$$\frac{Poly No MIALS (N CATEGORIES WITH POLLBACKS
1) The operational view/extensive view
Originally, a poly fracto $St \rightarrow St$ is one that in the above
 f id and $x, +;$ more gravely, and TI, Σ .
More gravely, a multivanete poly fracto $St^T \rightarrow St$ is one in
the closure f the pojetion fees $St^T \rightarrow St$ under TI, Σ .
() Even more gravelys, a poly fractor $St^T \rightarrow St$.
There are many other views on poly fractors:
(2) Functors $St/T \rightarrow St/S$ which are composites of:
 $St/T \rightarrow St/S$ is a
 J -indexed for $I_T \rightarrow St/S$ which are composites of:
 $St/T \rightarrow St/S$ which are composites of:
 $St/S \rightarrow St/S$ and $T \rightarrow St/S$ with $St/S \rightarrow St/S$ and St/S and$$

.

Now
$$2 \subseteq 4$$
 and hypically $2 \neq 4$.

$$\begin{array}{c} \begin{array}{c} \left| \right| \right| \right|}{1} \right| \right| \right| \right| \\ \hline \\ \hline \\ I \ can \ form \ pb \ to \ the \ njlit & K \rightarrow J \\ a \ d \ now \ the \ 2-all & g \\ \end{array} \right) \\ \begin{array}{c} \left| \right| \right| \right| \right| \right| \\ \left| \begin{array}{c} \left| \begin{array}{c} \left| \right| \right| \\ \left| \begin{array}{c} \left| \begin{array}{c} \left| \right| \right| \\ \left| \begin{array}{c} \left| \right| \right| \\ \left| \begin{array}{c} \left| \right| \\ \left| \begin{array}{c} \left| \right| \right| \\ \left| \begin{array}{c} \left| \right| \\ \left| \end{array}{c} \right| \\ \left| \begin{array}{c} \left| \begin{array}{c} \left| \left| \begin{array}{c} \left| \right| \right| \\ \left| \begin{array}{c} \left| \right| \\ \left| \end{array}{c} \right| \\ \left| \begin{array}{c} \left| \left| \left| \begin{array}{c} \left| \right| \\ \left| \end{array}{c} \right| \\ \left| \end{array}{c} \right| \\ \left| \begin{array}{c} \left| \left| \left| \left| \left| \right| \right| \\ \left| \right| \\ \left| \right| \\ \left| \right| \\ \left| \left| \right| \\ \left| \left| \right| \\ \left| \right| \\ \left| \right| \right| \\ \left| \left| \right| \right| \\$$

(3) If we have
$$2/T \xrightarrow{I} 2/5 \xrightarrow{T_3} 2/k$$
, can form
By meeting around with adjoints, using BC $f \xrightarrow{I} f \xrightarrow{U} f \xrightarrow{U} f$
isom, for TT's in this ple square, get $f \xrightarrow{I} f \xrightarrow{U} f \xrightarrow{U} f$
a covenical 2-cell:
 $2/T \xrightarrow{I} 2/5 \xrightarrow{Z} f \xrightarrow{Z}$

we get another equilibrit formations of
$$\mathfrak{D}=\mathfrak{D}$$
. Namely, if we have at indexed functions between indexed sine anty of Ξ , which in a subble indexed sine are local right adjoint, then we get polynomial function. (Kach and Kach 2013).
Talk 2
2) The combination of a poly functor $\mathfrak{C}_{I} \longrightarrow \mathfrak{C}_{J}$ (\longrightarrow)
gives us a more compact way of viewing them.
A from I to J
Define A polynomial in a calf w/ pullbacks Ξ is a diagram
 $F = \underbrace{F}_{I} = \underbrace{F}_{J} =$

In thus, form,
$$F_{p}: Sh^{I} \longrightarrow Sh^{3}$$

 $(Y_{i}: ieI) \longmapsto \left(\sum_{b \in B_{j}} \prod_{i \in I} X_{i} \stackrel{E_{ib}}{:} : j \in J\right)$
So now α is $\left(\sum_{b \in B_{j}} \prod_{i \in I} (-)_{i} \stackrel{E_{ib}}{\longrightarrow} \sum_{c \in C_{j}} \prod_{i \in I} (-)_{i} \stackrel{F_{ic}}{\longrightarrow} : j \in J\right)$
rep. functor
 $H^{T} \rightarrow Sh$:
 $\left(\prod_{i \in I} (-)_{i} \stackrel{E_{ib}}{\longrightarrow} \sum_{c \in C_{j}} \prod_{i \in I} (-)_{i} \stackrel{F_{ic}}{\mapsto} : j \in J, b \in B_{j}\right)$
 $(E_{ib}: ieI)$
 $\left(\alpha_{jb}(\lambda_{i}:1) := \tilde{\alpha}_{jb} \in \sum_{c \in C_{j}} \prod_{i \in I} E_{ib} \stackrel{F_{ic}}{\longrightarrow}\right)$
If we write $\tilde{\alpha}_{jb}$ as $(f(b) \in C_{j}, (g_{ib}: F_{i},g_{ib}) \rightarrow E_{i,b})_{i \in I})$
thus we get
 $I = \sum_{i \in J} \prod_{i \in I} B_{i} = \sum_{i \in J} J$.

What happens in an arbitrary cally & with pullbachs? The naive thing doesn't work: if we define a many between polys from I to J to be a nat hensformation between PF and Pq, we get nowhere. The reason is that the PF's are no longer physice since of representables, so we can't apply Joreda.

However... I said last fine we an view poly firsts
$$2/T = 2/3$$
 as
indexed functos (over 2); now as indexed functors they are pointime
copyrids of representables, and so the "same" argument applies.
So what we have is:-

$$\frac{P_{ROP}}{P_{O}} \text{ Theres an assignment} \qquad (Abbott 2003, Genbro - Koch 2013)} \\ Poly_{\mathcal{E}}(\mathbf{I}, \mathbf{J})(\mathbf{P}, \mathbf{O}) \longrightarrow [d \times \operatorname{Net}(\mathcal{E}_{\mathbf{I}}, \mathcal{E}_{\mathbf{J}})(\mathbf{F}_{\mathbf{P}}, \mathbf{F}_{\mathbf{O}}) \\ \end{array}$$

Which sends
$$\bigotimes$$
 to $\lim_{X \to Y} \lim_{X \to Y} \lim_{X$

In is is an isomorphism, and so we get a cating
$$\operatorname{Poly}_{\mathcal{L}}(1, J)$$

with a f.f. functor $\operatorname{Poly}_{\mathcal{L}}(\overline{I}, J) \longrightarrow \operatorname{Idx} \operatorname{Net}(\mathcal{Z}/_{\overline{I}}, \mathcal{U}_{J})$.
=
So finally, we have:

Defn The 2-caty of polynomial functors in E has:

b) There's a ZA-functor
$$\eta: \mathcal{E}^{op} \longrightarrow Span_{\mathcal{E}}$$

 $X \longmapsto X$
with $F_{d}(f) = f_{\mathcal{I}} \times f_{\mathcal{I}}$, $F_{\mathfrak{I}}(f) = f_{\mathcal{I}} \times f_{\mathcal{I}}$

Now let's do Polyne! As manhiored above, let's take & lccc.

Defn • A
$$\Delta TT$$
-function $f: \mathcal{E}^{op} \longrightarrow K$ is a Δ -functor st.
each Faf has a right adjoint $F_{\pi}f$ such that the
canonical BC 2-cell associated to any pb square in \mathcal{E}
is invertible.

• A $\Xi \Delta \Pi$ firstor $F: \mathcal{D} \longrightarrow K$ is a Δ -functor which in both a $\Xi \Delta$ -functor and a $\Delta \Pi$ -functor, and such that, for any distributivity pullback $\varepsilon \prod_{i=1}^{E} \prod_{i=1}^{i=1} D$ for any distributivity pullback $\varepsilon \prod_{i=1}^{E} \prod_{i=1}^{i=1} D$ $H_{i} \longrightarrow D$ $H_{i} \longrightarrow D$ $F = \prod_{i=1}^{E} \prod_{i=1}^{E} \prod_{i=1}^{i=1} F_{i} \longrightarrow D$ $F = \prod_{i=1}^{E} \prod_{i=1}^{E} F_{i} \longrightarrow D$ $F = \prod_{i=1}^{E} F_{i} \longrightarrow D$ $F = \prod_{i=1}^{E} \prod_{i=1}^{E} F_{i} \longrightarrow D$ $F = \prod_{i=1}^{E} \prod_{i=1}^{E} F_{i} \longrightarrow D$ $F = \prod_{i=1}^{E} F_{i} \longrightarrow D$ F

For example: have
$$F: \mathcal{L}^{op} \longrightarrow Caf$$

 $X \longmapsto \mathcal{L}/X$
with $F_{\Delta}f = \Delta f$, $F_{T}f = \Pi f$, $F_{\Sigma}f = \Sigma f$.

5) THE KLEISLI VIEW
(after von Glehn)
Letz define
$$Id_X Get(\mathfrak{C}) := \Delta - Funct (\mathfrak{E}^{ap}, Get)$$

 $Id_X Get_{\mathfrak{h}}(\mathfrak{C}) := \Delta \mathfrak{T} \cdots \mathfrak{I}$
 $Id_X Get_{\mathfrak{h}}(\mathfrak{C}) := \Sigma \Delta \cdots \mathfrak{I}$
We have $(d_X Get_{\mathfrak{L}}(\mathfrak{C}) \stackrel{\leftarrow}{\longrightarrow} Id_X Get(\mathfrak{C}) \stackrel{\leftarrow}{\longleftarrow} Id_X Get_{\mathfrak{h}}(\mathfrak{C})$ psinoradic.

So writing
$$T_{\Sigma}$$
, T_{T} for induced psinouado on $[dx(at(\Sigma), howe)]$
 $dx(at_{\Sigma}(\Sigma) \simeq T_{\Sigma} - alg)$ and some for T .
FACT: there's a ps.distributive law $T_{T}T_{\Sigma} \Rightarrow T_{\Sigma}T_{T}$,
and algs for composite psinonal are idx adx with
sums, products + distributivity. $T_{\Sigma}T_{T}$
Define The Orang theory T of $T_{\Sigma}T_{T}$ is the full sub-bicategory
of $Kl(T_{\Sigma}T_{T})$ on the representables $y \in Hom(\Sigma^{ep}, (at))$.
TMM $T = Poly_{\Sigma}^{ep}$.
"Pard" Fact: $T_{\Sigma}T_{T}$ is a cocontinuous pseudomonoid. So $T_{\Sigma}T_{T}$ -alg
is biequivalent to $Hom(\Sigma^{ep}, (at))$. But we know that $T_{\Sigma}T_{T}$ -alg
is the bialty $\Sigma ATT = Foly_{\Sigma}^{ep}$.