P(L):

Λ(X ) = {sk = ⟨Lk , L̂k , uk , X̃k⟩ ∈ Obj(PR) : X = Γ−1k (X̃k)}

▶ That is, given X ⊆ L, Λ yields the problems that have as
solutions the projections of X .



Always a sheaf?
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Always a sheaf?

Proposition

For any s ∈ Obj(PR), s ∈ Λ(Σ(s)).
and

Proposition

If
⋃

k∈K Γ−1k (X̃k) = X̃ then Λ(Σ(s)) ⊆ {s}.



Always a sheaf?

▶ Under the conditions of the last Proposition, Λ can be seen as
defining a fiber bundle.

▶ Moreover, it is a trivial bundle with fiber Λ(Σ(s)), where s is
the global problem.

Proposition

If for every sk = ⟨Lk , L̂k , uk , X̃k⟩ in PR, Λ(Σ(sk)) = {sk} then
Λ is trivial iff there exists U, such that uj has the same optimal
points as U|Lj .



Examples

▶ Mainstream economics assumes that Λ is trivial.

▶ Prospect Theory (Daniel Kahneman and Amos Tversky)
indicates that if “best” is defined with respect to a reference
point there does not exist a single U of which the local utility
functions are instances. That is, Λ is not trivial because of
the contextuality of the decisions.

▶ Case-Based Decision Theory (Itzhak Gilboa and David
Schmeidler) assumes that the similarity to previous problems,
stored in memory, is used to obtain solutions to decision
problems. But then, if a sequence of previous cases is
different, even if the final class of problems is the same, the
decisions may be different. That is, the non-locality of
solutions makes Λ non-trivial.
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What happens when more than two agents interact?

▶ Interactions in fixed frameworks are formalized in Economics
as games.

▶ But an open problem is whether games can be “connected”,
in ways that lead players to become subject to different rules
and even change the way in which outcomes are evaluated.

▶ Open Games (Jules Hedges, Neil Ghani, etc.) address this
issue, using the concept of lenses. We will present an
alternative categorical view of games.
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A category of games

Consider a category G of games. Each object G is a game
G = ⟨(IG , SG ,OG , ρG ),πG ⟩, such that (IG , SG ,OG , ρG ) is a game
form:

▶ IG is the set of players.

▶ SG = ∏i∈IG SG
i is the class of strategy profiles, where

SG
i ⊆ Si is the set of strategies of player i ∈ IG .

▶ OG represents the possible outcomes of the game while
ρG : SG → OG is a bijection.

▶ πG = (πG
i )i∈IG , is a vector of payoffs, where πG

i : OG → R+

is the payoff function of i ∈ IG .



A category of games

Given

G = ⟨(IG , SG ,OG , ρG ),πG ⟩ and G ′ = ⟨(IG ′ ,SG ′ ,OG ′ , ρG ′),πG ′⟩,

a morphism
G → G ′

is such that:

▶ IG ⊆ IG ′ .

▶ SG
i ⊆ SG ′

i for each i ∈ IG .
▶ There exist two functions:

▶ An inclusion p
OG ′
OG

: OG ′ ↪→ OG .

▶ A projection p
SG ′
SG

: SG ′ → SG .



Properties of G

Proposition

G is a category with finite colimits.

▶ We can define cospans in G. Consider three objects G , G ′ and

G ′′ with morphisms G
f→ G ′′

g← G ′. This means that G and
G ′ are subgame forms of the same game (G ′′).

▶ We can take as monoidal product the coproduct G + G ′.



A derived category

▶ Consider the monoidal symmetric category of cospans in G,
WG = cospanG .

▶ Let us define ψ : G1,G2, . . . ,Gn → Ḡ as the “wiring”
ϕ : G1 + G2 + . . . + Gn → Ḡ . Then

G1 + G2 + . . . + Gn
f→ C

f̄← Ḡ

means that, when f and f̄ isomorphims:

Proposition

Ḡ is the minimal game of which G1, . . . ,Gn are subgame forms.



A hypergraph category of games

▶ Consider the hypergraph category ⟨G, Eq⟩ where
Eq : WG → ∏i Si , is such that for each G in WG , Eq(G ) is a
subset of the class of strategies of G , ∏i∈I S

G
i .

▶ We say that Eq(G ) is a class of equilibria of G .

▶ Consider the operation ∪̂ that, given two equilibria s ∈ Eq(G )
and s ′ ∈ Eq(G ′), yields s − s ′ ∈ Eq(G )∪̂Eq(G ′).

▶ This operation is such that i ∈ IG ∩ IG ′ obtains a new strategy
that combines si and s ′i , while the other individual strategies
in G and G ′ remain the same. That is,
πG ∪̂G ′
i (s − s ′) = πG

i (s)× πG ′
i (s

′
) for i ∈ IG ∩ IG ′ .



Hypergraph category of games

Proposition

Given two games, G and G ′, Eq(G )∪̂Eq(G ′) = Eq(G + G ′).

Then:

Proposition

Eq is a lax monoidal functor.



Example
Let us consider two games, the Battle of the Sexes and the
Prisoner’s Dilemma.

Player 2

Bx Bll

Player 1 Bx 1, 1 0, 0

Bll 0, 0 1, 2

Player 3

C S

Player 2 C 2, 2 0, 3

D 3, 0 1,1



Example

The wiring diagram of BoS and PD is:

OPD

OBoS

OBoS+PD

1

2

3

BoS + PD

PD

BoS



Example

G + G ′ can be described by two matrices. One corresponds to 3
choosing C :

Player 2

Bx/C Bx/D Bll/C Bll/D

Player 1 Bx 2, 1× 2, 2 2, 1× 3, 0 0, 0× 2, 2 0, 0× 3, 0

Bll 0, 0× 2, 2 0, 0× 3, 0 1, 2× 2, 2 1, 2× 3, 0



Example

The other matrix corresponds to 3 choosing D:

Player 2

Bx/C Bx/D Bll/C Bll/D

Player 1 Bx 2, 1× 0, 3 2, 1× 1, 1 0, 0× 0, 3 0, 0× 1, 1

Bll 0, 0× 0, 3 0, 0× 1, 1 1, 2× 0, 3 1, 2× 1, 1



How to model full dynamic interactions?

▶ ⟨G, Eq⟩ is too rigid to capture the dynamics of economic
interactions.

▶ We need a more flexible structure.

▶ A possibility is to consider a Org-enriched dynamic category
(David and Brandon).
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Economies as dynamic monoidal category

▶ Let us recall that Org is a bicategory, where Ob(Org)
= Ob(Poly) and Morph(Org) consists of the categories
[p, q]−Coalg.

▶ [p, q] is an internal hom in Poly that can be seen as a process
that takes as inputs both “flows” from outputs of p to
outputs of q and from inputs of q to inputs of p and yields as
output morphisms ϕ : p → q.

▶ A [p, q]−Coalg is a category in which each object is a state
with a rule that assigns both a corresponding interaction
pattern (an output of [p, q]) and an update of the state in
response to that pattern.



Economies as dynamic monoidal category

▶ Then, an Org-enriched dynamic multicategory is such that,
briefly:
▶ for each object a it corresponds a pa in Poly,
▶ for objects a1, . . . , an, b there corresponds a

[pa1 ⊕ . . .⊕ pan , pb]−Coalg of states Sa1,...,an,b,
▶ Morphisms are such that each object a satisfies an “identitor”

condition and pairs of morphisms can satisfy a “compositor”
condition. Both indicate, roughly, that morphisms inherit
identity and compositionality properties from Org.



Economies as dynamic monoidal category

▶ So, which should be the class of objects of the dynamic
multicategory?

▶ Perhaps G is the best candidate. Notice that
Ob(PR) ⊆ Ob(G) since individual decision-making settings
can be seen as single-player games.

▶ Given a game G a polynomial functor pG could be seen as
involving the class of strategy profiles as input and that of the
corresponding payoffs as outputs.

▶ Each state in the morphism between games indicates a
different way of connecting them dynamically.
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Conclusion

▶ The economic properties of a Org-enriched G deserve to be
explored.

▶ The possibility of rewiring the connections makes such
representation more realistic but on the other makes it harder
to forecast actual behaviors.

▶ This would give us a Star Trek version in which “resistance
(to certain ambiguity and imprecision) is futile”.

Thanks!!
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