Polynomials in categories witt pullbacks

1) The operational view/ extensive view

Originally, a poly. functor Set \rightarrow Set is ore that's in the closure of id under $x,+;$ more greenly, under π, \sum.

More gerenelly, a multivanate poly functor St ${ }^{I} \rightarrow$ Set is ore in the closure of the projection fees St ${ }^{3} \rightarrow$ Set under π, \sum.
(1) Even more greatly, a paly functor Set $^{I} \rightarrow$ Set 3 is a J-indered family of poly finches Set \longrightarrow St.

There are many other views on poly funclors:
(2) Functors St/ $/ \mathrm{I} \rightarrow \mathrm{St} / \mathrm{J}$ which we composites of:

$$
\operatorname{Set} / \mathrm{I} \xrightarrow[\frac{\Delta f}{\Perp f}]{\stackrel{\perp}{\Perp}} \mathrm{St} / \mathrm{J}
$$

$$
f: J \rightarrow I
$$

$\Delta f=$ pullback along f

$$
\begin{aligned}
& \pi_{f}: \operatorname{Set}^{J} \longrightarrow \operatorname{Set}^{I} \longrightarrow \\
& \quad\left(A_{i j}: i \in I, j \notin J_{i}\right) \mapsto\left(\prod_{j \in J_{i}} A_{i j}: i \in I\right)
\end{aligned}
$$

$\sum f=$ postcoupose with f
$\pi f=$ "deperdut product"
where think of $f: J \rightarrow I$ as giving family of ats $\left(J_{i}: i \in I\right)$ wilt $J_{i}=f^{-1}(i)$
(3) Functors Set $/ I \xrightarrow{F} \operatorname{Set} / 3$ of form Set $/ I \xrightarrow{\Delta t} \mathrm{Set} / E \xrightarrow{\pi_{p}} \mathrm{Set} / B \xrightarrow{\Sigma{ }^{\Sigma} \mathrm{Set}} / 3$
(4) Funchors $\mathrm{St} /$ I $\xrightarrow{\mathrm{F}}$ Stt S_{3} which presere connecked limith and are smoll. (Girard's nomal fucchors (88))
(5) with a left multiadjoint (Diers '78)
(6) whose slies F / x are right adjoint
(local right adjout: Sheet 'oo)
What happens if I gerealice thore from set to c ?
Typically:
(4) $=$ (5) =(6) if, suy, ξ is locally pesenta ble.
(3) 5 (2): but note hore that $\pi f: \xi / I \longrightarrow \xi_{J}$ may not exist for all f : but we can restict to the class of exponentable f; by defu there are the f for which If exists.
(1) not very much to do with nost; except (1) \leq (2) of Elextersive.

Now (2) \subseteq (4) and dypically (2) \subset (4).
(4) =(5) © typically reper interesting:

- $\varepsilon=$ prestraef caty, have pru. functos that Pavid spots of
- $\xi=$ voiety, \cdots corings + plethoies + friends (Toll-Writh, Bergnan-Haushnecht, Joyal, Boyss,...)
- $\xi=\operatorname{Sh}(X), X$ Sore space $\cdots>$ topological dyranics \& non tomm. geouety.

However, (2) and (3) give a much more uniform thewy, which is the theory of polynomial functor in ε.

Magical fact: in amy catt \mathcal{E} with pbs, (2) and (3) coincide. Why? Things in (2) have nomad forms in (3).
(Gambino, Koch 2013; Weber 2015)
Idea:
(1) If we have $\varepsilon / I \xrightarrow{\sum f} \varepsilon / j \xrightarrow{\Delta g} \xi / K$,

I can form $p b$ to the right and now the 2-call

$$
\xi / \jmath \xrightarrow{\Delta g} \varepsilon / k
$$

$\Delta f \perp \cong \quad \perp \Delta u$ tringoses to ore

$$
\xi / I \overrightarrow{\Delta r} \quad \varepsilon / L
$$

$$
\varepsilon / I \xrightarrow{\Delta_{v}} \varepsilon / c
$$

$$
\varphi / J \underset{\Delta g}{\longrightarrow} \varphi / k
$$

which tuns out to be invertible (Bech-Chevalley).
So now

(2) Similarly, if we have $\varepsilon / I \xrightarrow{\pi f} \eta / 3 \xrightarrow{\Delta g}, \eta / a$ can form pullback and the consoiad 2 -all

$$
\xi / I \xrightarrow{\Delta v} \varepsilon / L
$$

$\pi f \mid \Rightarrow I_{n} \Rightarrow$ is again inverhble (Bech-Cheadly) $q / 3 \xrightarrow[\Delta g]{ } q / k \quad$ so can rewire.
(3) If we have $\varepsilon / I \xrightarrow{\Sigma f} \eta / 3 \xrightarrow{\pi / g} \varepsilon$, can form
 a canonical 2-all:

Count of $\Delta_{g}+\pi_{g}: \xi / 3 \rightarrow \xi / k$

$$
\varepsilon / I \xrightarrow{\sum f} \varepsilon / J
$$ at f.

$\Delta \varepsilon$!
$r / L \Rightarrow \pi_{g}$ which fums out to be inverbble.
$\varepsilon / M \xrightarrow[\Sigma_{V}]{ } \boldsymbol{\varepsilon} / \mathrm{K} \quad \ln \mathrm{Set}$, this invertbillty express the som.

$$
\prod_{a \in A} \sum_{b \in B_{a}} C_{a b}=\sum_{f \in \prod_{a \in 1} \beta_{a}} \prod_{a \in A} C_{a, f(a)}
$$

culled type theoretic axiom of choice, or complete distributivity. Using the inesfble (*), we can rewrite $\longrightarrow \longrightarrow$ as

Using these the rewrites, we can the any (2) into a (3).
Remark So typically, have

$$
\text { (2) }=(3) \underset{+}{c}(4)=(5)=(6)
$$

However, if we interpret (4) $=(3)$ (6) less naively in $\mathcal{1}$,
we get another equvadert formatator of (2)=(3). Namely, if we look at indexed functor between indexed slice coatis of ε, which in a suable indeed singe are local right adjoint, then we get polynomial fencers. (Koch and Koch 2013).
2) The combinatorial view (or intensive view)

The "normal form" of a poly functor $\varepsilon / I \rightarrow \varepsilon / J \quad(\rightarrow \longrightarrow)$ gives us a move compact way of viewing them.
DEEN A polynomial in a catt $w /$ pull bade e is a diagram

$$
P={ }_{I}^{t} E \xrightarrow{P} B
$$

The associated poly. functor of P is

$$
F_{p}:=\zeta / I \xrightarrow{\Delta t} \xi / E \xrightarrow{\pi_{p}} \xi / B \xrightarrow{\Sigma_{s}} \zeta / J .
$$

To compose two polys, we compose the associated poly functor and take the nomad for:

By construction, $F_{Q 0 p} \cong F_{Q} \circ F_{p}$.
3) MAPS of PoLYnomials

Wed the to see pays from I to J as t-eells in a bicategay Polys. So chat we 2 -calls?

To motivate this, bet's rectum to the Set care. If $F, G: S t t^{I} \rightarrow \delta t^{3}$ are poly functor, then a map between Them ir just a rut true. Since poly fungo in st prese conn. limits, then are poinhice copoducs of representibles, and so we can use Uredo to get a repreasitation of such nat rus in hero of the paly. nomad form.

Prop if P, Q are set-polyomials from I to J :

Then to give $\propto: F_{P} \Rightarrow F_{Q}$ is equally to give the blue maps $f_{1} g$ above.

Proof. We wite $\left(B_{j}: j \in J\right)$ for family of sines of s.

- We wite ($\left.E_{i b}: i \in I, b \in B\right)$ for fibres of $(t, p): E \rightarrow I \times B$.

In these terns, $F_{p}:$ Set $^{I} \longrightarrow$ Set 3

$$
\left(X_{i}: i \in I\right) \longmapsto\left(\sum_{b \in B_{j}} \prod_{i \in I} x_{i}^{E_{i} b}: j \in J\right)
$$

So now α is $\left(\sum_{b \in B_{j}} \prod_{i \in I}(-)_{i}^{E_{i b}} \stackrel{\alpha_{j}}{\Longrightarrow} \sum_{c \in C_{j}} \prod_{i \in I}(-)_{i} f_{i c}: j \in J\right)$

If we wite $\tilde{\alpha}_{j b}$ as $\left(f(b) \in C_{j},\left(g_{i b}: F_{i, f(b)} \rightarrow E_{i, b}\right)_{i \in I}\right)$
then we get

$=$
What happens in as arbitry call ξ with pullbacks?
The naive thing doesn't work: if we define a map between polys from I to I to be a nat rensforaction behuean P_{F} and P_{G}, we get nowhere. The reason is that the P_{F} 's are no longer plaice suns of representables, so we cart apply Vonda.

However... I said last fine we an view poly foncors $Y / I=Y / J$ as indered funcos (ouer ξ); now as indoxed fuctos they are poishine copoods of represalebles, and so the "same" aryunent applier. So what we have is:-

Defun A map of plys fon I to J in ξ is
*

Prop Theres an assigment...(Abbott 2003, Camburorkah

$$
\left.\operatorname{Poly}_{\xi}(I, J)(P, Q) \longrightarrow(d x) N a t / \xi / I, Y / J\right)\left(F_{P}, F_{Q}\right)
$$

which sents * to

This is an isomophism, and so we get a caty Polyy (I, J) with a f.f. functor Polyध $(I, J) \longrightarrow 1 d x \operatorname{Nak}\left(\zeta / I_{,}, \zeta / J\right)$.

So finally, we have:
Defn The 2-caty of polynomial functos in ε has:

- obs: Hose of ξ
- h-alls $I \rightarrow J:$ poly fuctos $\xi / I \rightarrow \xi / J$
- 2-alls: indered trusfomachar $\alpha: F \Rightarrow C: \xi / I-\xi / J$
Polgr

The bicaty of polynomials in ε has:

- obs those of ξ
-1 -alb $I \rightarrow J:$ phlys $I \rightarrow J$
- 2-alls: mapo of polyooniadr,
with remaining duta fored by the requirement that there be a locally fully fullhfut homamophism of bicategosies

$$
\begin{aligned}
& \text { Polye } \longrightarrow 1 d x \text { Cotec }_{c} \\
& I \longmapsto / I
\end{aligned}
$$

and given on hons by

$$
\operatorname{Rol}_{\varepsilon}(I J) \longrightarrow \mid d x \operatorname{cat}_{\varphi}(\varepsilon / I, \varphi / J)
$$

as in peviou proposinion.
4) UnIVERSAL PROPERTy of $\varepsilon \longmapsto$ Polyz.

We'll assume in this seectios: ε is locally cartosion closed, i.e, all maps f are exponestable (ie IIF exish).

Poly. functos incolve $\Sigma+\Delta+\pi$ sahsfying $B \cdot C$. and distrbbuhiity arious. We can make sense of these adjunctions x cohererce date in any bicaty - motivating the following univeral poretty.

Warm-up: Spane.
Defn Let E be a caty w/ pullbads, K a bicaty.

1) $A \Delta$-functor $F: \varepsilon^{o p} \longrightarrow K$ is just a psendofenclos, wilt aclion watter as:

$$
\begin{aligned}
& x \longmapsto F x \\
& f: x \rightarrow y \longmapsto F_{\Delta} f: F y \longrightarrow F X
\end{aligned}
$$

2) A $\Sigma \Delta$-fuctor $F: \sum^{o p} \rightarrow K$ is a Δ-functor st:

- each $F_{\Delta} f$ has a left adjout $F_{\Sigma f:} f(F x \rightarrow F$ in K.
- for ecach $p b$ square $D \xrightarrow{\mathrm{~V}} \mathrm{C}$ in \mathcal{E}, the cononial

$$
{ }_{B}^{L_{B}^{s}} \underset{A}{\frac{1}{A}} \quad B \cdot C \cdot 2 \text {-cell }
$$

$$
F C \xrightarrow{F_{\Delta} v} F D
$$

$F_{\Sigma} g|\mathbb{\|}| F_{\Sigma} 4$ is inverible.

$$
F A \underset{F_{\Delta f}}{ } F B
$$

Examples
a) A Δ-functor $\mathcal{C}^{o p} \longrightarrow C \operatorname{Cot}$ is an ε-indered caty $\Sigma \Delta$ with sums
In phic., there's a $\Sigma \Delta$-fuctor $\mathcal{E}^{o p} \longrightarrow$ Cat

$$
\begin{aligned}
& x \longmapsto \xi / x \\
& f \longmapsto F \Delta f=\Delta f .
\end{aligned}
$$

b) There's a $\Sigma \Delta$-functor $\eta: \varepsilon^{o p} \longrightarrow$ Span

$$
x \longmapsto x
$$

with $F_{\Delta}(f)=t_{y^{\prime}}^{x} \nu_{x}^{\prime}, \quad F_{\varepsilon}(f)=x_{x}^{x} f_{y}^{f}$

Thu (Dawson, Pore, Park 2004) $\eta: \xi^{\text {OP }} \rightarrow$ Span $_{\xi}$ is the universal $\sum \Delta$-funclo out of ξ. ie, for any bicaty K, composing with η induces a brequivalues

$$
\operatorname{Hom}\left(\operatorname{Span}_{q}, K\right) \longrightarrow \sum \Delta-\operatorname{Fuact}\left(\xi^{\infty}, K\right) .
$$

Now let's do Polyp! As mentioned above, let's tache E acc.
Defn. A $\Delta \pi$-functor f: $C^{o p} \longrightarrow K$ is a Δ-functor st. each $F_{\Delta} f$ has a right adjoint $F_{T} f$ such that the canonical $B C \cdot 2$-all assoacted bo an $p b$ square in $\}$ is invertible.

- A $\sum \Delta \Pi$-functor $f: q^{a \pi} \rightarrow K$ is a Δ-functor which io both a $\Sigma \Delta$-functor and a $\Delta \pi$-functor, and such that, for any distributivity pullback

Examples
a) A $\Delta \pi$-functor $\varepsilon^{a p} \rightarrow$ Cat is an indexed cat with products - $\Sigma \Delta \pi$ sums, products, didrisurity

For example: have $F: \xi^{o p} \longrightarrow$ Cat

$$
x \longmapsto \varepsilon / x
$$

with $F_{\Delta f}=\Delta f, \quad F_{\pi f}=\pi f, \quad F_{\Sigma f}=\sum f$.

For example: let C be any locally small catt.
Have a Δ-functor $F: S E t^{s p} \longrightarrow C A T$

$$
I \longmapsto e^{I}
$$

This is: - a $\sum \Delta$ fundar of e has small copooducts

- a $\Delta i f f u n c t r o$ if φ has small products
- a $\sum \Delta \pi$ functor y φ has small products, small copoderts and isfuiste descmberivity:

$$
\prod_{j \in J} \sum_{k \in k_{j}} X_{j k} \cong \sum_{f: \prod_{j \in J} k_{j}} \prod_{j \in J} X_{j(f g)}
$$

For example: let ξ be a topos. Have a Δ founder

$$
\begin{aligned}
\text { Fig } \varepsilon^{q p} & \longrightarrow \text { Post } \\
x & \longrightarrow \operatorname{Sub}(x)
\end{aligned}
$$

This ir always a $\Sigma \Delta$ - and a $\Delta \pi$-functor.

It's a $\sum \Delta \pi$-functor of we hav in \mathcal{E} that

$$
\forall j \in J . \exists b \in k_{j} \cdot \varphi(j, h) \Rightarrow \exists f: \prod_{j \in j} k_{j}, \forall j \in J . G(j, h) .
$$

b) There's a $\Sigma \Delta \pi$-funclor $y: \varepsilon^{\infty} \rightarrow P_{0} l_{y}$ and with

$$
\begin{aligned}
& X \longmapsto X \\
& F_{\Delta}(f)=\stackrel{f}{4}^{x=x} v_{x} \quad F_{2}(f)=/ / x_{x}^{x=x} f_{y} \quad F_{\pi}(f)=\left\|_{x}^{x \rightarrow y}\right\|_{y}
\end{aligned}
$$

THM (Walhes, 2019) $\eta: 亡^{\circ p} \rightarrow$ Polye is the univeral EAT-funder out of \mathcal{F} :

$$
\operatorname{Hom}\left(D_{\text {oly }}, k\right) \simeq \Sigma \Delta \pi-\operatorname{Fuct}\left(\xi^{\infty}, k\right) .
$$

In particular, the $\Sigma \Delta \pi$-funchor $\xi^{\infty \rho} \rightarrow$ Cat

$$
x \longmapsto \xi / x
$$

inducs the canonical bmomorphim $\begin{aligned} P_{0} l_{y \varphi} & \longrightarrow C a t . \\ x & \longmapsto \varepsilon / x .\end{aligned}$
5) THE KLEISLI VIEW
(after von Gleha)
Let's defie $\quad \mid d x \operatorname{Cat}(\varepsilon):=\Delta-\operatorname{Fuct}\left(\varepsilon^{2 n}, \operatorname{Cat}\right)$

$$
\begin{aligned}
& \mid d x \operatorname{Cat}_{\pi}(\zeta):=\Delta \pi \\
& \mid d x \operatorname{Cat}_{\Sigma}(\xi):=\Sigma \Delta
\end{aligned}
$$

So wnting T_{Σ}, T_{π} for inducal psmorads on $1 d x \operatorname{Cat}(\zeta)$, have
$\mid d x \operatorname{Cat}_{\Sigma}(\xi) \simeq T_{\Sigma}$-alg and save for π.
FACT: theres a ps.dismbutive law $T_{\pi} T_{\Sigma} \Rightarrow T_{\Sigma} T_{\pi}$, and algs for composite psmorad ave idx cuts with
sums, produder + distributiüty. $\sim T_{\Sigma} T_{\pi}$
Defn The 0 an theon T of $T_{\Sigma} T_{\pi}$ is the full sub-bicategoy of $K \ell\left(T_{\Sigma} T_{\pi}\right)$ on the represestables $y E \in H_{0 m}\left(\xi^{+0}, C a t\right)$.

ThM $\tilde{\tau} \simeq$ Polyer $^{o p}$.
"Porf" Fact: $T_{\Sigma} T_{\pi}$ is a cocontinuous pseudomonad. So $T_{\Sigma} T_{\pi}$ aly is biequivalent to $H_{o m}\left(\tau^{\infty P}, C a t\right)$. But we know that $T_{\Sigma} T_{T}$ ralg is the bicaty $\sum \Delta \pi-F \cos \left(\xi^{\circ}, C a t\right) \simeq H_{o m}\left(P_{0} l_{y}, C\right.$ Cat $)$. "So" $\tilde{c} \simeq$ Poly $_{\xi}{ }^{\text {op }}$.

