Coalgebras and their Modal Logics: Polynomial Functors and Beyond

Part 1: Coalgebraic Modelling of Systems

Helle Hvid Hansen
Workshop on Polynomial Functors, 16 March 2021
University of Groningen, NL

Introduction

Coalgebra: Background and Motivation

Origins and general references

- Non-wellfounded set theory (Aczel'88, Barwise-Moss'96). Solving systems of equations, self-referentiality.
- 1990s in Comp.Sci.: systems and data structures as coalgebras.
- J. Rutten. Universal Coalgebra, a theory of systems, 2000.
- B. Jacobs. Introduction to Coalgebra, CUP 2016.

Coalgebra: Background and Motivation

Origins and general references

- Non-wellfounded set theory (Aczel'88, Barwise-Moss'96). Solving systems of equations, self-referentiality.
- 1990s in Comp.Sci.: systems and data structures as coalgebras.
- J. Rutten. Universal Coalgebra, a theory of systems, 2000.
- B. Jacobs. Introduction to Coalgebra, CUP 2016.

Program semantics

- formal descriptions of data and program behaviours
- reasoning (what are useful principles?)

Formal verification

- does system behave as intended?
- we need: formal models of system behaviours
- we need: formal languages for specifying properties
- trade-off: expressiveness \& tractability

Overview of Today

Part 1:

1. Introduction
2. Systems as Coalgebras
3. Bisimulation, Coinduction, Behavioural Equivalence
4. Application: Language Semantics of Automata with Branching

Remarks:

- focus on applications and examples in Set.
- only basic category theory.
- polynomial functors: special case
- some pointers to further reading (necessarily incomplete)

Systems as Coalgebras

Algebra

- construction
- (necessarily) well-founded structures
- induction
- congruence
- compositionality
- universal algebra
- parametric in signature and equations

Coalgebra

- destruction/observation
- (possibly) non-well-founded structures
- coinduction
- bisimulation
- abstraction
- universal coalgebra
- parametric in transitions and observations
cf. [Jacobs \& Rutten,1997]

Category of F-Coalgebras

Def. Given $F: \mathrm{C} \rightarrow \mathrm{C}$, the category $\operatorname{Coalg}(F)$ consists of

- Objects: F-coalgebras $\gamma: X \rightarrow F(X)$.
- Arrows: F-coalgebra morphisms:

We have:

- general notions of subobject, quotient, ...
- all colimits in Coalg (F) constructed as in C
- limits in Coalg (F) are non-trivial,
- for $F:$ Set \rightarrow Set, Coalg (F) is complete and cocomplete

Example: Deterministic systems with output

- A deterministic system with output in a set B : transition map $\quad t: X \rightarrow X$ output map o: $X \rightarrow B$ combined $\quad\langle o, t\rangle: X \rightarrow B \times X, \quad\langle o, t\rangle(x)=\langle o(x), t(x)\rangle$
i.e., coalgebra for Set-functor $F(X)=B \times X$.
- Example:

where $x|a \longrightarrow y| b$ means $o(x)=a$ and $t(x)=y$.

Example: Deterministic systems with output

- A deterministic system with output in a set B :
transition map $\quad t: X \rightarrow X$
output map $\quad o: X \rightarrow B$ combined $\langle o, t\rangle: X \rightarrow B \times X, \quad\langle o, t\rangle(x)=\langle o(x), t(x)\rangle$
i.e., coalgebra for Set-functor $F(X)=B \times X$.
- Example:

where $x|a \longrightarrow y| b$ means $o(x)=a$ and $t(x)=y$.
- Observable behaviour is a stream (infinite sequence):

$$
\begin{aligned}
\llbracket x \rrbracket & =\left(o(x), o(t(x)), o\left(t^{2}(x)\right), \ldots\right) \\
\llbracket x_{0} \rrbracket & =(a, b, a, b, a, b, a, b, \ldots)=(a b)^{\omega} \\
\llbracket x_{1} \rrbracket & =(b, a, b, a, b, a, b, a, \ldots)=(b a)^{\omega} \\
\llbracket x_{2} \rrbracket & =(a, b, a, b, a, b, a, b, \ldots)=(a b)^{\omega}
\end{aligned}
$$

The Final Deterministic System of Streams

Streams over B : $B^{\omega}=\{\sigma: \mathbb{N} \rightarrow B\}$. Write: $\sigma=(\sigma(0), \sigma(1), \sigma(2), \ldots)$

- "head": $h d(\sigma)=\sigma(0), \quad$ "tail": $t l(\sigma)=(\sigma(1), \sigma(2), \ldots)$
- Deterministic system of streams: $\langle h d, t l\rangle: B^{\omega} \rightarrow B \times B^{\omega}$

The Final Deterministic System of Streams

Streams over B : $B^{\omega}=\{\sigma: \mathbb{N} \rightarrow B\}$. Write: $\sigma=(\sigma(0), \sigma(1), \sigma(2), \ldots)$

- "head": $h d(\sigma)=\sigma(0), \quad$ "tail": $t l(\sigma)=(\sigma(1), \sigma(2), \ldots)$
- Deterministic system of streams: $\langle h d, t l\rangle: B^{\omega} \rightarrow B \times B^{\omega}$

Universal property of $\left(B^{\omega},\langle h d, t l\rangle\right)$:
For all determ. systems ($X,\langle o, t\rangle$) there is a unique map
$\llbracket-\rrbracket: X \rightarrow B^{\omega}$
such that

$$
\begin{aligned}
h d(\llbracket x \rrbracket) & =o(x) \\
t l(\llbracket x \rrbracket) & =\llbracket t(x) \rrbracket
\end{aligned}
$$

i.e., the following diagram commutes

(that is, $\llbracket-\rrbracket$ is a morphism of deterministic systems)

The Final Deterministic System of Streams

Streams over B : $B^{\omega}=\{\sigma: \mathbb{N} \rightarrow B\}$. Write: $\sigma=(\sigma(0), \sigma(1), \sigma(2), \ldots)$

- "head": $h d(\sigma)=\sigma(0), \quad$ "tail": $t l(\sigma)=(\sigma(1), \sigma(2), \ldots)$
- Deterministic system of streams: $\langle h d, t l\rangle: B^{\omega} \rightarrow B \times B^{\omega}$

Universal property of $\left(B^{\omega},\langle h d, t l\rangle\right)$:
For all determ. systems ($X,\langle o, t\rangle$) there is a unique map
$\llbracket-\rrbracket: X \rightarrow B^{\omega}$
such that
i.e., the following diagram commutes

$$
\begin{aligned}
h d(\llbracket x \rrbracket) & =o(x) \\
t l(\llbracket x \rrbracket) & =\llbracket t(x) \rrbracket
\end{aligned}
$$

(that is, $\llbracket-\rrbracket$ is a morphism of deterministic systems)

- $\left(B^{\omega},\langle h d, t l\rangle\right)$ is a final deterministic system with output in B.
- the map $\llbracket-\rrbracket: X \rightarrow B^{\omega}$ is defined by coinduction.

Coinduction Proof Principle: Stream Operation Example

Want to define alt: $B^{\omega} \times B^{\omega} \rightarrow B^{\omega}$,

$$
\operatorname{alt}(\sigma, \tau)=(\sigma(0), \tau(1), \sigma(2), \tau(3), \ldots)
$$

Coinduction Proof Principle: Stream Operation Example

Want to define alt: $B^{\omega} \times B^{\omega} \rightarrow B^{\omega}$,

$$
\operatorname{alt}(\sigma, \tau)=(\sigma(0), \tau(1), \sigma(2), \tau(3), \ldots)
$$

Define deterministic system

$$
\begin{aligned}
& \langle o, t\rangle: B^{\omega} \times B^{\omega} \rightarrow B \times\left(B^{\omega} \times B^{\omega}\right) \\
& \text { by } \\
& \begin{aligned}
o(\sigma, \tau) & =h d(\sigma) \\
t(\sigma, \tau) & =(t l(\tau), t l(\sigma))
\end{aligned}
\end{aligned}
$$

Coinduction Proof Principle: Stream Operation Example

Want to define alt: $B^{\omega} \times B^{\omega} \rightarrow B^{\omega}$,

$$
\operatorname{alt}(\sigma, \tau)=(\sigma(0), \tau(1), \sigma(2), \tau(3), \ldots)
$$

Define deterministic system

$$
\begin{aligned}
& \langle o, t\rangle: B^{\omega} \times B^{\omega} \rightarrow B \times\left(B^{\omega} \times B^{\omega}\right) \\
& \text { by } \\
& \begin{aligned}
o(\sigma, \tau) & =h d(\sigma) \\
t(\sigma, \tau) & =(t l(\tau), t l(\sigma))
\end{aligned}
\end{aligned}
$$

Or equivalently, by the corecursive equations:

$$
\begin{aligned}
& h d(\operatorname{alt}(\sigma, \tau))=h d(\sigma) \\
& \operatorname{tl}(\operatorname{alt}(\sigma, \tau))=\operatorname{alt}(t l(\tau), \operatorname{tl}(\sigma))
\end{aligned}
$$

or behavioural differential equation (BDE) (derivative $\left.\sigma^{\prime}=t l(\sigma)\right)$:

$$
\begin{array}{ll}
(\operatorname{alt}(\sigma, \tau))(0) & =\sigma(0) \\
(\operatorname{alt}(\sigma, \tau))^{\prime} & =\operatorname{alt}\left(\tau^{\prime}, \sigma^{\prime}\right)
\end{array}
$$

Coinductive Stream Calculus

Let B be a ring, e.g. $B=\mathbb{Z}$ (integers).

- We can define constants, sum, convolution \& shuffle product:

$$
\begin{array}{ll}
{[r](0)=r,} & {[r]^{\prime}=[0]} \\
(\sigma+\tau)(0)=\sigma(0)+\tau(0) & (\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime} \\
(\sigma \times \tau)(0)=\sigma(0) \cdot \tau(0) & (\sigma \times \tau)^{\prime}=\left(\sigma^{\prime} \times \tau\right)+([\sigma(0)] \times \tau)
\end{array}
$$

...and many other operations on streams.

Coinductive Stream Calculus

Let B be a ring, e.g. $B=\mathbb{Z}$ (integers).

- We can define constants, sum, convolution \& shuffle product:

$$
\begin{array}{ll}
{[r](0)=r,} & {[r]^{\prime}=[0]} \\
(\sigma+\tau)(0)=\sigma(0)+\tau(0) & (\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime} \\
(\sigma \times \tau)(0)=\sigma(0) \cdot \tau(0) & (\sigma \times \tau)^{\prime}=\left(\sigma^{\prime} \times \tau\right)+([\sigma(0)] \times \tau)
\end{array}
$$

....and many other operations on streams.

- Linear BDE, example: $\sigma(0)=0, \quad \sigma^{\prime}=\tau$

$$
\tau(0)=1, \quad \tau^{\prime}=\sigma+\tau
$$

Solution $\sigma=(0,1,1,2,3,5,8,13, \ldots)$ (Fibonacci numbers)

Coinductive Stream Calculus

Let B be a ring, e.g. $B=\mathbb{Z}$ (integers).

- We can define constants, sum, convolution \& shuffle product:

$$
\begin{array}{ll}
{[r](0)=r,} & {[r]^{\prime}=[0]} \\
(\sigma+\tau)(0)=\sigma(0)+\tau(0) & (\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime} \\
(\sigma \times \tau)(0)=\sigma(0) \cdot \tau(0) & (\sigma \times \tau)^{\prime}=\left(\sigma^{\prime} \times \tau\right)+([\sigma(0)] \times \tau)
\end{array}
$$

....and many other operations on streams.

- Linear BDE, example: $\sigma(0)=0, \quad \sigma^{\prime}=\tau$

$$
\tau(0)=1, \quad \tau^{\prime}=\sigma+\tau
$$

Solution $\sigma=(0,1,1,2,3,5,8,13, \ldots)$ (Fibonacci numbers)

- A non-linear example: $\sigma(0)=1, \quad \sigma^{\prime}=\sigma \times \sigma$ Solution $\sigma=(1,1,2,5,14,42,132,429,1430, \ldots)$ (Catalan numbers)

For more, see e.g. [Rutten'03], [Winter et al.'15], [H et al.'14]

Stream Transforms

Streams form a final system in several different ways. This yields "transforms" (final systems are isomorphic).

Example: Let B be a ring. We define the difference operator:

$$
\Delta(\sigma)=\sigma^{\prime}-\sigma=(\sigma(1)-\sigma(0), \sigma(2)-\sigma(1), \ldots)
$$

Then $\langle(-)(0), \Delta\rangle: B^{\omega} \rightarrow B \times B^{\omega}$ is also final, and we get isomorphism:

$$
\begin{gathered}
B^{\omega} \xrightarrow{\stackrel{\mathcal{N}}{\cong}} B^{\omega} \\
\langle(-)(0), \Delta\rangle \mid \\
B \times B^{\omega} \xrightarrow{i d_{B} \times \mathcal{N}} \\
\downarrow^{\left\langle\left\langle(-)(0),(-)^{\prime}\right\rangle\right.} \\
\times B^{\omega}
\end{gathered}
$$

(\mathcal{N} is similar to Newton transform of differentiable functions, when viewing σ as stream of Taylor coefficients.)

For more, see [Pavlovic \& Escardo, 1998], [Basold et al.,2017]

Example: Deterministic Automata

A small example:

Alphabet $A=\{a, b\}$,
State space $X=\{x, y, z, u\}$,
Accepting states $A c c=\{y, u\}$.
$A^{*}=$ set of all finite sequences (words) over A.
A language is a set of words: $L \subseteq A^{*}$.
Language accepted at a state consists of all words that label a path to a final state.

Example: Deterministic Automata

A small example:

Alphabet $A=\{a, b\}$,
State space $X=\{x, y, z, u\}$,
Accepting states $A c c=\{y, u\}$.
$A^{*}=$ set of all finite sequences (words) over A.
A language is a set of words: $L \subseteq A^{*}$.
Language accepted at a state consists of all words that label a path to a final state.
$L(x)=\left\{w \in A^{*} \mid \#_{a}(w) \equiv 1 \bmod 3\right\}=\{a, a b, b a, a b b, b a b, \ldots\}$

Example: Deterministic Automata

A small example:

Alphabet $A=\{a, b\}$,
State space $X=\{x, y, z, u\}$,
Accepting states $A c c=\{y, u\}$.
$A^{*}=$ set of all finite sequences (words) over A.
A language is a set of words: $L \subseteq A^{*}$.
Language accepted at a state consists of all words that label a path to a final state.

$$
\begin{aligned}
& L(x)=\left\{w \in A^{*} \mid \#_{a}(w) \equiv 1 \bmod 3\right\}=\{a, a b, b a, a b b, b a b, \ldots\} \\
& L(y)=\left\{w \in A^{*} \mid \#_{a}(w) \equiv 0 \bmod 3\right\}=\{\epsilon, b, b b, \ldots, a a a, \ldots\} \\
& L(u)=\left\{w \in A^{*} \mid \#_{a}(w) \equiv 0 \bmod 3\right\}=\{\epsilon, b, b b, \ldots, a a a, \ldots\} \\
& L(z)=\left\{w \in A^{*} \mid \#_{a}(w) \equiv 2 \bmod 3\right\}=\{a a, a a b, \ldots, b b a b a b, \ldots\}
\end{aligned}
$$

Deterministic Automata as Coalgebra

- A deterministic automaton over alphabet A (omit initial state):

transition map	$t: X \rightarrow X^{A}$
output/acceptance map	$o: X \rightarrow 2 \quad(2=\{0,1\})$
combined	$\langle o, t\rangle: X \rightarrow 2 \times X^{A}$,

i.e., coalgebra for Set-functor $F(X)=2 \times X^{A}$.

- Morphisms of deterministic automata:

i.e. $\forall x \in X, \forall a \in A$:

$$
\begin{array}{ll}
p(f(x)) & =o(x) \\
s(f(x))(a) & =f(t(x)(a))
\end{array}
$$

i.e. f preserves output and transitions.

Theorem (Morphisms respect language):
If f is a morphism from $(X,\langle o, t\rangle)$ to $(Y,\langle p, s\rangle)$,
then for all $x \in X, L(f(x))=L(x)$.

The Deterministic Automaton of Languages

Let $\mathcal{L}=\mathcal{P}\left(A^{*}\right)=\left\{L \subseteq A^{*}\right\}$ be the set of all languages over A.
The automaton of languages is the deterministic automaton

$$
\langle O, T\rangle: \mathcal{L} \rightarrow 2 \times \mathcal{L}^{A}
$$

where for all $L \in \mathcal{L}$, all $a \in A$:

$$
\begin{array}{ll}
T(L)(a) & =\left\{w \in A^{*} \mid a w \in L\right\}=L_{a} \quad(a \text {-derivative of } L) . \\
O(L) & =1 \text { iff } \epsilon \in L
\end{array}
$$

The automaton of languages is a final deterministic automaton, and the unique morphism maps a state to its language:

$$
\begin{array}{cl}
X \xrightarrow[L(-)]{L} & \forall x \in X, \forall a \in A: \\
\langle o, t\rangle \\
2 \times X^{A} \xrightarrow{i d_{B} \times L(-)^{A}} 2 \times \mathcal{L}^{A} & L(x)_{a} \quad=\quad L(t(x)(a))
\end{array}
$$

(Observable) behaviour = language. Morphisms preserve behaviour.

Back to Example

where $L_{i}=\left\{w \in A^{*} \mid \#_{a}(w) \equiv i \bmod 3\right\}$.
In the image of ($X,\langle o, t\rangle$) under L in the final deterministic automaton, different states accept different languages; it is observable (or minimal, fully abstract).

Behavioural Equivalence and Bisimulation of Det. Automata

Two states in a deterministic automaton are behaviourally equivalent if they accept the same language.

- How can we (effectively) prove that two states are equivalent? (Note: Languages $L \subseteq \mathcal{P}\left(A^{*}\right)$ are generally infinite.)

Behavioural Equivalence and Bisimulation of Det. Automata

Two states in a deterministic automaton are behaviourally equivalent if they accept the same language.

- How can we (effectively) prove that two states are equivalent?
(Note: Languages $L \subseteq \mathcal{P}\left(A^{*}\right)$ are generally infinite.)
Def. Let $\langle o, t\rangle: X \rightarrow 2 \times X^{A}$ be a deterministic automaton. A relation R on X is a bisimulation if for all states x, y

$$
\begin{aligned}
\text { if }(x, y) \in R \text { then } & (i) \quad o(x)=o(y) \\
& \text { (ii) for all } a \in A:\langle t(x)(a), t(y)(a)\rangle \in R
\end{aligned}
$$

(A bisimulation respects output and is closed under transitions) Two states x and y are bisimilar if there is a bisimulation R such that $(x, y) \in R$. (Note: If X is finite, then finitely many relations R on X.)

Behavioural Equivalence and Bisimulation of Det. Automata

Two states in a deterministic automaton are behaviourally equivalent if they accept the same language.

- How can we (effectively) prove that two states are equivalent?
(Note: Languages $L \subseteq \mathcal{P}\left(A^{*}\right)$ are generally infinite.)
Def. Let $\langle o, t\rangle: X \rightarrow 2 \times X^{A}$ be a deterministic automaton. A relation R on X is a bisimulation if for all states x, y

$$
\begin{aligned}
\text { if }(x, y) \in R \text { then } & (i) \quad o(x)=o(y) \\
& \text { (ii) for all } a \in A:\langle t(x)(a), t(y)(a)\rangle \in R
\end{aligned}
$$

(A bisimulation respects output and is closed under transitions)
Two states x and y are bisimilar if there is a bisimulation R such that $(x, y) \in R$. (Note: If X is finite, then finitely many relations R on X.)

Theorem (Coinduction proof principle):

If x and y are bisimilar, then $L(x)=L(y)$. In particular, if L_{1} and L_{2} are bisimilar, then $L_{1}=L_{2}$.

Systems as Coalgebras (examples over Set)

Determ. system with output in B :
B-labelled, non-wellfounded binary trees :
B-labelled, possibly non-wellfnd binary trees :
Determ. automaton on alphabet A :
Moore machines with input in A and output in B :
Mealy machines with input in A and output in B :

$$
\begin{aligned}
& X \rightarrow B \times X \\
& X \rightarrow B \times X \times X \\
& X \rightarrow 1+B \times X \times X \\
& X \rightarrow 2 \times X^{A} \\
& X \rightarrow B \times X^{A} \\
& X \rightarrow(B \times X)^{A}
\end{aligned}
$$

Systems as Coalgebras (examples over Set)

Determ. system with output in B :
B-labelled, non-wellfounded binary trees :
B-labelled, possibly non-wellfnd binary trees:
Determ. automaton on alphabet A :
Moore machines with input in A and output in B :
Mealy machines with input in A and output in B :
Nondeterministic automaton on alphabet A :
Alternating automaton on alphabet A :
A-labelled transition system:
Markov chains (\mathcal{D} is distribution monad):
Markov decision process:
Linear weighted automata:

F-coalgebra :

$$
\begin{aligned}
& X \rightarrow B \times X \\
& X \rightarrow B \times X \times X \\
& X \rightarrow 1+B \times X \times X \\
& X \rightarrow 2 \times X^{A} \\
& X \rightarrow B \times X^{A} \\
& X \rightarrow(B \times X)^{A} \\
& X \rightarrow 2 \times \mathcal{P}(X)^{A} \\
& X \rightarrow 2 \times(\mathcal{Q} \mathcal{Q} X)^{A} \\
& X \rightarrow \mathcal{P}(X)^{A} \\
& X \rightarrow \mathcal{D}(X) \\
& X \rightarrow \mathbb{R} \times \mathcal{D}(X)^{A} \\
& X \rightarrow \mathbb{R} \times\left(\mathbb{R}^{X}\right)^{A}
\end{aligned}
$$

$$
X \rightarrow F(X)
$$

Bisimulation, Coinduction, Behavioural Equivalence

Bisimulations in Coalg (F)

Def. A relation $R \subseteq X_{1} \times X_{2}$ is an F-bisimulation if there is a $\rho: R \rightarrow F(R)$ such that projections are F-coalgebra morphisms:

Two states are F-bisimilar (notation: $x_{1} \overleftrightarrow{\leftrightarrow} x_{2}$) if $\left(x_{1}, x_{2}\right) \in Z$ for some F-bisimulation Z.

Bisimulations in Coalg (F)

Def. A relation $R \subseteq X_{1} \times X_{2}$ is an F-bisimulation if there is a $\rho: R \rightarrow F(R)$ such that projections are F-coalgebra morphisms:

Two states are F-bisimilar (notation: $x_{1} \overleftrightarrow{\leftrightarrow} x_{2}$) if $\left(x_{1}, x_{2}\right) \in Z$ for some F-bisimulation Z.

Equivalently (via relation lifting): R is an F-bisimulation if $R \subseteq\left(\gamma_{1} \times \gamma_{2}\right)^{-1}(\bar{F}(R))$ where $\bar{F}:$ Rel \rightarrow Rel is:

$$
\bar{F}(R)=\left\{\left\langle F\left(\pi_{1}\right)(u), F\left(\pi_{2}\right)(u)\right\rangle \mid u \in F(R)\right\} \subseteq F\left(X_{1}\right) \times F\left(X_{2}\right)
$$

F-bisimilarity is the greatest fixpoint of $\left(\gamma_{1} \times \gamma_{2}\right)^{-1}(\bar{F}(-))$.

Bisimulations in Coalg (F)

Def. A relation $R \subseteq X_{1} \times X_{2}$ is an F-bisimulation if there is a $\rho: R \rightarrow F(R)$ such that projections are F-coalgebra morphisms:

Two states are F-bisimilar
(notation: $x_{1} \overleftrightarrow{\leftrightarrow} x_{2}$) if $\left(x_{1}, x_{2}\right) \in Z$
for some F-bisimulation Z.

Equivalently (via relation lifting): R is an F-bisimulation if
$R \subseteq\left(\gamma_{1} \times \gamma_{2}\right)^{-1}(\bar{F}(R))$ where $\bar{F}:$ Rel \rightarrow Rel is:

$$
\bar{F}(R)=\left\{\left\langle F\left(\pi_{1}\right)(u), F\left(\pi_{2}\right)(u)\right\rangle \mid u \in F(R)\right\} \subseteq F\left(X_{1}\right) \times F\left(X_{2}\right)
$$

F-bisimilarity is the greatest fixpoint of $\left(\gamma_{1} \times \gamma_{2}\right)^{-1}(\bar{F}(-))$.
Coinduction proof principle:
Theorem: In final F-coalgebra (Z, ζ), bisimilarity implies equality.
Proof: If $(R, \rho) \xrightarrow[\pi_{2}]{\pi_{1}}(Z, \zeta)$ then $\pi_{1}=\pi_{2}$, hence $R \subseteq\{\langle z, z\rangle \mid z \in Z\}$.

Behavioural Equivalence in Coalg (F)

Basic idea: Behaviour is invariant under coalgebra morphisms.

Behavioural Equivalence in Coalg (F)

Basic idea: Behaviour is invariant under coalgebra morphisms. Let (X_{1}, γ_{1}) and (X_{2}, γ_{2}) be F-coalgebras.

Def. Two states $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ are behaviourally equivalent (notation: $x_{1} \sim x_{2}$) if there exist F-coalgebra morphisms $f_{i}:\left(X_{i}, \gamma_{i}\right) \rightarrow(Y, \delta)$ such that $f_{1}\left(x_{1}\right)=f_{2}\left(x_{2}\right)$.

(cospan/cocongruence)

Behavioural Equivalence in Coalg (F)

Basic idea: Behaviour is invariant under coalgebra morphisms.
Let (X_{1}, γ_{1}) and (X_{2}, γ_{2}) be F-coalgebras.
Def. Two states $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ are behaviourally equivalent (notation: $x_{1} \sim x_{2}$) if there exist F-coalgebra morphisms $f_{i}:\left(X_{i}, \gamma_{i}\right) \rightarrow(Y, \delta)$ such that $f_{1}\left(x_{1}\right)=f_{2}\left(x_{2}\right)$.

(cospan/cocongruence)

Some basic facts:

- If final F-coalgebra exists, then

$$
\llbracket x_{1} \rrbracket=\llbracket x_{2} \rrbracket \quad \Longleftrightarrow \quad x_{1} \sim x_{2} .
$$

- For all F-coalgebras: $x_{1} \leftrightarrow x_{2}$ implies $x_{1} \sim x_{2}$.
- If F preserves weak pullbacks, then $x_{1} \sim x_{2}$ implies $x_{1} \overleftrightarrow{\leftrightarrow} x_{2}$. (Includes all polynomial Set-functors.)

Existence of Final F-Coalgebra

Final F-coalgebra provides coinductive definition and proof principle, but they do not always exist. By Lambek's Lemma, if (Z, ζ) is final F-coalgebra, then $Z \cong F(Z)$. (So powerset functor \mathcal{P} has no final coalgebra.)

When do we have a final F-coalgebra, and how to obtain it?

Existence of Final F-Coalgebra

Final F-coalgebra provides coinductive definition and proof principle, but they do not always exist. By Lambek's Lemma, if (Z, ζ) is final F-coalgebra, then $Z \cong F(Z)$. (So powerset functor \mathcal{P} has no final coalgebra.)

When do we have a final F-coalgebra, and how to obtain it?

- If F is ω^{OP}-continuous (includes all polynomial Set-functors), as limit of final sequence:

$$
1 \stackrel{!}{\longleftarrow} F(1) \stackrel{F(!)}{\leftarrow} F^{2}(1) \stackrel{F^{2}(!)}{\leftarrow} F^{3}(1) \stackrel{F^{3}(!)}{\leftarrow} \cdots
$$

- If F is κ-accessible (κ regular cardinal), as the $(\kappa+\kappa$)'th element of the final sequence [Worrell, 2005]. (Includes e.g. finitary powerset \mathcal{P}_{ω}.)

Application: Language Semantics of Automata with Branching

Automata with Branching

Examples of branching automata (let A be alphabet):
Nondeterministic automaton: $\quad X \rightarrow 2 \times(\mathcal{P} X)^{A}$
Weighted automaton (over semiring/rig S): $\quad X \rightarrow S \times\left(\mathcal{M}_{S} X\right)^{A}$
Probabilistic automaton: $X \rightarrow[0,1] \times(\mathcal{D} X)^{A}$
(where $\mathcal{M}_{S}(X)=\{f: X \rightarrow S \mid f$ has finite support $\}$)

Automata with Branching

Examples of branching automata (let A be alphabet):
Nondeterministic automaton: $\quad X \rightarrow 2 \times(\mathcal{P} X)^{A}$
Weighted automaton (over semiring/rig S): $\quad X \rightarrow S \times\left(\mathcal{M}_{S} X\right)^{A}$
Probabilistic automaton: $\quad X \rightarrow[0,1] \times(\mathcal{D} X)^{A}$
(where $\mathcal{M}_{S}(X)=\{f: X \rightarrow S \mid f$ has finite support $\}$)
General form: $X \rightarrow B \times(T X)^{A}$, i.e., $F T$-coalgebras where

- $F(X)=B \times X^{A}$,
- T is Set-monad (T, η, μ)
- B is (carrier of) Eilenberg-Moore algebra for T.

FT-behaviours are "branching behaviours". E.g. for NDA, bisimilarity is stronger than language equivalence.

Often, we are interested in (weighted/probabilistic) language semantics: $\llbracket x \rrbracket: A^{*} \rightarrow B$.

Language Semantics for Automata with Branching

We have a distributive law $\lambda: T F \Rightarrow F T$ of monad (T, η, μ) over functor F.

$$
T\left(B \times X^{A}\right) \xrightarrow{\left\langle T \pi_{1}, T \pi_{2}\right\rangle} T B \times T\left(X^{A}\right) \xrightarrow{\beta \times s t r} B \times(T X)^{A}
$$

We obtain "determinization" functor $(-)^{\sharp}:$ Coalg $_{S e t}(F T) \rightarrow \operatorname{Coalg}_{E M(T)}\left(F_{\lambda}\right)$ where $F_{\lambda}: E M(T) \rightarrow E M(T)$ is $F_{\lambda}(Y, \alpha: T Y \rightarrow Y)=\left(F Y, F \alpha \circ \lambda_{Y}\right)$.

Language Semantics for Automata with Branching

We have a distributive law $\lambda: T F \Rightarrow F T$ of monad (T, η, μ) over functor F.

$$
T\left(B \times X^{A}\right) \xrightarrow{\left\langle T \pi_{1}, T \pi_{2}\right\rangle} T B \times T\left(X^{A}\right) \xrightarrow{\beta \times s t r} B \times(T X)^{A}
$$

We obtain "determinization" functor $(-)^{\sharp}:$ Coalg $_{S e t}(F T) \rightarrow \operatorname{Coalg}_{E M(T)}\left(F_{\lambda}\right)$ where $F_{\lambda}: E M(T) \rightarrow E M(T)$ is $F_{\lambda}(Y, \alpha: T Y \rightarrow Y)=\left(F Y, F \alpha \circ \lambda_{Y}\right)$.

The final F-coalgebra of languages lifts to final F_{λ}-coalgebra, yielding language semantics for $F T$-coalgebras:

(cf. [Bartels'03], [Jacobs'06], [silva et al.'13], [Jacobs et al.'15])

Concluding Part 1

Summary: Universal Coalgebra

- Unifying theory of state-based systems (black-box view, observable behaviour).
- Includes many familiar system types (streams, trees, automata, Markov decision processes,...)
- Developed parametric in system type $F: \mathrm{C} \rightarrow \mathrm{C}$
- A coalgebra $X \rightarrow F(X)$ specifies (local) one-step behavior
- Coinductive proof and definition principle

Current coalgebra research (cf. conferences CMCS, CALCO)

- automata and formal language theory
- concurrency
- modular verification tools
- coalgebraic logic
- algebra and coalgebra

Part 2: Modal logics for coalgebras.

