

"Generalised" models: why, how?

Automating extension of (moral) categories

Stuart Armstrong Future of Humanity Institute, Oxford University

Consider a Croatian, communist, Yugoslav nationalist in the 1980s...

Morality: past, present, and future

Honour is vital

Happiness is important

Women should be protected

Physical model splintering

PV = nRT

- Aristotelian: elements,
 - Ideal gas laws
- Van der Waal laws
- Bouncing atom models
- Quantum models
- Quantum: infinite dimensional Hilbert spaces, self-adjoint operators, eigenfunctions...

Moral model splintering

Honour-based morality

Many common conclusions

Incompatible/incomparable concepts and premisses

The general problem

Money The harvest Feudal duty Teaching children Spears and armour York vs Lancaster House of Warwick God

- Morality
- Feudal hierarchy

Universality

- Turing machines
- Neural nets
- Set theory
- Second-order logic
- Bayesian updating
- Category theory

"Generalised" models

Meta-model desiderata

Application to most of AI safety

Hidden complexity of wishes	
Ontological crises	
Conservative behaviour	
Goodhart problems	
Wireheading	
Out-of-distribution behaviour	
Low impact	
Underdefined preferences	
Active inverse reward design	
The whole friendly AI problem	

Application to most of AI safety

Hidden complexity of wishes	Save* my mother* [*: underdefined]
Ontological crises	When models of physics splinter
Conservative behaviour	When be conservative? When models splinter
Goodhart problems	"Measure used = desired behaviour" splinters
Wireheading	"Reward channel = desired behaviour" splinters
Out-of-distribution behaviour	The current ML version of this problem
Low impact	Low impact = features similar to before
Underdefined preferences	Example in this presentation
Active inverse reward design	Clear reward over underdefined features
The whole friendly AI problem	"Friendly" well defined in typical situations

Generalised models $\mathcal{M} = \{\mathcal{F}, \mathcal{E}, Q\}$

- \mathcal{F} a set of features $\mathcal{F} = \{(n, \overline{\mathcal{F}})\}: n$
 - $\ensuremath{\mathscr{E}}$ a set of environments

 $\mathscr{F} = \{(n, \overline{\mathscr{F}})\}: n \text{ name, } \overline{\mathscr{F}} \text{ possible values}$ $\mathscr{E} \subset \mathscr{W} = 2^{\sqcup \overline{\mathscr{F}}}$

Lake Glacier Rain and snow Q a probability distribution Rapids Waterfall Tributary (partial, un-normalised?) Flood plain Oxbow lake Salt marsh Delta Deposited sediment Ocean Source zone **Transition zone** Water Sediment $(n = \text{"temperature"}, \overline{\mathcal{F}} = \{r > 0\})$ Floodplain zone

 r^{-1} , the inverse relation, between \mathscr{C}_1 and \mathscr{C}_0

$$\begin{array}{c} \textbf{Generalised models} \\ \hline \mathbf{W}_{0} = \{\mathcal{F}_{0}, \mathcal{E}_{0}, Q_{0}\} \\ PV = nRT \end{array}$$

$$\begin{array}{c} \mathcal{M}_{0} = \{\mathcal{F}_{0}, \mathcal{E}_{0}, Q_{0}\} \\ \mathcal{M}_{1} = \{\mathcal{F}_{1}, \mathcal{E}_{1}, Q_{1}\} \end{array}$$

r, a relation between \mathscr{C}_0 and \mathscr{C}_1

Condition on the Qs: For all $E_0 \subset \mathscr{C}_0$ and all $E_1 \subset \mathscr{C}_1$:

 $Q_0(E_0) \leq Q_1(r(E_0))$ or both probabilities are undefined

 $Q_1(E_1) \leq Q_0(r^{-1}(E_1))$ or both probabilities are undefined

Simple examples

Restriction/Bayesian update: *r* bijective partial function Inclusion: *r* injective function

 $(r^{-1} \text{ injective function})$ $(r^{-1} \text{ bijective partial function})$

Simple examples

Coarse-graining:

r surjective function (many-to-one) (r^{-1} injective, left-total)

- *r* injective, left-total (one-to-many)
- $(r^{-1}$ surjective function)

Improvement

Most model changes: refinements followed by improvements

Cartesian Frames correspondence

Chu(W)

 $C = \{A, D, \star\} \text{ is a Cartesian Frame over } W:$ $\star \text{ is a map from } A \times D \text{ to } W$

 $a \star d = w$

A morphism from $C_0 = \{A_0, D_0, \star_0\}$ to $C_1 = \{A_1, D_1, \star_1\}$ is a pair of functions: $(g_0 : A_0 \to A_1, h_1 : D_1 \to D_0)$,

such that for all a_0, d_1 ,

Cartesian Frames correspondence

Define GM(W) as a subcategory of the generalised models, with:

- 1. Features: $\mathcal{F} = \{A, D, W\}$
- 2. Environment: $\mathscr{C} = A \times D \times W$ (using $S \subset 2^S$, $2^{A \sqcup D \sqcup W} = 2^A \times 2^D \times 2^W$)
- 3. For all *a* and *d*, Q(a, d, w) = 0, apart from one single *w*, specific to *a* and *d*.
- 4. Morphisms: r is a relation between $A_0 \times D_0 \times W$ and $A_1 \times D_1 \times W$, derived from the functions/relations (g_0, h_1, Id_W)

Cartesian Frames correspondence

Then define $\Phi : GM(W) \rightarrow Chu(W)$ sending:

- 1. $(\mathcal{F}, A \times D \times W, Q)$ to (A, D, \star) , with $a \star d = w$ iff $Q(a, d, w) \neq 0$
- 2. (g_0, h_1, Id_W) to (g_0, h_1)

Then Φ is a surjective functor of categories.

How good a meta-model?

- Features not well-integrated into categorytheory formalism. ≈
- 2. Improvements (to Q) **not** integrated.
- 3. Change of environment \mathscr{C} well integrated.
- 4. Universal for some definitions.
- 5. Easy universality.
- Model transitions not so easy to understand (see points 1 and 2).

 $P(f_1 = x \mid f_0 = y)$

Relevant links

- Generalised models as a category:
- <u>https://www.lesswrong.com/posts/</u> <u>nQxqSsHfexivsd6vB/generalised-models-as-a-category</u>
- Cartesian frames as generalised models:
- <u>https://www.lesswrong.com/posts/</u> wiQeYuQPwSypXXFar/cartesian-frames-asgeneralised-models
- Model splintering:
- <u>https://www.lesswrong.com/posts/</u> <u>k54rgSg7GcjtXnMHX/model-splintering-moving-from-</u> <u>one-imperfect-model-to-another-1</u>