# A Short Introduction to Categorical Logic

Evan Patterson



Finding the Right Abstractions Summit May 18, 2021

## Why logical pluralism?

Most mathematicians and philosophers know about first-order logic:

 $\wedge, \vee, \neg, \Rightarrow, \Leftrightarrow, \forall, \exists, =$ 

Shouldn't that be good enough for everyone?

No, because it's *too general*:

- Simple kinds of theories are needlessly complicated and their structure lost, e.g., the equational character of algebraic theories
- The richer the logical system, the fewer models its theories can have

Yet it's also *not general enough*:

- Does not easily accomodate unconventional semantics
- E.g., nondeterminism or resource-boundedness

Thus, we should take a **pluralistic** view of logic.

### Structuralism for logic

A hallmark of modern mathematics is its **structuralist** approach:

- rather than studying specific objects and their properties (e.g.,  ${\mathbb N}$  and  ${\mathbb R}),$
- study structures and their relations (e.g., groups and rings)
- with algebra playing a central role

**Categorical logic** is a way of being structuralist about logic itself [Awo96]. It is *anti-reductionist* and arguably *anti-foundationalist*:

- rather than seeing mathematics as something built on top of logic,
- logic becomes part of mathematics itself
- studied using algebra and, in particular, category theory

### Dictionary between category theory and logic

| Category theory                                    | Logic              |
|----------------------------------------------------|--------------------|
| Category $\mathcal{C}$                             | Theory             |
| Functor $\mathcal{C} \!  ightarrow \! \mathcal{S}$ | Model              |
| Natural transformation                             | Model homomorphism |

To be more precise, in this dictionary:

- Categories usually have extra structure
- Functors and natural transformations preserve this structure

Different ways of choosing this extra structure give different logical systems.

**Note.** While the study of classical abstract algebra is 1-categorical, the study of cateogrical logic is properly 2-categorical.

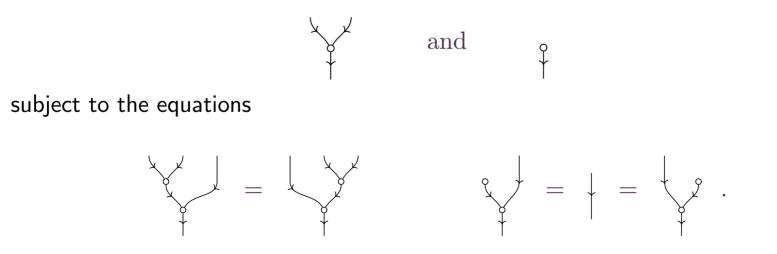
#### Algebraic theories

Categorical logic began with Lawvere's study of algebraic theories [Law63, Cro93].

**Definition.** A Lawvere theory is a small cartesian monoidal category whose objects are freely generated by one object.

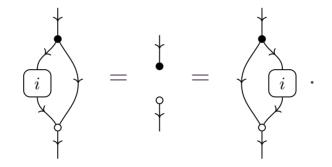
Lawvere theories represent single-sorted algebraic theories in a syntax-invariant way.

**Example.** The *theory of monoids* Th(Mon) is generated by the morphisms



#### Algebraic theories

**Example.** The *theory of groups* Th(Grp) extends Th(Mon) with another morphism  $i: x \rightarrow x$  subject to the equations



**Definition.** A model of a Lawvere theory C is a cartesian monoidal functor  $C \rightarrow Set$ .

E.g, a model of Th(Grp) is a group. Moreover, the monoidal natural transformations between models are group homomorphisms.

#### Invariance of Lawvere theories

We gave the standard presentation of the theory of groups, but it has many different axiomatizations, such as:

**Example.** A group is a set G with a binary operation  $(g,h) \mapsto g/h$  and a constant e such that g/g = e, g/e = g, and (g/k)/(h/k) = g/h for all  $g, h, k \in G$ .

Correspondingly, present a Lawvere theory Th(Grp)' with morphisms  $\delta: x \otimes x \to x$ and  $\eta: I \to x$  subject to three equations.

The two Lawvere theories are not equal but they are isomorphic:

 $Th(Grp) \cong Th(Grp)'.$ 

In general, theories in categorical logic are not *syntactical* objects but *algebraic* ones, hence they are **invariant** to differences of presentation.

#### Functorial semantics

So far we have considered semantics in S = Set, but the semantics category S can be any category with the required structure.

**Definition.** A model of a Lawvere theory C in a cartesian category S is a cartesian functor  $C \rightarrow S$ .

This powerful notion of **functorial semantics** is distinctive of categorical logic.

| <b>Example.</b> A group object in a cartesian category $\delta$ is a model of $In(Grp)$ in $d$ | $ct$ in a cartesian category ${\cal S}$ is a model of ${\sf Th}(G)$ | (rp) in $S$ . |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------|
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------|

| A group object in      | is a                               |
|------------------------|------------------------------------|
| Set                    | group                              |
| Тор                    | topological group                  |
| Man                    | Lie group                          |
| $G\operatorname{-Set}$ | semidirect product $(-) \rtimes G$ |

#### Monoidal theories

The weaker the logicial system, the more categories S can serve as its semantics.

Thus, it is useful to consider logical systems weaker than Lawvere theories.

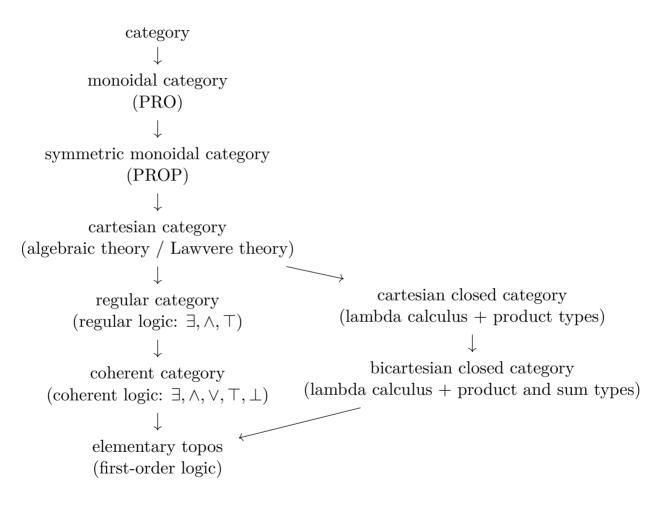
| Doctrine                    | Single-sorted  | Typical theories           |
|-----------------------------|----------------|----------------------------|
| category                    |                | discrete dynamical systems |
| monoidal category           | PRO            | (co)monoids                |
| symmetric monoidal category | PROP           | commutative (co)monoids    |
| cartesian category          | Lawvere theory | groups, rings              |

**Example.** A monoid object in a monoidal category S is a model of Th(Mon) in S, where Th(Mon) is now regarded as PRO.

Infamously, a *monad* on a category C is a monoid object in  $(End_{\mathcal{C}}, \circ, 1_{\mathcal{C}})$ .

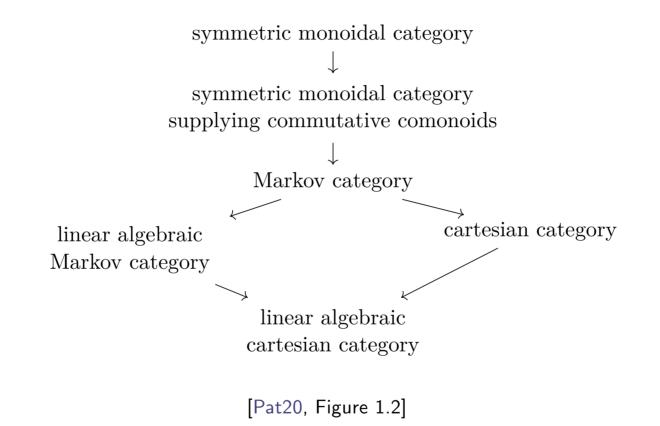
On the other hand, the theories of commutative monoids and of groups cannot be interpreted in  $(End_{\mathcal{C}}, \circ, 1_{\mathcal{C}})$ .

#### A family tree of categorical logic



[Pat20, Figure 1.1]

#### Another branch of the family tree



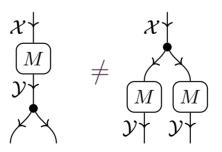
#### Markov categories

Markov kernels and Markov categories offer a compositional approach to probability and statistics [Čen82, Gir82, Pan99, Fon12, Fri20, Pat20].

**Definition.** A Markov kernel  $M: \mathcal{X} \to \mathcal{Y}$  is a measurable map  $\mathcal{X} \to \operatorname{Prob}(\mathcal{Y})$ .

Markov kernels are "randomized functions." Markov categories axiomatize the most essential features of the category of Markov kernels.

A *Markov category* is like a cartesian category, except that some morphisms may not preserve the copying of data, representing **nondeterminism**:



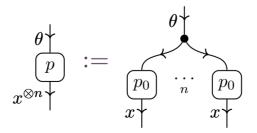
### Statistical theories and models

Upgraded with extra linear algebraic structure, Markov categories allow the dictionary of categorical logic to be extended to everyday statistical models:

| Category theory                               | Logic              | Statistics                    |
|-----------------------------------------------|--------------------|-------------------------------|
| Category $\mathcal{C}$                        | Theory             | Statistical theory            |
| Functor $\mathcal{C} \rightarrow \mathcal{S}$ | Model              | Statistical model             |
| Natural transformation                        | Model homomorphism | Morphism of statistical model |

**Definition.** A statistical theory is a small linear algebraic Markov category together with a distinguished morphism  $p: \theta \rightarrow x$ , the sampling morphism.

**Example.** The *theory of* n *i.i.d. samples* is freely generated by a morphism  $p_0: \theta \to x$  on discrete objects  $\theta, x$  and has sampling morphism:

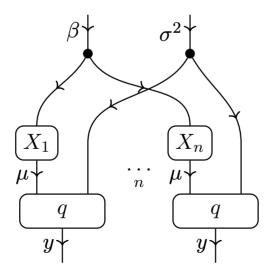


#### Theory of a linear model

**Example.** The *theory of a linear model on* n *observations* is presented by

- vector space objects  $\beta,\ \mu,$  and y and conical space object  $\sigma^2$
- linear maps  $X_1, \ldots, X_n: \beta \to \mu$
- linear-quadratic morphism  $q{:}\ \beta \otimes \sigma^2 {\,\rightarrow\,} y$

and has sampling morphism  $p{:}\ \beta\otimes\sigma^2 {\,\rightarrow\,} y^{\otimes n}$  given by



#### Bibliography

- [Awo96] Steve Awodey. Structure in mathematics and logic: a categorical perspective. *Philosophia Mathematica*, 4(3):209–237, 1996.
- [Čen82] N. N. Čencov. *Statistical decision rules and optimal inference*. Number 53 in Translations of Mathematical Monographs. American Mathematical Society, 1982.
- [Cro93] Roy L. Crole. *Categories for types*. Cambridge University Press, 1993.
- **[Fon12]** Brendan Fong. Causal theories: a categorical perspective on Bayesian networks. Msc thesis, University of Oxford, 2012.
- [Fri20] Tobias Fritz. A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics. *Advances in Mathematics*, 370(107239), 2020.
- [Gir82] Michele Giry. A categorical approach to probability theory. In *Categorical aspects of topology and analysis*, pages 68–85. 1982.
- [Law63] F. William Lawvere. Functorial semantics of algebraic theories. PhD thesis, Columbia University, 1963. Republished in *Reprints in Theory and Applications of Categories*, No. 5 (2004), pp. 1–121.
- [Pan99] Prakash Panangaden. The category of Markov kernels. *Electronic Notes in Theoretical Computer Science*, 22:171–187, 1999.
- [Pat20] Evan Patterson. The algebra and machine representation of statistical models. PhD thesis, Stanford University, Department of Statistics, 2020.