
Symmetric Monoidal Categories:
a Rosetta Stone

John Baez



In many branches of science and engineering, people use diagrams
of networks, with boxes connected by wires:

http://math.ucr.edu/home/baez/networks/networks_1.html
http://johncarlosbaez.wordpress.com/2012/06/27/the-mathematics-of-biodiversity-part-3/


In particle physics, ‘Feynman diagrams’ describe processes
involving elementary particles:

In the 1990s it became clear that mathematically Feynman
diagrams depict morphisms in monoidal categories.



Categories are great for describing processes. A process with input
x and output y is a morphism F : x → y , and we can draw it like
this:

x

F

y

We call x and y objects.



We can do one process after another if the output of the first
equals the input of the second:

F

x

G

y

z

Here we are composing morphisms F : x → y and G : y → z to get
a morphism G ◦ F : x → z .



In a monoidal category, we can also do processes ‘in parallel’:

x

F

y

x ′

G

y ′

Here we are tensoring F : x → y and G : x ′ → y ′ to get a
morphism F ⊗ G : x ⊗ x ′ → y ⊗ y ′.



In a monoidal category, composition and tensoring must obey some
laws, which all look obvious when drawn as diagrams. For example

(G ◦ F )⊗ (G ′ ◦ F ′) = (G ⊗ G ′) ◦ (F ⊗ F ′)

says two ways of reading this diagram agree:

F

x

G

y

z

F ′

x ′

G ′

y ′

z ′

http://arxiv.org/abs/0903.0340


In a braided monoidal category we also have morphisms
Bx ,y : x ⊗ y → y ⊗ x called braidings:

These have inverses B−1
x ,y : y ⊗ x → x ⊗ y , drawn like this:

These let us draw diagrams where wires cross. Again, some
obvious-looking laws must hold.

http://arxiv.org/abs/0903.0340


A symmetric monoidal category is a braided monoidal category
obeying an extra law that says it doesn’t matter which wire crosses
which:

=



The most important symmetric monoidal category for traditional
math is (Set,×). Here the objects are sets and the morphisms are
functions, and the tensor product is

S × T = {(s, t) : s ∈ S , t ∈ T}.

The most important for quantum physics is (Hilb,⊗). Here the
objects are Hilbert spaces, the morphisms are linear operators,
and the tensor product describes how we combine quantum
systems.

The dramatic differences between (Set,×) and (Hilb,⊗) explain
why quantum mechanics seems weird.



Logic gives us symmetric monoidal categories where objects are
statements and a morphism F : x → y is a proof that x implies y .

Given proofs F : x → y and G : y → z we can compose them to
get a proof

G ◦ F : x → z

Given proofs F : x → y and G : x ′ → y ′ we can tensor them to
get a proof

F ∧ G : x ∧ x ′ → y ∧ y ′

Here x ∧ y means “x and y”.



Computer science gives us symmetric monoidal categories where
objects are data types and a morphism F : x → y is a program that
takes data of type x as input and gives data of type y as output.

Given programs F : x → y and G : y → z we can compose them to
get a program

G ◦ F : x → z

Given programs F : x → y and G : x ′ → y ′ we can “tensor” them
to get a program

F × G : x × x ′ → y × y ′

Here x × x ′ is a“product type”.



Based on all these analogies, Brendan Fong and I started studying
symmetric monoidal categories where the morphisms are electrical
circuits:

or other kinds of networks used in science and engineering.

https://johncarlosbaez.wordpress.com/2015/04/28/a-compositional-framework-for-passive-linear-networks/


We can compose networks F : x → y

x y

and G : y → z

y z

by gluing them together, obtaining G ◦ F : x → z

x z



We can tensor networks F : x → y

x y

and G : x ′ → y ′

x ′ y ′

by setting them side by side, obtaining F ⊗ G : x ⊗ y ′ → x ⊗ y ′

x ⊗ y ′ x ⊗ y ′



The math of electrical circuits also describes many other branches
of engineering, thanks to these analogies:

displacement flow momentum effort
q q̇ p ṗ

Electronics charge current flux linkage voltage
Mechanics (translation) position velocity momentum force

Mechanics (rotation) angle angular velocity angular momentum torque
Hydraulics volume flow pressure momentum pressure

Thermodynamics entropy entropy flow temperature momentum temperature
Chemistry moles molar flow chemical momentum chemical potential

My students have also studied symmetric monoidal categories
where the morphisms are open Petri nets, reaction networks, signal
flow diagrams, etc.



Quite generally, these morphisms describe “open systems”.

An open system is a system that interacts with its environment.
Typically stuff — matter, energy, information, etc. — flows in and
out of an open system.

By treating open systems as morphisms in symmetric monoidal
categories, we formalize our ability to build bigger open systems
out of smaller parts.

Physics often focuses on “closed systems”, but in engineering
closed systems are useless: we need to interact with a system to
use it!



Example lessons from open systems theory

1. The development of life on Earth does not violate the Second
Law of Thermodynamics.

This law says the entropy of any closed system must increase over
time.

2. The so-called “collapse of the wavefunction” does not violate
the unitary time evolution of quantum mechanics.

Unitary time evolution applies to closed systems; we need its
generalization to open systems to understand measurement
processes.

3. A cell phone is not a Turing machine.

A Turing machine is a closed system that evolves deterministically
given its initial state; a cell phone is an open system.



Lastly: any sort of agent or intelligence or organism or ecosystem
or manufacturing process is an open system.

Neglecting this fact is a serious mistake. We need abstractions
that handle this adroitly.


