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Statistical Learning Theory

Let q(x) : Ω→ RN be a distribution (the ’true’ distribution). Let
Dn = {X1, · · ·Xn} be a n-sample of q(x), i.e X1, · · · ,Xn : Ω→ Rn

are random variables independently distributed according to a
distribution q(x).

Definition
A statistical model for q(x) is a conditional probability density
function p(x |w) : Ω×W → RN where w ∈W ⊂ Rd is a
d-dimensional parameter space.

In statistical learning theory we are interested in producing a ’best’
distribution q̂n(x) given the data Dn.
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Fischer Information matrix

Definition
Let p(x |w) = pw (x) be a statistical model, where w ∈ Rd . The
Fischer information matrix is given by

I (w) = Ijk (w) =

∫
∂

∂wj
log p(x |w) · ∂

∂wk
log p(x |w)dx

where 1 ≤ j , k ≤ d .

The Fischer information matrix is symmetric and positive
semi-definite. We will see that it is not always positive definite
however, i.e. it can have zero eigenvalues (singularities!).
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Statistical Models

Let W0 := {w ∈W : q(x) = p(x |w)}

Definition
We say q(x) is realizable if W0 is nonempty. We will assume our
models are realizable.

We say a model (q(x), p(x |w),W ⊂ R is identifiable if
w 7→ p(x |w) is injective.

Definition
A model (q(x), p(x |w) is regular if it identifiable and its Fischer
matrix I (w) is positive definite. It is singular if it is not regular.

For now let us assume our models are regular.
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Likelihood and Kullback-Leibler Divergence

Definition
For a random sample Dn = {X1, · · · ,Xn} and a statistical model
(q(x), p(x |w)), the likelihood function Ln(w), the Kullback-Leibler
divergence and the sample KL-divergence as

I The likelihood Ln(w) := Πn
i=1p(Xi |w)

I The KL-divergence
KL(q(x), p(x |w)) = K (w) :=

∫
q(x) log q(x)

p(x |w)dx . It is also
known as the generalization error

I The sample KL-divergence Kn(w) =
∑n

i=1 q(xi ) log( q(xi )
p(xi |w)).

It is also known as the training error.

We want to minimize the KL-divergence.

Remark
An advantage of the MLE is that likelihood does not depend on
the ’true’ distribution q(x)dx .
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Maximum Likelihood Estimator

The Maximum Likelihood Estimator principle (MLE) says that we
should pick the hypothesis q̂n,MLE = p(x |w∗) with the highest
likelihood Ln(w∗) = maxw∈W Ln(w). Note that

−1

n
log(Ln(w)) = Kn(w)− 1

n

n∑
i=1

log q(Xi ) = Kn(w) + Sn

where Sn denotes the empirical entropy, so maximizing the
likelihood means minimizing the sample Kullback-Leibler
divergence.

Remark
However(!!) this is not the same as minimizing the
Kullback-Leibler divergence - basically because of overfitting. This
is the basic reason why statistical learning is not a simple
optimization problem.

6 / 23



Example - Two-dimensional Gaussian

Let a parametric probability density function of (x , y) ∈ R2 for a
given parameter R2 be defined

p(x , y |a, b) =
1

2π
exp(−(x − a)2 + (y − b)2

2
)

For given random samples (xi , yi ) the likelihood function is

Ln(a, b) =
1

(2π)n
exp(−1

2

n∑
i=1

(xi − a)2 + (yi − b)2)
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Example - Two-dimensional Gaussian (continued)

If the true distribution q(x , y) = p(x , y |a0, b0) then the sample
KL-divergence is

Kn(a, b) =
a2 − a20 + b2 − b20

2
−(a−a0)(

1

n

n∑
i=1

xi )−(b−b0)(
1

n

n∑
i=1

yi )

The KL-divergence is

K (a, b) =
1

2
[(a− a0)2 + (b − b0)2]

The Fisher information matrix is everywhere

I (a, b) =

[
1 0
0 1

]
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Fischer Information: Curvature of the KL-divergence

The Fischer information matrix is equal to the Hessian matrix of
the Kullback-Leibler distance at the true parameter.

Proposition

Let w0 ∈W0 ⊂W be a true parameter. Then

Ijk (w0) =
∂2

∂wj∂wk
K (w0)

Proof.
Integration by parts.
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Fischer Information: Jeffrey Prior
Suppose we want to pick a prior φ(w) on a parameter space
W ⊂ Rd . [This will be important when we consider Bayesian
learning theory] One important desideratum is that our prior φ(w)
should not depend on how the p(x |w) are parameterized in any
essential way.

Jeffrey Prior

The Jeffrey prior is defined as

φJeffrey (w) :=
√

det I (w)

The Jeffrey prior has the important property that if p(x |g(w)) is
another parameterization of the statistical model then the priors
φ(w), φ′(g(w)) are related by the usual change of variables

φ(w) = φ′(g(w)) · | dg
dw
|
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Fischer Information: Cramer-Rao
Let p(x |w),w ∈W ⊂ Rd be a parameterized probability
distribution. Let Dn be a n-sample from p(x |w).

Cramer-Rao
Let ŵn be an unbiased estimator of w based on Dn. Then the
covariance matrix Cov(n̂n)jk := E[(ŵj − wj )(ŵk − wk )] of ŵn is
bounded from below:

Cov(ŵn) ≥ I (w)−1

n

Corollary

In particular, if d = 1, we have

var(ŵ) ≥ 1

n · I (w)
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Fischer Information: Riemannian metrics
The Fischer Information matrix Ijk (w) defines a Riemannian metric
on W. Given a path γ : [0, τ ]→W this gives a length

L(γ) =

∫ τ

0

√
dγj (t)

dt
Ijk (γ(t))

dγk (t)

dt
dt

Given two points w1,w2 ∈W we define the metric distance
L(w1,w2) to be the length L(γ0) of a shortest path (geodesic)
between w1,w2.

Theorem
Let p1 = p(x |w1), p2 = p(x |w2) where w1,w2 ∈W ⊂ Rd be two
probability distributions. The Fischer distance equals the
symmetrized Kullback-Leibler divergence:

L(p1, p2) =
1

2
K (p1, p2) +

1

2
K (p1, p2)
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Fischer Information: Thermodynamics

We can also think of W as parametrizing thermodynamic
macostates, where the parameters w ∈W parameterize conjugate
variables (temperature, pressure, etc).

Theorem
Let a, b ∈W be two thermodynamcis states. The square of the
Fischer distance L2 gives a lower bound on the total entropy
production of a thermodynamic transformation in the quasi-static
limit[1].

Without going in too much detail, the quasi-static limit this means
we start in a thermodynamic state a, change the conjugate
variables wj in very small steps ∆wj and let the system equilibrate
after each step ∆wj until we end up at the endpoint b.

13 / 23



Fischer Information: Rate of Evolution

Let’s start by assuming we have different kinds of self-replicating
entities with populations P1, · · · ,Pn evolving according to the
replicator equation

dPi (t)

dt
= fiPi (t)

after normalizing we get

dpi

dt
= (fi − 〈f 〉)pi (t)

where pi (t) = Pi (t)∑n
i=1 Pi (t)

and 〈f 〉 =
∑n

j=1 fjpj (t) We call fi the

fitness of species i and 〈f 〉 the mean fitness.
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Fischer Information: Rate of Evolution (continued)

Mathematically, we have described a curve p(t) in some ambient
parameter space. The following theorem is sometimes described as:
”The rate of increase in fitness of any organism at any time is equal
to its genetic variance in fitness at that time.” - but see below

Theorem(Baez-Fisher)

The Fischer information

I (t) = |dp
dt
|2 =

∑
i

(fi − 〈f 〉)2pi = var(f )

Recall also that the Fischer information equals the second
derivative of the KL-divergence:
|dp

dt |
2(t0) = d2

dt2
KL(p(t), p(t0))|t=t0 .
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Neural Networks are Singular!

Let p(x , y |a, b) = q0(x) 1√
2π

exp(12(y − a · tanh(bx))2 where q0(x)

is a constant probability density function of x , x ∈ R1, y ∈ R1 and
(a, b) ∈ R2. This is the simplest three-layer neural network.
One can check that if ab = 0 the Fisher Information matrix is
degenerate.

Remark
In fact, almost every statistical model is singular! Layered neural
networks, normal mixtures, Boltzmann machines, Bayes networks,
Hidden Markov models, etc etc are all generically singular.
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Blow-ups

Algebraic geometers know what to do with singularities: blow them
up!

By using succesive blowups we can resolve (Hironaka’s resolution
of singularities) a singular variety W into a smooth manifold
b : M →W .
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Bayesian Learning Theory

Definition
A Bayesian statistical model is a statistical model
(q(x), p(x |w)),W ⊂ Rd together with a distribution φ(w), the
’prior’, on W .

The Bayesian predictive distribution is defined as

q̂n,Bayes(x) =

∫
p(x |w)p(w |Dn)dw
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Birational Geometry

Let (q(x), p(x |w), φ(x)),w ∈W ⊂ Rd be a Bayesian statistical
model. Assume it is realizable. Using resolution of singularities we
can define a birational invariant λ.

Theorem
I If (q(x), p(x |w), φ(x)) is regular then λ = d

2 .

I If (q(x), p(x |w), φ(x)) is singular then λ < d
2 .
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Generalization Error
Let q̂n(x) be some estimate of the true unknown distribution q(x)
based on the dataset Dn.

Definition
The generalisation error of the predictor q̂n(y |x) is

K (q̂n) :==

∫
q(x) log

q(x)

q̂n(x)
dx .

The average generalisation error over a sample Dn is denoted
EnK (q̂n).

Theorem (Watanabe)

Let q̂n(x) = q̂n,Bayes be the Bayesian predictive distribution. Then

EnG (n, q̂n) =
λ

n
+ o(

1

n
)

if q̂n is the Bayes predictive distribution[2].

In other words the birational invariant λ is the learning coefficient!20 / 23



MLE and Bayes predictive distribution

Let q̂n,MLE (x) be the MLE estimator

Theorem (Watanabe)

There is a constant C such that

EnK (q̂n,MLE ) =
C

n
+ o(

1

n
)

if the statistical model (q(x), p(x |w), φ(x)) is regular then C = d
2 .

In general C > λ so in singular situations the Bayesian predictive
distribution outperforms MLE.
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Why do overparameterized models work so well in ML?

The learning coefficient λ is generally much smaller than d
2 . It

seems that existing techniques in ML are able somehow able to
effectively approximate the Bayesian predictive distribution.
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Conclusion and further questions

Singular learning theory and Information geometry forms a
powerful framework for machine learning and artificial intelligence!

I In practice it is hard to calculate the Bayesian predictive
distribution q̂n,Bayes(x). Approximation techniques exist
(variational Bayes / mean field approximation...) but it is an
open question if similar generalization error bounds hold for
them.

I It is hard to calculate the birational invariant λ for large
neural networks. Can Compositionality help in calculating λ
for large neural networks?
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