Does recursion help?

Gordon Plotkin

Edinburgh University

Dana's 90th Birthday Symposium

Topos Institute, Berkeley
October, 2022

Dana reading, with Monica

Dana 1968

Henk, Jan Willem, \& Gordon ~1977

The untyped λ-calculus

Representing the natural numbers with Church numerals
Use the coding function $\gamma: \mathbb{N} \rightarrow \Lambda$ where:

$$
\gamma(n)=\lambda f . \lambda x . f^{n}(x)
$$

Representing numerical functions
A (closed) term $F \lambda \beta$-represents $f: \mathbb{N} \rightharpoonup \mathbb{N}$ iff:

$$
\begin{gathered}
f(m)=n \Longrightarrow \lambda \beta \vdash F \gamma(m)=\gamma(n) \\
f(m) \uparrow \Longrightarrow F(\gamma(m)) \text { has no } \beta \text {-normal form }
\end{gathered}
$$

Theorem (Church, Kleene, Turing)

The following coincide:
(1) The $\lambda \beta$-representable functions
(2) The Gödel-Herbrand partial recursive functions
(3) The functions computable by a Turing machine

The typed λ-calculus

Representing the natural numbers
Numeral type:

$$
\underline{\mathbb{N}}=(0 \rightarrow 0) \rightarrow(0 \rightarrow 0)
$$

Coding function $\gamma: \mathbb{N} \rightarrow \Lambda_{\underline{\mathbb{N}}}$ where:

$$
\gamma(n)=\lambda f: o \rightarrow 0 . \lambda x: 0 . f^{n}(x)
$$

Defining functions
A term $F: \underline{\mathbb{N}} \rightarrow \underline{\mathbb{N}}$ represents $f: \mathbb{N} \rightarrow \mathbb{N}$ iff:

$$
f(m)=n \Longrightarrow \lambda \beta \eta \vdash F \gamma(m)=\gamma(n)
$$

Theorem (Schwichtenberg, Statman)

The representable functions are the extended polynomials.

The extended polynomials

The class of extended polynomials is the smallest class of numerical functions closed under composition which contains:

1. the constant functions: 0 and 1 ,
2. the projections,
3. addition,
4. multiplication, and
5. the function

$$
\text { ifzero }(I, m, n)= \begin{cases}m & (I=0) \\ n & (I \neq 0)\end{cases}
$$

Uniform and non-uniform representations

More general numeral types

$$
\mathbb{N}_{\sigma}=(\sigma \rightarrow \sigma) \rightarrow(\sigma \rightarrow \sigma)
$$

Non-uniform representation

$$
F: \underline{\mathbb{N}}_{\sigma_{1}} \rightarrow \ldots \rightarrow \underline{\mathbb{N}}_{\sigma_{k}} \rightarrow \mathbb{\mathbb { N }}_{\sigma}
$$

Uniform representation

$$
F: \underline{\mathbb{N}}_{\sigma} \rightarrow \ldots \rightarrow \underline{\mathbb{N}}_{\sigma} \rightarrow \underline{\mathbb{N}}_{\sigma}
$$

Fact (Fortune, Leivant, and O'Donnell): Predecessor is non-uniformly representable.

Theorem (Zakrzewski): Predecessor is not uniformly representable.

Zakrzewski's conjecture
The class of uniformly representable numerical functions is the smallest class of numerical functions closed under composition which contains $1-5$, as before, plus:
6. For any $I \geq 2$, the function

$$
f_{l}\left(m, n_{0}, \ldots, n_{i-1}\right)=n_{i}
$$

where $i=m \bmod /$
7. For any I, the function

$$
\operatorname{less-than}_{/}(m)=\left\{\begin{array}{cc}
0 & (m \leq I) \\
1 & (m \not \leq I)
\end{array}\right.
$$

Algebraic datatypes

Example T: the set of binary trees with leafs labelled by 0 or 1 . Need two constants and a binary "cons" function. So set:

$$
\underline{T}=0 \rightarrow 0 \rightarrow(0 \rightarrow 0 \rightarrow 0) \rightarrow 0
$$

Represent

$$
\begin{gathered}
\underline{0}=\lambda x: o, y: o, f:(0 \rightarrow 0 \rightarrow 0) \cdot x \\
\underline{1}=\lambda x: o, y: o, f:(0 \rightarrow 0 \rightarrow 0) \cdot y \\
\text { cons }=\lambda t: \underline{\mathrm{B}}, u: \underline{\mathrm{B}}, x: o, y: o, f:(o \rightarrow 0 \rightarrow 0) \cdot f(t x y f)(u x y f)
\end{gathered}
$$

Define $\gamma: \mathrm{T} \rightarrow \Omega_{\mathrm{T}}$ by:

$$
\begin{array}{ll}
\gamma(0) & =\underline{0} \\
\gamma(1) & =\underline{1} \\
\gamma(\operatorname{cons}(t, u)) & =\text { cons } \gamma(t) \gamma(u)
\end{array}
$$

Zaionc proved Schwichtenberg-Statman-type results for algebraic datatypes.

Representable functions and automata

Booleans

$$
\begin{gathered}
\underline{\mathrm{B}}=0 \rightarrow 0 \rightarrow 0 \\
\gamma(0)=\lambda x \lambda y \cdot x \\
\gamma(1)=\lambda x \lambda y \cdot y
\end{gathered}
$$

Binary words

$$
\underline{\mathrm{W}}_{\alpha}=\alpha \rightarrow(\alpha \rightarrow \alpha) \rightarrow(\alpha \rightarrow \alpha) \rightarrow \alpha
$$

Theorem (Hillebrand and Kanellakis)

The representable predicates $\mathrm{W}_{\alpha} \rightarrow \mathrm{B}$ (varying α) correspond exactly to the regular languages.

There is current work on automata and typed λ-calculi by Lê Thánh Düng Nguyên, Camille Noûs, and Pierre Pradic.

λ-representable functions in general

- Fix an extension λ^{+}of the typed $\lambda \beta \eta$-calculus.
- A function $\gamma: X \rightarrow \Lambda_{\sigma}$ is λ^{+}-injective if

$$
\lambda^{+} \vdash \gamma(x)=\gamma(y) \Longrightarrow x=y
$$

- For non-empty sets X_{1}, \ldots, X_{k}, X choose representing types $\underline{X_{i}}$ and \underline{X}, and λ^{+}-injective coding functions

$$
\gamma_{i}: X_{i} \rightarrow \Lambda_{\underline{x_{i}}} \quad(i=1, k) \quad \gamma: X \rightarrow \Lambda_{\underline{x}}
$$

- Then a λ-term

$$
F: \underline{X_{1}} \rightarrow \ldots \rightarrow \underline{X_{k}} \rightarrow \underline{X}
$$

represents

$$
f: X_{1} \times \ldots \times X_{k} \rightharpoonup X
$$

iff

$$
\mathrm{f}\left(x_{1}, \ldots, x_{k}\right) \simeq x_{k} \Longleftrightarrow \lambda^{+} \vdash F \gamma_{1}\left(x_{1}\right) \ldots \gamma_{k}\left(x_{k}\right)=\gamma(x)
$$

Our extensions of the typed λ-calculus

- $\lambda \Omega$ This is $\lambda \beta \eta$ extended with a constant

$$
\Omega: 0
$$

and no conversions.

- $\lambda \Omega^{+}$This is $\lambda \beta \eta$ extended with constants

$$
\Omega_{\sigma}: \sigma
$$

and no conversions.

- $\lambda \mathrm{Y}$ This is $\lambda \beta \eta$ extended with recursion combinators, ie constants

$$
\mathrm{Y}_{\sigma}:(\sigma \rightarrow \sigma) \rightarrow \sigma
$$

It has conversions

$$
\mathrm{Y}_{\sigma} F=F\left(\mathrm{Y}_{\sigma} F\right)
$$

and reduction rules

$$
\mathrm{Y}_{\sigma} \rightarrow \lambda f . f\left(\mathrm{Y}_{\sigma} f\right)
$$

Recursion does not help

Suppose λ^{++}extends λ^{+}.
Then λ^{++}is conservative over λ^{+}for a class of functions $X_{1} \times \ldots \times X_{k} \rightarrow X$ and coding scheme if such functions are λ^{++}-representable iff they are λ^{+}-representable.

Theorem (Total functions)

$\lambda \mathrm{Y}$ is conservative over $\lambda \beta \eta$ for total functions $X_{1} \times \ldots \times X_{k} \rightarrow X$ and any coding scheme.

Theorem (Partial functions)

$\lambda \mathrm{Y}$ is conservative over $\lambda \Omega$ for all functions $X_{1} \times \ldots \times X_{k} \rightharpoonup X$ and any coding scheme.

A corollary

Corollary

(1) (Zakrzewski) Predecessor is not uniformly representable
(2) (Statman) Equality and inequality (\leq) are not uniformly representable.

Proof.

Fixing \mathbb{N}_{α}, the three functions are interdefinable in $\lambda \mathrm{Y}$ via suitable recursions.
So if one of them were uniformly definable, so would be every total recursive function in λ Y.
This contradicts the conservativity of $\lambda \mathrm{Y}$ over $\lambda \beta \eta$.

Going up is easy

An extension $\lambda^{+} \subseteq \lambda^{++}$is conservative, if, for all λ^{+}terms M and N we have:

$$
\lambda^{+} \vdash M=N \Longleftrightarrow \lambda^{++} \vdash M=N
$$

The extensions $\lambda \beta \eta \subseteq \lambda \Omega \subseteq \lambda \Omega^{+}$are conservative (use CR).

Lemma

If $\lambda^{+} \subseteq \lambda^{++}$is conservative, then every λ^{+}-representable function is λ^{++}-representable.

Proof.

Proof. For a defining λ^{+}-term F and codes $\gamma_{i}\left(x_{i}\right)$ we have $\lambda^{+} \vdash F \gamma_{1}\left(x_{1}\right) \ldots \gamma_{k}\left(x_{k}\right)=\gamma(x) \Longleftrightarrow \lambda^{++} \vdash F \gamma_{1}\left(x_{1}\right) \ldots \gamma_{k}\left(x_{k}\right)=\gamma(x)$

So F also λ^{+}-represents.

Going up is easy (cntnd)

Lemma

Every $\lambda \Omega^{++}$-representable function is λ Y-representable

Idea.

If $M \lambda \Omega^{++}$-represents a function then $\bar{M} \lambda Y$-represents it too, where \bar{M} is obtained from M by replacing every Ω_{σ} by $\mathrm{Y}_{\sigma}(\lambda x: \sigma . x)$.
Note the reduction sequence

$$
Y(\lambda x . x) \rightarrow(\lambda f . f(Y f)) \lambda x . x \rightarrow(\lambda x . x)(Y(\lambda x . x)) \rightarrow Y(\lambda x . x)
$$

The Sierpiński type hierarchy and recursion depth

- Set

$$
\mathcal{O}_{o}=\mathbb{O}=\{\perp \leq \top\} \quad \mathcal{O}_{\sigma \rightarrow \tau}=\mathcal{O}_{\sigma} \xrightarrow{\text { mon }} \mathcal{O}_{\tau}
$$

- Obtain semantics $\mathcal{O} \llbracket M \rrbracket(\rho)$ for any of our λ-calculi, taking

$$
\mathcal{O} \llbracket \Omega_{\sigma} \rrbracket=\perp \quad \mathcal{O} \llbracket \mathrm{Y}_{\sigma} \rrbracket=\lambda f \in \mathcal{O}_{\sigma \rightarrow \sigma} . \bigvee_{n} f^{n}(\perp)
$$

- Setting $h(\sigma)$ to be the height of \mathcal{O}_{σ}, we have

$$
\mathcal{O} \rrbracket \mathrm{Y}_{\sigma} \rrbracket=f^{h(\sigma)}(\perp)
$$

- For any λ Y-term M, let \widetilde{M} be the $\lambda \Omega^{+}$-term obtained by replacing every Y_{σ} in M by $\lambda f . f^{h(\sigma)}\left(\Omega_{\sigma \rightarrow \sigma} f\right)$.
Note that
a) $\mathcal{O} \llbracket M \rrbracket=\mathcal{O} \llbracket \widetilde{M} \rrbracket$
b) $\lambda \mathrm{Y} \vdash M=\widetilde{M}\left[\mathrm{Y}_{\sigma} / \Omega_{\sigma \rightarrow \sigma}\right]$
- Then, as we shall see, \widetilde{M} represents any function M does.

Detecting proper normal forms (pnfs)

Long $\beta \eta$-normal $\lambda \Omega^{++}$- forms.

$$
\begin{gathered}
\lambda x_{1}: \sigma_{1} \ldots x_{k}: \sigma_{k} \cdot x_{i} M_{1} \ldots M_{l} \\
\lambda x_{1}: \sigma_{1} \ldots x_{k}: \sigma_{k} \cdot \Omega_{\sigma} M_{1} \ldots M_{l}
\end{gathered}
$$

of type $\sigma_{1} \rightarrow \ldots \rightarrow \sigma_{k} \rightarrow 0$. (This type is written $\left(\sigma_{1}, \ldots, \sigma_{k}\right)$.) They are proper if they contain no Ω_{σ}, i.e. they are λ-terms.

We can use the Sierpiński hierarchy to detect properness.
For $\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ and $\tau=\left(\tau_{1}, \ldots, \tau_{l}\right)$ define:

$$
t_{\sigma} \in \mathcal{O}_{\left(\sigma_{1}, \ldots, \sigma_{k}\right) \rightarrow 0} \quad s_{\tau} \in \mathcal{O}_{\left(\tau_{1}, \ldots, \tau_{l}\right)}
$$

by

$$
t_{\sigma}(f)=f s_{\sigma_{1}} \ldots s_{\sigma_{k}} \quad s_{\tau} g_{1} \ldots g_{I}=\bigwedge_{j} t_{\tau_{j}}\left(g_{j}\right)
$$

Setting $\sigma^{\prime}=\left(\sigma_{2}, \ldots, \sigma_{k}\right)$ we have

$$
t_{\sigma_{1} \rightarrow \sigma^{\prime}} f=t_{\sigma} f=f s_{\sigma_{1}} \ldots s_{\sigma_{k}}=t_{\sigma^{\prime}}\left(f s_{\sigma_{1}}\right)
$$

More readably, we have: $t_{\sigma \rightarrow \tau} f=t_{\tau}\left(f s_{\sigma}\right)$.

The central lemma

Lemma

Let

$$
M=\lambda f_{1} \ldots f_{k} \cdot f_{i_{0}} M_{1} \ldots M_{k}:\left(\sigma_{1}, \ldots, \sigma_{k}\right)
$$

be a long $\beta \eta$-normal form in $\lambda \Omega^{+}$. Then:

$$
M \text { is proper } \Longleftrightarrow t_{\sigma}(\mathcal{O} \rrbracket M \rrbracket)=\top
$$

Proof.

Set $\sigma_{i_{0}}=\left(\tau_{1}, \ldots, \tau_{l}\right)$ and $N_{i}={ }_{\operatorname{def}} \lambda f_{1} \ldots f_{k} \cdot M_{i}$.
For proper M we have:

$$
\begin{aligned}
t_{\sigma}(\mathcal{O} \rrbracket M \rrbracket) & =s_{\sigma_{i_{0}}}\left(\mathcal{O} \rrbracket N_{1} \rrbracket s_{\sigma_{1}} \ldots s_{\sigma_{n}}\right) \ldots\left(\mathcal{O} \rrbracket N_{k} \rrbracket s_{\sigma_{1}} \ldots s_{\sigma_{k}}\right) \\
& =\bigwedge_{i} t_{\tau_{i}}\left(\mathcal{O} \rrbracket N_{i} \rrbracket s_{\sigma_{1}} \ldots s_{\sigma_{k}}\right) \\
& =\bigwedge_{i} t_{\sigma_{k} \rightarrow \tau_{i}}\left(\mathcal{O} \rrbracket N_{i} \rrbracket s_{\sigma_{1}} \ldots s_{\sigma_{k-1}}\right) \text { (by remark above) } \\
& =\ldots \\
& =\bigwedge_{i} t_{\sigma_{\sigma_{1} \rightarrow \ldots \rightarrow \sigma_{k} \rightarrow \tau_{i}}\left(\mathcal{O} \rrbracket N_{i} \rrbracket\right)} \\
& =T \text { (by induction hypothesis) }
\end{aligned}
$$

Coming down: step 1

Lemma

Every $\lambda \mathrm{Y}$-representable function is $\lambda \Omega^{+}$-representable.

Proof.

In one direction, assume \widetilde{M} represents. If

$$
\lambda \Omega^{+} \vdash \widetilde{M} A_{1} \ldots A_{n}=A
$$

for λ-terms A_{i}, A, then:

$$
\lambda \mathrm{Y} \vdash M A_{1} \ldots A_{n}=\widetilde{M}\left[Y_{\sigma} / \Omega_{\sigma \rightarrow \sigma}\right] A_{1} \ldots A_{n}=A
$$

So M represents.

Coming down:step1 (the other direction)

Suppose

$$
\lambda \mathrm{Y} \vdash M A_{1} \ldots A_{n}=A
$$

Then as

$$
\mathcal{O} \llbracket \widetilde{M} \rrbracket=\mathcal{O} \llbracket M \rrbracket
$$

and A has a pnf we have:

$$
\mathcal{O} \rrbracket t\left(\widetilde{M} A_{1} \ldots A_{n}\right) \rrbracket=\mathcal{O} \rrbracket t\left(M A_{1} \ldots A_{n}\right) \rrbracket=\mathcal{O} \llbracket t(A) \rrbracket=T
$$

So $\widetilde{M} A_{1} \ldots A_{n}$ has a pnf say B. By the argument in the first part, as we now have

$$
\lambda \Omega^{+} \vdash \widetilde{M} A_{1} \ldots A_{n}=B
$$

we also have

$$
\lambda Y \vdash M A_{1} \ldots A_{n}=B
$$

But then we have $\lambda \mathrm{Y} \vdash B=A$ and so $\lambda \Omega^{+} \vdash B=A$ and so

$$
\lambda \Omega^{+} \vdash \widetilde{M} A_{1} \ldots A_{n}=A
$$

as required.

$$
M\left[\Omega_{\sigma}\right]
$$

represents a partial function f then so does

$$
M\left[\lambda x_{1}: \sigma_{1} \ldots x_{n}: \sigma_{n} . \Omega_{0}\right]
$$

where $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$.

Suppose we have a $\lambda \Omega$ term M representing a function f using a coding scheme

$$
\gamma_{i}: X_{i} \rightarrow \Lambda_{\sigma_{i}} \quad \gamma: X \rightarrow \Lambda_{\sigma}
$$

with $\sigma=\left(\tau_{1}, \ldots, \tau_{l}\right)$.
Choose $x \in X$, and set $E=\gamma(x):\left(\tau_{1}, \ldots, \tau_{l}\right)$.
Then M has a $\lambda \Omega$ long normal form

$$
\lambda x_{1}: \sigma_{1} \ldots x_{k}: \sigma_{k} ., \lambda y_{1}: \tau_{1} \ldots y_{l}: \tau_{l} \cdot N[\Omega]
$$

Replacing Ω by $E y_{1} \ldots y_{l}$ we obtain a λ-term

$$
\lambda x_{1}: \sigma_{1} \ldots x_{k}: \sigma_{k}, \lambda y_{1}: \tau_{1} \ldots y_{l}: \tau_{\|} . N\left[E y_{1} \ldots y_{l}\right]
$$

representing f.

Acknowledgement

```
A note on the frentim depriable in the typred \(\lambda\)-caluelue
    In FLOD Fortune, Leinant and O'Donnell
maidered difining sumerial "houting in the typed \(\lambda\)-calueluo
allming Chush numerab at varying tops. Tho note avoues
ome of their quetions ly almony that the fredeceas fuection
unnt be sified with the samp type for aremonent and neoulss and
that
mod depred at all lor
at all elementang purcking are defriate)
lineting is me method is to show that the clase of defisible
unction is not changed eum if me add recursien at all
ghos is the lanquage. Ten, for eamile, iredecear canat be
xpried as deined sise othervise all custial recurvie functime coubs
e- depmed (and tor sulply an wern somple frot).
```



```
\(\cdots \underline{n}^{\alpha}=\lambda f \in(\alpha \rightarrow \alpha) \lambda x \in \alpha f^{n}(x)\)
```



```
    \(f\left(m_{1}, \ldots, m_{k}\right)=m\) if \(\lambda_{2}+M_{m_{1}^{\alpha}}^{\alpha_{1}} \cdots m_{h}^{\alpha_{2}}=m_{n}^{\alpha}\)
\{ \(\alpha_{1}=\cdots=\alpha_{h}=\alpha\) we ony \(M \alpha\)-uhnis 1. Additin and
ultipliation ere \(\alpha\)-dipniate for all \(\alpha\) s is the hentin,
```

Thanks to Paweł Urzyczyn!

Happy Birthday Dana!

Thank You Dana!

