Doctrine-specific ur-algorithms

Mohamed Barakat

Berkeley Seminar @ Topos Institute March 18, 2024

Joint work with Sebastian Posur, Kamal Saleh, Fabian Zickgraf

Motivating question: The connecting morphism

Snake Lemma: Given three composable morphisms $A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} D$ in an Abelian category with $a b c=0$.

Motivating question: The connecting morphism

Snake Lemma: Given three composable morphisms $A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} D$ in an Abelian category with $a b c=0$.

$$
\begin{aligned}
& \boldsymbol{A} \xrightarrow{\boldsymbol{a}} \boldsymbol{B} \xrightarrow{d} \operatorname{coker}(a) \\
& \boldsymbol{b} \downarrow \\
& \boldsymbol{C} \xrightarrow{\boldsymbol{c}} \mathrm{D}
\end{aligned}
$$

Motivating question: The connecting morphism

Snake Lemma: Given three composable morphisms $A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} D$ in an Abelian category with $a b c=0$.

$$
\begin{array}{rc}
\boldsymbol{A} \xrightarrow{\boldsymbol{a}} \boldsymbol{B} \xrightarrow{d} \operatorname{coker}(a) \\
& \boldsymbol{b} \downarrow \\
& \boldsymbol{C} \longrightarrow \boldsymbol{D}
\end{array}
$$

Motivating question: The connecting morphism

Snake Lemma: Given three composable morphisms $A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} D$ in an Abelian category with $a b c=0$.

$$
\begin{aligned}
& \boldsymbol{A} \xrightarrow{\boldsymbol{a}} \boldsymbol{B} \xrightarrow{d} \begin{array}{c}
\text { ker }(e) \\
f f \\
\operatorname{coker}(a)
\end{array} \\
& \boldsymbol{b} \downarrow \underset{\boldsymbol{C}}{\boldsymbol{c}} \quad \begin{array}{l}
e \downarrow \\
\boldsymbol{D}
\end{array}
\end{aligned}
$$

Motivating question: The connecting morphism

Snake Lemma: Given three composable morphisms $A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} D$ in an Abelian category with $a b c=0$.

$$
\begin{aligned}
& \operatorname{ker}(e) \\
& \boldsymbol{A} \xrightarrow{\boldsymbol{a}} \boldsymbol{B} \xrightarrow{d} \operatorname{coker}(a) \\
& \operatorname{ker}(c) \xrightarrow{g \quad \boldsymbol{b} \downarrow} \underset{\boldsymbol{C}}{\boldsymbol{c}} \quad \begin{array}{r}
e \downarrow \\
\boldsymbol{D}
\end{array}
\end{aligned}
$$

Motivating question: The connecting morphism

Snake Lemma: Given three composable morphisms $A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} D$ in an Abelian category with $a b c=0$.

$$
\begin{aligned}
& \operatorname{ker}(e) \\
& f \downarrow \\
& \boldsymbol{A} \xrightarrow{\boldsymbol{a}} \boldsymbol{B} \xrightarrow{d} \operatorname{coker}(a) \\
& \begin{array}{cr}
h \downarrow \\
\operatorname{ker}(c) \\
\\
g & \boldsymbol{b} \downarrow \\
\boldsymbol{C}
\end{array} \xrightarrow{\boldsymbol{c}} \quad \begin{array}{l}
e \downarrow \\
\boldsymbol{D}
\end{array}
\end{aligned}
$$

Motivating question: The connecting morphism

Snake Lemma: Given three composable morphisms $A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} D$ in an Abelian category with $a b c=0$.

$$
\begin{aligned}
& \operatorname{ker}(e) \\
& f \text { f } \\
& \boldsymbol{A} \xrightarrow{\boldsymbol{a}} \boldsymbol{B} \xrightarrow{d} \operatorname{coker}(a) \\
& \begin{array}{cr}
h \downarrow \\
\operatorname{ker}(c) \\
g & \boldsymbol{b} \downarrow \\
\boldsymbol{C}
\end{array} \xrightarrow{\boldsymbol{c}} \quad \begin{array}{l}
e \downarrow \\
\boldsymbol{D}
\end{array} \\
& i \downarrow \\
& \text { coker (} h \text {) }
\end{aligned}
$$

Motivating question: The connecting morphism

Snake Lemma: Given three composable morphisms $A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} D$ in an Abelian category with $a b c=0$.

Then there exists a natural morphism $\operatorname{ker}(e) \xrightarrow{s} \operatorname{coker}(h)$

Motivating question: The connecting morphism

Snake Lemma: Given three composable morphisms $A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} D$ in an Abelian category with $a b c=0$.

Then there exists a natural morphism $\operatorname{ker}(e) \xrightarrow{s} \operatorname{coker}(h)$

Motivating question: The connecting morphism

Snake Lemma: Given three composable morphisms $A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} D$ in an Abelian category with $a b c=0$.

Then there exists a natural morphism $\operatorname{ker}(e) \xrightarrow{s} \operatorname{coker}(h)$

Motivating question: The connecting morphism

Snake Lemma: Given three composable morphisms $A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} D$ in an Abelian category with $a b c=0$.

Then there exists a natural morphism $\operatorname{ker}(e) \xrightarrow{s} \operatorname{coker}(h)$ with $\operatorname{ker}(b) \xrightarrow{j} \operatorname{ker}(e) \xrightarrow{s} \operatorname{coker}(h) \xrightarrow{k} \operatorname{coker}(b)$ an exact sequence.

Motivating question: The connecting morphism

Snake Lemma: Given three composable morphisms $A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} D$ in an Abelian category with $a b c=0$.

Then there exists a natural morphism $\operatorname{ker}(e) \xrightarrow{s} \operatorname{coker}(h)$ with $\operatorname{ker}(b) \xrightarrow{j} \operatorname{ker}(e) \xrightarrow{s} \operatorname{coker}(h) \xrightarrow{k} \operatorname{coker}(b)$ an exact sequence.

- Does "with" mean "such that" or "furthermore"?

Motivating question: The connecting morphism

Snake Lemma: Given three composable morphisms $A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} D$ in an Abelian category with $a b c=0$.

Then there exists a natural morphism $\operatorname{ker}(e) \xrightarrow{s} \operatorname{coker}(h)$ with $\operatorname{ker}(b) \xrightarrow{j} \operatorname{ker}(e) \xrightarrow{s} \operatorname{coker}(h) \xrightarrow{k} \operatorname{coker}(b)$ an exact sequence.

- Does "with" mean "such that" or "furthermore"?
- In what sense is s unique? Give a construction algorithm.

An oracle for free Abelian categories

- We could answer the above questions if we would have an oracle for computing in free Abelian categories:

An oracle for free Abelian categories

- We could answer the above questions if we would have an oracle for computing in free Abelian categories:

Software demo

```
https://homalg-project.github.io/nb/
    SnakeInFreeAbelian
```


An oracle for free Abelian categories

- We could answer the above questions if we would have an oracle for computing in free Abelian categories:

Software demo

```
https://homalg-project.github.io/nb/
    SnakeInFreeAbelian
```

Exercise: Along the same lines treat spectral sequences of bicomplexes.

A categorical tower for AbelianClosure

So we have a proof by computation of the snake lemma.

A categorical tower for AbelianClosure

So we have a proof by computation of the snake lemma. But

- How to build the category constructor AbelianClosure?

A categorical tower for AbelianClosure

So we have a proof by computation of the snake lemma. But

- How to build the category constructor AbelianClosure?
- What do we need to extract a construction algorithm for the connecting morphism s in any Abelian category?

A categorical tower for AbelianClosure

So we have a proof by computation of the snake lemma. But

- How to build the category constructor AbelianClosure?
- What do we need to extract a construction algorithm for the connecting morphism s in any Abelian category?

The answer is to build the category constructor AbelianClosure as a categorical tower of 2-adjunctions:

A categorical tower for AbelianClosure

So we have a proof by computation of the snake lemma. But

- How to build the category constructor AbelianClosure?
- What do we need to extract a construction algorithm for the connecting morphism s in any Abelian category?

The answer is to build the category constructor AbelianClosure as a categorical tower of 2-adjunctions:

The counit of such a composed 2-adjunction will turn out to be the desired ur-algorithm, having the snake lemma, spectral sequences, and many more algorithms as special cases.

Free-forgetful 2-adjunctions

- The above tower of categorical constructors is typically composed of several free-forgetful 2-adjunctions

between a 2-category \mathcal{D} of categories (called doctrine) and another doctrine \mathcal{E} of categories with extra structure.

Free-forgetful 2-adjunctions

- The above tower of categorical constructors is typically composed of several free-forgetful 2-adjunctions

between a 2-category \mathcal{D} of categories (called doctrine) and another doctrine \mathcal{E} of categories with extra structure.
We will next see an instructive example of such a 2 -adjunction.

Coproducts in categories

Coproducts are generalizations of joins in posets (e.g., Icm's):

$$
D_{0} \quad \cdots \quad D_{\ell-1}
$$

Coproducts in categories

Coproducts are generalizations of joins in posets (e.g., Icm's):

$$
\begin{array}{ccc}
& C & \\
& \ldots & D_{\ell-1}
\end{array}
$$

(0) Coproduct

Coproducts in categories

Coproducts are generalizations of joins in posets (e.g., Icm's):

(0) Coproduct
(1) InjectionOfCofactorOfCoproduct

Coproducts in categories

Coproducts are generalizations of joins in posets (e.g., Icm's):

(0) Coproduct
(1) InjectionOfCofactorOfCoproduct

Coproducts in categories

Coproducts are generalizations of joins in posets (e.g., Icm's):

(0) Coproduct
(1) InjectionOfCofactorOfCoproduct
(2) UniversalMorphismFromCoproduct

Coproducts in categories

Coproducts are generalizations of joins in posets (e.g., Icm's):

(0) Coproduct
(1) InjectionOfCofactorOfCoproduct
(2) UniversalMorphismFromCoproduct

There is a bijection $\left(D_{i} \xrightarrow{\varphi_{i}} C^{\prime}\right)_{i=0}^{\ell-1} \quad \leftrightarrow \quad C \xrightarrow{u} C^{\prime}$.
(1) ComponentOfMorphismFromCoproduct (analysis/elim.)
(2) UniversalMorphismFromCoproduct (synthesis/intro.)

Coproducts in categories

Coproducts are generalizations of joins in posets (e.g., Icm's):

(0) Coproduct
(1) InjectionOfCofactorOfCoproduct
(2) UniversalMorphismFromCoproduct

There is a bijection $\left(D_{i} \xrightarrow{\varphi_{i}} C^{\prime}\right)_{i=0}^{\ell-1} \quad \leftrightarrow \quad C \xrightarrow{u} C^{\prime}$.
(1) ComponentOfMorphismFromCoproduct (analysis/elim.)
(2) UniversalMorphismFromCoproduct (synthesis/intro.)

Is there a way to package all 3 algorithms in one ur-algorithm?

The finite coproduct completion

Definition (Cocartesian (monoidal))
A cocartesian category is a category with all finite coproducts.

The finite coproduct completion

Definition (Cocartesian (monoidal))

A cocartesian category is a category with all finite coproducts.

Definition

Denote by Cocart the category of cocartesian categories (as objects) and coproduct preserving functors (as morphisms).

The finite coproduct completion

Definition (Cocartesian (monoidal))

A cocartesian category is a category with all finite coproducts.

Definition

Denote by Cocart the category of cocartesian categories (as objects) and coproduct preserving functors (as morphisms).

There exists a free-forgetful 2 -adjunction

$$
\begin{gathered}
\mathscr{L}=\text { FiniteCoproductCompletion } \\
\mathscr{U}=\text { UnderlyingCategory }
\end{gathered}
$$

FiniteStrictCoproductCompletion

FiniteStrictCoproductCompletion(\mathbf{D}) is built syntactically

FiniteStrictCoproductCompletion

FiniteStrictCoproductCompletion(\mathbf{D}) is built syntactically:

- An object is a finite list $D=\left(D_{0}, \ldots, D_{\ell-1}\right)$ of objects in \mathbf{D}.

FiniteStrictCoproductCompletion

FiniteStrictCoproductCompletion(\mathbf{D}) is built syntactically:

- An object is a finite list $D=\left(D_{0}, \ldots, D_{\ell-1}\right)$ of objects in \mathbf{D}.
- A morphism $\varphi: S \rightarrow T$ is a wiring diagram

defined by a function $f:\{0, \ldots, s-1\} \rightarrow\{0, \ldots, t-1\}$ and labeled by a list of morphisms $\left(\varphi_{i}: S_{i} \rightarrow T_{f(i)}\right)_{i=0}^{s-1} \in \mathbf{D}$.

FiniteStrictCoproductCompletion

FiniteStrictCoproductCompletion(\mathbf{D}) is built syntactically:

- An object is a finite list $D=\left(D_{0}, \ldots, D_{\ell-1}\right)$ of objects in \mathbf{D}.
- A morphism $\varphi: S \rightarrow T$ is a wiring diagram

defined by a function $f:\{0, \ldots, s-1\} \rightarrow\{0, \ldots, t-1\}$ and labeled by a list of morphisms $\left(\varphi_{i}: S_{i} \rightarrow T_{f(i)}\right)_{i=0}^{s-1} \in \mathbf{D}$.

SkeletalFinSets =
FiniteStrictCoproductCompletion(TerminalCategory)

FiniteStrictCoproductCompletion

FiniteStrictCoproductCompletion(\mathbf{D}) is built syntactically:

- An object is a finite list $D=\left(D_{0}, \ldots, D_{\ell-1}\right)$ of objects in \mathbf{D}.
- A morphism $\varphi: S \rightarrow T$ is a wiring diagram

defined by a function $f:\{0, \ldots, s-1\} \rightarrow\{0, \ldots, t-1\}$ and labeled by a list of morphisms $\left(\varphi_{i}: S_{i} \rightarrow T_{f(i)}\right)_{i=0}^{s-1} \in \mathbf{D}$.

SkeletalFinSets =
FiniteStrictCoproductCompletion(TerminalCategory)

The (finite) coproduct completion invents functions.

The 2-adjunction

For a strict cocartesian category \mathbf{E} and a functor $F: \mathbf{D} \rightarrow \mathscr{U}(\mathbf{E})$ in Cat the adjunct functor

$$
\widehat{F}:=\mathscr{L}(F) \varepsilon_{\mathbf{E}}: \text { FiniteStrictCoproductCompletion }(\mathbf{D}) \rightarrow \mathbf{E}
$$

in Cocart is given by

$$
\begin{aligned}
D=\left(D_{0}, \ldots, D_{\ell-1}\right) & \stackrel{\mathscr{L}}{\mapsto}(F) \\
& \stackrel{\varepsilon_{\mathrm{E}}}{\mapsto} \operatorname{Coproduct}(F):=\left(F\left(D_{0}\right), \ldots, F\left(D_{\ell-1}\right)\right) \\
& \coprod_{i=0}^{\ell-1} F\left(D_{i}\right)
\end{aligned}
$$

The 2-adjunction

For a strict cocartesian category \mathbf{E} and a functor $F: \mathbf{D} \rightarrow \mathscr{U}(\mathbf{E})$ in Cat the adjunct functor

$$
\widehat{F}:=\mathscr{L}(F) \varepsilon_{\mathbf{E}}: \text { FiniteStrictCoproductCompletion }(\mathbf{D}) \rightarrow \mathbf{E}
$$

in Cocart is given by

$$
\begin{aligned}
D=\left(D_{0}, \ldots, D_{\ell-1}\right) & \stackrel{\mathscr{L}(F)}{\mapsto} F(D):=\left(F\left(D_{0}\right), \ldots, F\left(D_{\ell-1}\right)\right) \\
& \stackrel{\varepsilon_{\mathrm{E}}}{\mapsto} \operatorname{Coproduct}(F(D))=\coprod_{i=0}^{\ell-1} F\left(D_{i}\right)
\end{aligned}
$$

For a morphism $\varphi: S \rightarrow T$ use

- InjectionOfCofactorOfCoproduct to construct the compositions $F\left(S_{i}\right) \rightarrow F\left(T_{f(i)}\right) \xrightarrow{\iota_{f(i)}} \amalg_{j=0}^{t-1} F\left(T_{j}\right)=: \widehat{F}(T)$

The 2-adjunction

For a strict cocartesian category \mathbf{E} and a functor $F: \mathbf{D} \rightarrow \mathscr{U}(\mathbf{E})$ in Cat the adjunct functor

$$
\widehat{F}:=\mathscr{L}(F) \varepsilon_{\mathbf{E}}: \text { FiniteStrictCoproductCompletion }(\mathbf{D}) \rightarrow \mathbf{E}
$$

in Cocart is given by

$$
\begin{aligned}
D=\left(D_{0}, \ldots, D_{\ell-1}\right) & \stackrel{\mathscr{L}(F)}{\mapsto} F(D):=\left(F\left(D_{0}\right), \ldots, F\left(D_{\ell-1}\right)\right) \\
& \stackrel{\varepsilon_{\mathrm{E}}}{\mapsto} \operatorname{Coproduct}(F(D))=\coprod_{i=0}^{\ell-1} F\left(D_{i}\right)
\end{aligned}
$$

For a morphism $\varphi: S \rightarrow T$ use

- InjectionOfCofactorOfCoproduct to construct the compositions $F\left(S_{i}\right) \rightarrow F\left(T_{f(i)}\right) \xrightarrow{\iota_{f(i)}} \coprod_{j=0}^{t-1} F\left(T_{j}\right)=: \widehat{F}(T)$
- UniversalMorphismFromCoproduct to construct the universal morphism $\widehat{F}(S) \xrightarrow{\widehat{F}(\varphi)} \widehat{F}(T)$

The 2-adjunction

For a strict cocartesian category \mathbf{E} and a functor $F: \mathbf{D} \rightarrow \mathscr{U}(\mathbf{E})$ in Cat the adjunct functor

$$
\widehat{F}:=\mathscr{L}(F) \varepsilon_{\mathbf{E}}: \text { FiniteStrictCoproductCompletion }(\mathbf{D}) \rightarrow \mathbf{E}
$$

in Cocart is given by

$$
\begin{aligned}
D=\left(D_{0}, \ldots, D_{\ell-1}\right) & \stackrel{\mathscr{L}(F)}{\mapsto} F(D):=\left(F\left(D_{0}\right), \ldots, F\left(D_{\ell-1}\right)\right) \\
& \stackrel{\varepsilon_{\mathrm{E}}}{\mapsto} \operatorname{Coproduct}(F(D))=\coprod_{i=0}^{\ell-1} F\left(D_{i}\right)
\end{aligned}
$$

For a morphism $\varphi: S \rightarrow T$ use

- InjectionOfCofactorOfCoproduct to construct the compositions $F\left(S_{i}\right) \rightarrow F\left(T_{f(i)}\right) \xrightarrow{\iota_{f(i)}} \coprod_{j=0}^{t-1} F\left(T_{j}\right)=: \widehat{F}(T)$
- UniversalMorphismFromCoproduct to construct the universal morphism $\widehat{F}(S) \xrightarrow{\widehat{F}(\varphi)} \widehat{F}(T)$

The counit is the ur-algorithm, evaluating syntax into semantics!

Polynomial functors

The dual category construction is also a 2-adjunction on each doctrine

Polynomial functors

The dual category construction is also a 2-adjunction on each doctrine

Implementing Opposite requires a lot of meta programming.

Polynomial functors

The dual category construction is also a 2-adjunction on each doctrine

Implementing Opposite requires a lot of meta programming.
Define:

- ProducCompletion:=

Opposite \circ CoproducCompletion \circ Opposite

Polynomial functors

The dual category construction is also a 2-adjunction on each doctrine

Implementing Opposite requires a lot of meta programming.
Define:

- ProducCompletion:=

Opposite o CoproducCompletion ○ Opposite

- DistributiveCompletion:= CoproducCompletion ○ ProducCompletion

Polynomial functors

The dual category construction is also a 2-adjunction on each doctrine

Implementing Opposite requires a lot of meta programming.
Define:

- ProducCompletion:=

Opposite o CoproducCompletion ○ Opposite

- DistributiveCompletion:= CoproducCompletion o ProducCompletion
- Poly := DistributiveCompletion(TerminalCategory)

The 2-adjunctions

- The left 2-adjoint $\mathscr{L}(\mathbf{D})$ is the free category in \mathcal{E} (of type \mathcal{E}) generated by $\mathbf{D} \in \mathcal{D}$. The data structures of the free model $\mathscr{L}(\mathbf{D})$ are purely syntactic.

The 2-adjunctions

- The left 2-adjoint $\mathscr{L}(\mathbf{D})$ is the free category in \mathcal{E} (of type \mathcal{E}) generated by $\mathbf{D} \in \mathcal{D}$. The data structures of the free model $\mathscr{L}(\mathbf{D})$ are purely syntactic.
- The counit $\varepsilon_{\mathbf{E}}: \mathscr{L}(\mathscr{U}(\mathbf{E})) \rightarrow \operatorname{Id}_{\mathbf{E}}$ evaluates ${ }^{1}$ syntax into semantics.

[^0]
The 2-adjunctions

- The left 2-adjoint $\mathscr{L}(\mathbf{D})$ is the free category in \mathcal{E} (of type \mathcal{E}) generated by $\mathbf{D} \in \mathcal{D}$. The data structures of the free model $\mathscr{L}(\mathbf{D})$ are purely syntactic.
- The counit $\varepsilon_{\mathbf{E}}: \mathscr{L}(\mathscr{U}(\mathbf{E})) \rightarrow \operatorname{Id}_{\mathbf{E}}$ evaluates ${ }^{1}$ syntax into semantics.
- The proof is computed in the syntactic model $\mathscr{L}(\mathbf{D})$.

[^1]
The 2-adjunctions

- The left 2 -adjoint $\mathscr{L}(\mathbf{D})$ is the free category in \mathcal{E} (of type \mathcal{E}) generated by $\mathbf{D} \in \mathcal{D}$. The data structures of the free model $\mathscr{L}(\mathbf{D})$ are purely syntactic.
- The counit $\varepsilon_{E}: \mathscr{L}(\mathscr{U}(\mathbf{E})) \rightarrow \operatorname{Id}_{\mathbf{E}}$ evaluates ${ }^{1}$ syntax into semantics.
- The proof is computed in the syntactic model \mathscr{L} (D).
- The evaluation into semantics is the program extraction (our explicit version of the Curry-Howard correspondence).

[^2]
Extracting the snake lemma program

Having constructed the connecting morphism s in the syntacticly free model
$\mathscr{L}(\mathbf{D})=$ AbelianClosure $(\underbrace{\operatorname{Algebroid}_{\mathbb{Q}}(A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} D) / a b c}_{\mathbf{D}})$
we can now apply our evaluating counit

$$
\varepsilon_{\mathscr{L}(\mathbf{D})}: \mathscr{L}(\mathscr{U}(\mathscr{L}(\mathbf{D}))) \rightarrow \mathscr{L}(\mathbf{D})
$$

to the syntactic s an extract the program

$$
\begin{aligned}
& \text { ConnectingMorphism }(a, b, c):= \\
& \quad \begin{array}{l}
\text { CokernelColift }(\\
\quad \operatorname{KernelLift~}(b \cdot c, a), \\
\quad \text { KernelLift }(c, \operatorname{KernelEmbedding~}(b \cdot c) \cdot b) \\
\quad \text { CokernelProjection }(\operatorname{KernelLift~}(c, a \cdot b)))
\end{array}
\end{aligned}
$$

(up to some rewriting rules in AbelianClosure(D)).

Thank you

[^0]: ${ }^{1}$ it is sometimes called the evaluation morphism for other reasons

[^1]: ${ }^{1}$ it is sometimes called the evaluation morphism for other reasons

[^2]: ${ }^{1}$ it is sometimes called the evaluation morphism for other reasons

