
Doctrine-specific ur-algorithms

Mohamed Barakat

Berkeley Seminar @ Topos Institute
March 18, 2024

Joint work with Sebastian Posur, Kamal Saleh, Fabian Zickgraf

Mohamed Barakat Constructive Category Theory and Applications

http://homalg-project.github.io/
https://mohamed-barakat.github.io/
http://gregensburger.com/aadios2023/
https://sebastianpos.github.io
https://github.com/kamalsaleh
https://github.com/zickgraf
https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Motivating question: The connecting morphism
Snake Lemma: Given three composable morphisms
A

aÐ→ B
bÐ→ C

cÐ→D in an Abelian category with abc = 0.

A B

C D

a

b
c

coker(a)d

e

ker(e)
f

ker(c)
g

h

coker(h)
i s

ker(b)
j

coker(b)k

Then there exists a natural morphism ker(e) sÐ→ coker(h) with

ker(b) jÐ→ ker(e) sÐ→ coker(h) kÐ→ coker(b) an exact sequence.

● Does “with” mean “such that” or “furthermore”?

● In what sense is s unique? Give a construction algorithm.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Motivating question: The connecting morphism
Snake Lemma: Given three composable morphisms
A

aÐ→ B
bÐ→ C

cÐ→D in an Abelian category with abc = 0.

A B

C D

a

b
c

coker(a)d

e

ker(e)
f

ker(c)
g

h

coker(h)
i s

ker(b)
j

coker(b)k

Then there exists a natural morphism ker(e) sÐ→ coker(h) with

ker(b) jÐ→ ker(e) sÐ→ coker(h) kÐ→ coker(b) an exact sequence.

● Does “with” mean “such that” or “furthermore”?

● In what sense is s unique? Give a construction algorithm.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Motivating question: The connecting morphism
Snake Lemma: Given three composable morphisms
A

aÐ→ B
bÐ→ C

cÐ→D in an Abelian category with abc = 0.

A B

C D

a

b
c

coker(a)d

e

ker(e)
f

ker(c)
g

h

coker(h)
i s

ker(b)
j

coker(b)k

Then there exists a natural morphism ker(e) sÐ→ coker(h) with

ker(b) jÐ→ ker(e) sÐ→ coker(h) kÐ→ coker(b) an exact sequence.

● Does “with” mean “such that” or “furthermore”?

● In what sense is s unique? Give a construction algorithm.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Motivating question: The connecting morphism
Snake Lemma: Given three composable morphisms
A

aÐ→ B
bÐ→ C

cÐ→D in an Abelian category with abc = 0.

A B

C D

a

b
c

coker(a)d

e

ker(e)
f

ker(c)
g

h

coker(h)
i s

ker(b)
j

coker(b)k

Then there exists a natural morphism ker(e) sÐ→ coker(h) with

ker(b) jÐ→ ker(e) sÐ→ coker(h) kÐ→ coker(b) an exact sequence.

● Does “with” mean “such that” or “furthermore”?

● In what sense is s unique? Give a construction algorithm.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Motivating question: The connecting morphism
Snake Lemma: Given three composable morphisms
A

aÐ→ B
bÐ→ C

cÐ→D in an Abelian category with abc = 0.

A B

C D

a

b
c

coker(a)d

e

ker(e)
f

ker(c)
g

h

coker(h)
i s

ker(b)
j

coker(b)k

Then there exists a natural morphism ker(e) sÐ→ coker(h) with

ker(b) jÐ→ ker(e) sÐ→ coker(h) kÐ→ coker(b) an exact sequence.

● Does “with” mean “such that” or “furthermore”?

● In what sense is s unique? Give a construction algorithm.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Motivating question: The connecting morphism
Snake Lemma: Given three composable morphisms
A

aÐ→ B
bÐ→ C

cÐ→D in an Abelian category with abc = 0.

A B

C D

a

b
c

coker(a)d

e

ker(e)
f

ker(c)
g

h

coker(h)
i s

ker(b)
j

coker(b)k

Then there exists a natural morphism ker(e) sÐ→ coker(h) with

ker(b) jÐ→ ker(e) sÐ→ coker(h) kÐ→ coker(b) an exact sequence.

● Does “with” mean “such that” or “furthermore”?

● In what sense is s unique? Give a construction algorithm.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Motivating question: The connecting morphism
Snake Lemma: Given three composable morphisms
A

aÐ→ B
bÐ→ C

cÐ→D in an Abelian category with abc = 0.

A B

C D

a

b
c

coker(a)d

e

ker(e)
f

ker(c)
g

h

coker(h)
i

s

ker(b)
j

coker(b)k

Then there exists a natural morphism ker(e) sÐ→ coker(h) with

ker(b) jÐ→ ker(e) sÐ→ coker(h) kÐ→ coker(b) an exact sequence.

● Does “with” mean “such that” or “furthermore”?

● In what sense is s unique? Give a construction algorithm.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Motivating question: The connecting morphism
Snake Lemma: Given three composable morphisms
A

aÐ→ B
bÐ→ C

cÐ→D in an Abelian category with abc = 0.

A B

C D

a

b
c

coker(a)d

e

ker(e)
f

ker(c)
g

h

coker(h)
i s

ker(b)
j

coker(b)k

Then there exists a natural morphism ker(e) sÐ→ coker(h)

with

ker(b) jÐ→ ker(e) sÐ→ coker(h) kÐ→ coker(b) an exact sequence.

● Does “with” mean “such that” or “furthermore”?

● In what sense is s unique? Give a construction algorithm.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Motivating question: The connecting morphism
Snake Lemma: Given three composable morphisms
A

aÐ→ B
bÐ→ C

cÐ→D in an Abelian category with abc = 0.

A B

C D

a

b
c

coker(a)d

e

ker(e)
f

ker(c)
g

h

coker(h)
i s

ker(b)
j

coker(b)k

Then there exists a natural morphism ker(e) sÐ→ coker(h)

with

ker(b) jÐ→ ker(e) sÐ→ coker(h) kÐ→ coker(b) an exact sequence.

● Does “with” mean “such that” or “furthermore”?

● In what sense is s unique? Give a construction algorithm.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Motivating question: The connecting morphism
Snake Lemma: Given three composable morphisms
A

aÐ→ B
bÐ→ C

cÐ→D in an Abelian category with abc = 0.

A B

C D

a

b
c

coker(a)d

e

ker(e)
f

ker(c)
g

h

coker(h)
i s

ker(b)
j

coker(b)k

Then there exists a natural morphism ker(e) sÐ→ coker(h)

with

ker(b) jÐ→ ker(e) sÐ→ coker(h) kÐ→ coker(b) an exact sequence.

● Does “with” mean “such that” or “furthermore”?

● In what sense is s unique? Give a construction algorithm.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Motivating question: The connecting morphism
Snake Lemma: Given three composable morphisms
A

aÐ→ B
bÐ→ C

cÐ→D in an Abelian category with abc = 0.

A B

C D

a

b
c

coker(a)d

e

ker(e)
f

ker(c)
g

h

coker(h)
i s

ker(b)
j

coker(b)k

Then there exists a natural morphism ker(e) sÐ→ coker(h) with

ker(b) jÐ→ ker(e) sÐ→ coker(h) kÐ→ coker(b) an exact sequence.

● Does “with” mean “such that” or “furthermore”?

● In what sense is s unique? Give a construction algorithm.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Motivating question: The connecting morphism
Snake Lemma: Given three composable morphisms
A

aÐ→ B
bÐ→ C

cÐ→D in an Abelian category with abc = 0.

A B

C D

a

b
c

coker(a)d

e

ker(e)
f

ker(c)
g

h

coker(h)
i s

ker(b)
j

coker(b)k

Then there exists a natural morphism ker(e) sÐ→ coker(h) with

ker(b) jÐ→ ker(e) sÐ→ coker(h) kÐ→ coker(b) an exact sequence.

● Does “with” mean “such that” or “furthermore”?

● In what sense is s unique? Give a construction algorithm.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Motivating question: The connecting morphism
Snake Lemma: Given three composable morphisms
A

aÐ→ B
bÐ→ C

cÐ→D in an Abelian category with abc = 0.

A B

C D

a

b
c

coker(a)d

e

ker(e)
f

ker(c)
g

h

coker(h)
i s

ker(b)
j

coker(b)k

Then there exists a natural morphism ker(e) sÐ→ coker(h) with

ker(b) jÐ→ ker(e) sÐ→ coker(h) kÐ→ coker(b) an exact sequence.

● Does “with” mean “such that” or “furthermore”?
● In what sense is s unique? Give a construction algorithm.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


An oracle for free Abelian categories

● We could answer the above questions if we would have an
oracle for computing in free Abelian categories:

Software demo
https://homalg-project.github.io/nb/

SnakeInFreeAbelian

Exercise: Along the same lines treat spectral sequences of
bicomplexes.

Mohamed Barakat Constructive Category Theory and Applications

https://homalg-project.github.io/nb/SnakeInFreeAbelian
https://homalg-project.github.io/nb/SnakeInFreeAbelian
https://mohamed-barakat.github.io/
http://homalg-project.github.io/


An oracle for free Abelian categories

● We could answer the above questions if we would have an
oracle for computing in free Abelian categories:

Software demo
https://homalg-project.github.io/nb/

SnakeInFreeAbelian

Exercise: Along the same lines treat spectral sequences of
bicomplexes.

Mohamed Barakat Constructive Category Theory and Applications

https://homalg-project.github.io/nb/SnakeInFreeAbelian
https://homalg-project.github.io/nb/SnakeInFreeAbelian
https://mohamed-barakat.github.io/
http://homalg-project.github.io/


An oracle for free Abelian categories

● We could answer the above questions if we would have an
oracle for computing in free Abelian categories:

Software demo
https://homalg-project.github.io/nb/

SnakeInFreeAbelian

Exercise: Along the same lines treat spectral sequences of
bicomplexes.

Mohamed Barakat Constructive Category Theory and Applications

https://homalg-project.github.io/nb/SnakeInFreeAbelian
https://homalg-project.github.io/nb/SnakeInFreeAbelian
https://mohamed-barakat.github.io/
http://homalg-project.github.io/


A categorical tower for AbelianClosure
So we have a proof by computation of the snake lemma.

But
● How to build the category constructor AbelianClosure?
● What do we need to extract a construction algorithm for

the connecting morphism s in any Abelian category?

The answer is to build the category constructor
AbelianClosure as a categorical tower of 2-adjunctions:

Quivs Cat k-Cat ⋯ Abel

PathCategory k[−]

U

⊣

U

⊣

AbelianClosure

U

⊣

U

⊣

The counit of such a composed 2-adjunction will turn out to be
the desired ur-algorithm, having the snake lemma, spectral
sequences, and many more algorithms as special cases.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


A categorical tower for AbelianClosure
So we have a proof by computation of the snake lemma. But
● How to build the category constructor AbelianClosure?

● What do we need to extract a construction algorithm for
the connecting morphism s in any Abelian category?

The answer is to build the category constructor
AbelianClosure as a categorical tower of 2-adjunctions:

Quivs Cat k-Cat ⋯ Abel

PathCategory k[−]

U

⊣

U

⊣

AbelianClosure

U

⊣

U

⊣

The counit of such a composed 2-adjunction will turn out to be
the desired ur-algorithm, having the snake lemma, spectral
sequences, and many more algorithms as special cases.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


A categorical tower for AbelianClosure
So we have a proof by computation of the snake lemma. But
● How to build the category constructor AbelianClosure?
● What do we need to extract a construction algorithm for

the connecting morphism s in any Abelian category?

The answer is to build the category constructor
AbelianClosure as a categorical tower of 2-adjunctions:

Quivs Cat k-Cat ⋯ Abel

PathCategory k[−]

U

⊣

U

⊣

AbelianClosure

U

⊣

U

⊣

The counit of such a composed 2-adjunction will turn out to be
the desired ur-algorithm, having the snake lemma, spectral
sequences, and many more algorithms as special cases.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


A categorical tower for AbelianClosure
So we have a proof by computation of the snake lemma. But
● How to build the category constructor AbelianClosure?
● What do we need to extract a construction algorithm for

the connecting morphism s in any Abelian category?

The answer is to build the category constructor
AbelianClosure as a categorical tower of 2-adjunctions:

Quivs Cat k-Cat ⋯ Abel

PathCategory k[−]

U

⊣

U

⊣

AbelianClosure

U

⊣

U

⊣

The counit of such a composed 2-adjunction will turn out to be
the desired ur-algorithm, having the snake lemma, spectral
sequences, and many more algorithms as special cases.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


A categorical tower for AbelianClosure
So we have a proof by computation of the snake lemma. But
● How to build the category constructor AbelianClosure?
● What do we need to extract a construction algorithm for

the connecting morphism s in any Abelian category?

The answer is to build the category constructor
AbelianClosure as a categorical tower of 2-adjunctions:

Quivs Cat k-Cat ⋯ Abel

PathCategory k[−]

U

⊣

U

⊣

AbelianClosure

U

⊣

U

⊣

The counit of such a composed 2-adjunction will turn out to be
the desired ur-algorithm, having the snake lemma, spectral
sequences, and many more algorithms as special cases.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Free-forgetful 2-adjunctions

● The above tower of categorical constructors is typically
composed of several free-forgetful 2-adjunctions

D E
L

U

⊣
between a 2-category D of categories (called doctrine)
and another doctrine E of categories with extra structure.

We will next see an instructive example of such a 2-adjunction.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Free-forgetful 2-adjunctions

● The above tower of categorical constructors is typically
composed of several free-forgetful 2-adjunctions

D E
L

U

⊣
between a 2-category D of categories (called doctrine)
and another doctrine E of categories with extra structure.

We will next see an instructive example of such a 2-adjunction.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Coproducts in categories
Coproducts are generalizations of joins in posets (e.g., lcm’s):

D0 ⋯ D`−1

C
ι0 ι`−1

C ′

ϕ0 ϕ`−1∃1u

0 Coproduct

1 InjectionOfCofactorOfCoproduct

2 UniversalMorphismFromCoproduct

There is a bijection (Di
ϕiÐ→ C ′)`−1i=0 ↔ C

uÐ→ C ′.

1’ ComponentOfMorphismFromCoproduct (analysis/elim.)
2 UniversalMorphismFromCoproduct (synthesis/intro.)

Is there a way to package all 3 algorithms in one ur-algorithm?

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Coproducts in categories
Coproducts are generalizations of joins in posets (e.g., lcm’s):

D0 ⋯ D`−1

C

ι0 ι`−1

C ′

ϕ0 ϕ`−1∃1u

0 Coproduct

1 InjectionOfCofactorOfCoproduct

2 UniversalMorphismFromCoproduct

There is a bijection (Di
ϕiÐ→ C ′)`−1i=0 ↔ C

uÐ→ C ′.

1’ ComponentOfMorphismFromCoproduct (analysis/elim.)
2 UniversalMorphismFromCoproduct (synthesis/intro.)

Is there a way to package all 3 algorithms in one ur-algorithm?

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Coproducts in categories
Coproducts are generalizations of joins in posets (e.g., lcm’s):

D0 ⋯ D`−1

C
ι0 ι`−1

C ′

ϕ0 ϕ`−1∃1u

0 Coproduct

1 InjectionOfCofactorOfCoproduct

2 UniversalMorphismFromCoproduct

There is a bijection (Di
ϕiÐ→ C ′)`−1i=0 ↔ C

uÐ→ C ′.

1’ ComponentOfMorphismFromCoproduct (analysis/elim.)
2 UniversalMorphismFromCoproduct (synthesis/intro.)

Is there a way to package all 3 algorithms in one ur-algorithm?

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Coproducts in categories
Coproducts are generalizations of joins in posets (e.g., lcm’s):

D0 ⋯ D`−1

C
ι0 ι`−1

C ′

ϕ0 ϕ`−1

∃1u

0 Coproduct

1 InjectionOfCofactorOfCoproduct

2 UniversalMorphismFromCoproduct

There is a bijection (Di
ϕiÐ→ C ′)`−1i=0 ↔ C

uÐ→ C ′.

1’ ComponentOfMorphismFromCoproduct (analysis/elim.)
2 UniversalMorphismFromCoproduct (synthesis/intro.)

Is there a way to package all 3 algorithms in one ur-algorithm?

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Coproducts in categories
Coproducts are generalizations of joins in posets (e.g., lcm’s):

D0 ⋯ D`−1

C
ι0 ι`−1

C ′

ϕ0 ϕ`−1∃1u

0 Coproduct

1 InjectionOfCofactorOfCoproduct

2 UniversalMorphismFromCoproduct

There is a bijection (Di
ϕiÐ→ C ′)`−1i=0 ↔ C

uÐ→ C ′.

1’ ComponentOfMorphismFromCoproduct (analysis/elim.)
2 UniversalMorphismFromCoproduct (synthesis/intro.)

Is there a way to package all 3 algorithms in one ur-algorithm?

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Coproducts in categories
Coproducts are generalizations of joins in posets (e.g., lcm’s):

D0 ⋯ D`−1

C
ι0 ι`−1

C ′

ϕ0 ϕ`−1∃1u

0 Coproduct

1 InjectionOfCofactorOfCoproduct

2 UniversalMorphismFromCoproduct

There is a bijection (Di
ϕiÐ→ C ′)`−1i=0 ↔ C

uÐ→ C ′.

1’ ComponentOfMorphismFromCoproduct (analysis/elim.)
2 UniversalMorphismFromCoproduct (synthesis/intro.)

Is there a way to package all 3 algorithms in one ur-algorithm?

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Coproducts in categories
Coproducts are generalizations of joins in posets (e.g., lcm’s):

D0 ⋯ D`−1

C
ι0 ι`−1

C ′

ϕ0 ϕ`−1∃1u

0 Coproduct

1 InjectionOfCofactorOfCoproduct

2 UniversalMorphismFromCoproduct

There is a bijection (Di
ϕiÐ→ C ′)`−1i=0 ↔ C

uÐ→ C ′.

1’ ComponentOfMorphismFromCoproduct (analysis/elim.)
2 UniversalMorphismFromCoproduct (synthesis/intro.)

Is there a way to package all 3 algorithms in one ur-algorithm?

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


The finite coproduct completion

Definition (Cocartesian (monoidal))
A cocartesian category is a category with all finite coproducts.

Definition
Denote by Cocart the category of cocartesian categories (as
objects) and coproduct preserving functors (as morphisms).

There exists a free-forgetful 2-adjunction

Cat Cocart

L = FiniteCoproductCompletion

U = UnderlyingCategory

⊣

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


The finite coproduct completion

Definition (Cocartesian (monoidal))
A cocartesian category is a category with all finite coproducts.

Definition
Denote by Cocart the category of cocartesian categories (as
objects) and coproduct preserving functors (as morphisms).

There exists a free-forgetful 2-adjunction

Cat Cocart

L = FiniteCoproductCompletion

U = UnderlyingCategory

⊣

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


The finite coproduct completion

Definition (Cocartesian (monoidal))
A cocartesian category is a category with all finite coproducts.

Definition
Denote by Cocart the category of cocartesian categories (as
objects) and coproduct preserving functors (as morphisms).

There exists a free-forgetful 2-adjunction

Cat Cocart

L = FiniteCoproductCompletion

U = UnderlyingCategory

⊣

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


FiniteStrictCoproductCompletion

FiniteStrictCoproductCompletion(D) is built syntactically

:
● An object is a finite list D = (D0, . . . ,D`−1) of objects in D.
● A morphism ϕ ∶ S → T is a wiring diagram

S = (S0 . . . Si . . . Ss−1)

T = (T0 . . . Tf(s−1) . . . Tf(0) . . . Tf(i) . . . Tt−1)

ϕ ϕ0 ϕi

ϕs−1

defined by a function f ∶ {0, . . . , s − 1}→ {0, . . . , t − 1} and
labeled by a list of morphisms (ϕi ∶ Si → Tf(i))s−1i=0 ∈ D.

SkeletalFinSets =
FiniteStrictCoproductCompletion(TerminalCategory)

The (finite) coproduct completion invents functions.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


FiniteStrictCoproductCompletion

FiniteStrictCoproductCompletion(D) is built syntactically:
● An object is a finite list D = (D0, . . . ,D`−1) of objects in D.

● A morphism ϕ ∶ S → T is a wiring diagram

S = (S0 . . . Si . . . Ss−1)

T = (T0 . . . Tf(s−1) . . . Tf(0) . . . Tf(i) . . . Tt−1)

ϕ ϕ0 ϕi

ϕs−1

defined by a function f ∶ {0, . . . , s − 1}→ {0, . . . , t − 1} and
labeled by a list of morphisms (ϕi ∶ Si → Tf(i))s−1i=0 ∈ D.

SkeletalFinSets =
FiniteStrictCoproductCompletion(TerminalCategory)

The (finite) coproduct completion invents functions.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


FiniteStrictCoproductCompletion

FiniteStrictCoproductCompletion(D) is built syntactically:
● An object is a finite list D = (D0, . . . ,D`−1) of objects in D.
● A morphism ϕ ∶ S → T is a wiring diagram

S = (S0 . . . Si . . . Ss−1)

T = (T0 . . . Tf(s−1) . . . Tf(0) . . . Tf(i) . . . Tt−1)

ϕ ϕ0 ϕi

ϕs−1

defined by a function f ∶ {0, . . . , s − 1}→ {0, . . . , t − 1} and
labeled by a list of morphisms (ϕi ∶ Si → Tf(i))s−1i=0 ∈ D.

SkeletalFinSets =
FiniteStrictCoproductCompletion(TerminalCategory)

The (finite) coproduct completion invents functions.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


FiniteStrictCoproductCompletion

FiniteStrictCoproductCompletion(D) is built syntactically:
● An object is a finite list D = (D0, . . . ,D`−1) of objects in D.
● A morphism ϕ ∶ S → T is a wiring diagram

S = (S0 . . . Si . . . Ss−1)

T = (T0 . . . Tf(s−1) . . . Tf(0) . . . Tf(i) . . . Tt−1)

ϕ ϕ0 ϕi

ϕs−1

defined by a function f ∶ {0, . . . , s − 1}→ {0, . . . , t − 1} and
labeled by a list of morphisms (ϕi ∶ Si → Tf(i))s−1i=0 ∈ D.

SkeletalFinSets =
FiniteStrictCoproductCompletion(TerminalCategory)

The (finite) coproduct completion invents functions.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


FiniteStrictCoproductCompletion

FiniteStrictCoproductCompletion(D) is built syntactically:
● An object is a finite list D = (D0, . . . ,D`−1) of objects in D.
● A morphism ϕ ∶ S → T is a wiring diagram

S = (S0 . . . Si . . . Ss−1)

T = (T0 . . . Tf(s−1) . . . Tf(0) . . . Tf(i) . . . Tt−1)

ϕ ϕ0 ϕi

ϕs−1

defined by a function f ∶ {0, . . . , s − 1}→ {0, . . . , t − 1} and
labeled by a list of morphisms (ϕi ∶ Si → Tf(i))s−1i=0 ∈ D.

SkeletalFinSets =
FiniteStrictCoproductCompletion(TerminalCategory)

The (finite) coproduct completion invents functions.

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


The 2-adjunction
For a strict cocartesian category E and a functor F ∶ D→ U (E)
in Cat the adjunct functor

F̂ ∶= L (F )εE ∶ FiniteStrictCoproductCompletion(D)→ E

in Cocart is given by

D = (D0, . . . ,D`−1)
L (F )↦ F (D) ∶= (F (D0), . . . , F (D`−1))
εE↦ Coproduct(F (D)) =

`−1

∐
i=0

F (Di)

For a morphism ϕ ∶ S → T use
● InjectionOfCofactorOfCoproduct to construct the

compositions F (Si)→ F (Tf(i))
ιf(i)ÐÐ→∐t−1j=0 F (Tj) =∶ F̂ (T )

● UniversalMorphismFromCoproduct to construct the

universal morphism F̂ (S) F̂ (ϕ)ÐÐÐ→ F̂ (T )

The counit is the ur-algorithm, evaluating syntax into semantics!

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


The 2-adjunction
For a strict cocartesian category E and a functor F ∶ D→ U (E)
in Cat the adjunct functor

F̂ ∶= L (F )εE ∶ FiniteStrictCoproductCompletion(D)→ E

in Cocart is given by

D = (D0, . . . ,D`−1)
L (F )↦ F (D) ∶= (F (D0), . . . , F (D`−1))
εE↦ Coproduct(F (D)) =

`−1

∐
i=0

F (Di)

For a morphism ϕ ∶ S → T use
● InjectionOfCofactorOfCoproduct to construct the

compositions F (Si)→ F (Tf(i))
ιf(i)ÐÐ→∐t−1j=0 F (Tj) =∶ F̂ (T )

● UniversalMorphismFromCoproduct to construct the

universal morphism F̂ (S) F̂ (ϕ)ÐÐÐ→ F̂ (T )

The counit is the ur-algorithm, evaluating syntax into semantics!

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


The 2-adjunction
For a strict cocartesian category E and a functor F ∶ D→ U (E)
in Cat the adjunct functor

F̂ ∶= L (F )εE ∶ FiniteStrictCoproductCompletion(D)→ E

in Cocart is given by

D = (D0, . . . ,D`−1)
L (F )↦ F (D) ∶= (F (D0), . . . , F (D`−1))
εE↦ Coproduct(F (D)) =

`−1

∐
i=0

F (Di)

For a morphism ϕ ∶ S → T use
● InjectionOfCofactorOfCoproduct to construct the

compositions F (Si)→ F (Tf(i))
ιf(i)ÐÐ→∐t−1j=0 F (Tj) =∶ F̂ (T )

● UniversalMorphismFromCoproduct to construct the

universal morphism F̂ (S) F̂ (ϕ)ÐÐÐ→ F̂ (T )

The counit is the ur-algorithm, evaluating syntax into semantics!

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


The 2-adjunction
For a strict cocartesian category E and a functor F ∶ D→ U (E)
in Cat the adjunct functor

F̂ ∶= L (F )εE ∶ FiniteStrictCoproductCompletion(D)→ E

in Cocart is given by

D = (D0, . . . ,D`−1)
L (F )↦ F (D) ∶= (F (D0), . . . , F (D`−1))
εE↦ Coproduct(F (D)) =

`−1

∐
i=0

F (Di)

For a morphism ϕ ∶ S → T use
● InjectionOfCofactorOfCoproduct to construct the

compositions F (Si)→ F (Tf(i))
ιf(i)ÐÐ→∐t−1j=0 F (Tj) =∶ F̂ (T )

● UniversalMorphismFromCoproduct to construct the

universal morphism F̂ (S) F̂ (ϕ)ÐÐÐ→ F̂ (T )

The counit is the ur-algorithm, evaluating syntax into semantics!

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Polynomial functors
The dual category construction is also a 2-adjunction on each
doctrine

D Dco−dual

L = Opposite

R = Opposite

⊣

Implementing Opposite requires a lot of meta programming.

Define:
● ProducCompletion ∶=
Opposite ○ CoproducCompletion ○ Opposite

● DistributiveCompletion ∶=
CoproducCompletion ○ ProducCompletion

● Poly ∶= DistributiveCompletion(TerminalCategory)

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Polynomial functors
The dual category construction is also a 2-adjunction on each
doctrine

D Dco−dual

L = Opposite

R = Opposite

⊣

Implementing Opposite requires a lot of meta programming.

Define:
● ProducCompletion ∶=
Opposite ○ CoproducCompletion ○ Opposite

● DistributiveCompletion ∶=
CoproducCompletion ○ ProducCompletion

● Poly ∶= DistributiveCompletion(TerminalCategory)

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Polynomial functors
The dual category construction is also a 2-adjunction on each
doctrine

D Dco−dual

L = Opposite

R = Opposite

⊣

Implementing Opposite requires a lot of meta programming.

Define:
● ProducCompletion ∶=
Opposite ○ CoproducCompletion ○ Opposite

● DistributiveCompletion ∶=
CoproducCompletion ○ ProducCompletion

● Poly ∶= DistributiveCompletion(TerminalCategory)

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Polynomial functors
The dual category construction is also a 2-adjunction on each
doctrine

D Dco−dual

L = Opposite

R = Opposite

⊣

Implementing Opposite requires a lot of meta programming.

Define:
● ProducCompletion ∶=
Opposite ○ CoproducCompletion ○ Opposite

● DistributiveCompletion ∶=
CoproducCompletion ○ ProducCompletion

● Poly ∶= DistributiveCompletion(TerminalCategory)

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Polynomial functors
The dual category construction is also a 2-adjunction on each
doctrine

D Dco−dual

L = Opposite

R = Opposite

⊣

Implementing Opposite requires a lot of meta programming.

Define:
● ProducCompletion ∶=
Opposite ○ CoproducCompletion ○ Opposite

● DistributiveCompletion ∶=
CoproducCompletion ○ ProducCompletion

● Poly ∶= DistributiveCompletion(TerminalCategory)
Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


The 2-adjunctions

● The left 2-adjoint L (D) is the free category in E (of type E)
generated by D ∈ D. The data structures of the free model
L (D) are purely syntactic.

● The counit εE ∶ L (U (E))→ IdE evaluates1 syntax into
semantics.

● The proof is computed in the syntactic model L (D).
● The evaluation into semantics is the program extraction

(our explicit version of the Curry-Howard correspondence).

1

it is sometimes called the evaluation morphism for other reasons

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


The 2-adjunctions

● The left 2-adjoint L (D) is the free category in E (of type E)
generated by D ∈ D. The data structures of the free model
L (D) are purely syntactic.

● The counit εE ∶ L (U (E))→ IdE evaluates1 syntax into
semantics.

● The proof is computed in the syntactic model L (D).
● The evaluation into semantics is the program extraction

(our explicit version of the Curry-Howard correspondence).

1it is sometimes called the evaluation morphism for other reasons
Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


The 2-adjunctions

● The left 2-adjoint L (D) is the free category in E (of type E)
generated by D ∈ D. The data structures of the free model
L (D) are purely syntactic.

● The counit εE ∶ L (U (E))→ IdE evaluates1 syntax into
semantics.

● The proof is computed in the syntactic model L (D).

● The evaluation into semantics is the program extraction
(our explicit version of the Curry-Howard correspondence).

1it is sometimes called the evaluation morphism for other reasons
Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


The 2-adjunctions

● The left 2-adjoint L (D) is the free category in E (of type E)
generated by D ∈ D. The data structures of the free model
L (D) are purely syntactic.

● The counit εE ∶ L (U (E))→ IdE evaluates1 syntax into
semantics.

● The proof is computed in the syntactic model L (D).
● The evaluation into semantics is the program extraction

(our explicit version of the Curry-Howard correspondence).

1it is sometimes called the evaluation morphism for other reasons
Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Extracting the snake lemma program
Having constructed the connecting morphism s in the
syntacticly free model

L (D) = AbelianClosure(AlgebroidQ(A
aÐ→ B

bÐ→ C
cÐ→D)/abc

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D

)

we can now apply our evaluating counit

εL (D) ∶ L (U (L (D)))→L (D)
to the syntactic s an extract the program

ConnectingMorphism(a, b, c) ∶=
CokernelColift(
KernelLift(b ⋅ c, a),
KernelLift(c,KernelEmbedding(b ⋅ c) ⋅ b) ⋅
CokernelProjection(KernelLift(c, a ⋅ b)))

(up to some rewriting rules in AbelianClosure(D)).
Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Thank you

Mohamed Barakat Constructive Category Theory and Applications

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

