Coalgebras and their Modal Logics: Polynomial Functors and Beyond

Part 1: Coalgebraic Modelling of Systems

Helle Hvid Hansen

Workshop on Polynomial Functors, 16 March 2021

University of Groningen, NL

Introduction

Origins and general references

- Non-wellfounded set theory (Aczel'88, Barwise-Moss'96). Solving systems of equations, self-referentiality.
- 1990s in Comp.Sci.: systems and data structures as coalgebras.
- J. Rutten. Universal Coalgebra, a theory of systems, 2000.
- B. Jacobs. Introduction to Coalgebra, CUP 2016.

Origins and general references

- Non-wellfounded set theory (Aczel'88, Barwise-Moss'96). Solving systems of equations, self-referentiality.
- 1990s in Comp.Sci.: systems and data structures as coalgebras.
- J. Rutten. Universal Coalgebra, a theory of systems, 2000.
- B. Jacobs. Introduction to Coalgebra, CUP 2016.

Program semantics

- formal descriptions of data and program behaviours
- reasoning (what are useful principles?)

Formal verification

- · does system behave as intended?
- \cdot we need: formal models of system behaviours
- \cdot we need: formal languages for specifying properties
- trade-off: expressiveness & tractability

Overview of Today

Part 1:

- 1. Introduction
- 2. Systems as Coalgebras
- 3. Bisimulation, Coinduction, Behavioural Equivalence
- 4. Application: Language Semantics of Automata with Branching

Remarks:

- focus on applications and examples in Set.
- only basic category theory.
- polynomial functors: special case
- some pointers to further reading (necessarily incomplete)

Systems as Coalgebras

Big Picture: Algebra vs Coalgebra

Algebra

- construction
- (necessarily) well-founded structures
- \cdot induction
- congruence
- \cdot compositionality
- universal algebra
- parametric in signature and equations

cf. [Jacobs & Rutten,1997]

Coalgebra

- destruction/observation
- (possibly) non-well-founded structures
- coinduction
- bisimulation
- abstraction
- universal coalgebra
- parametric in transitions and observations

Def. Given $F: \mathsf{C} \to \mathsf{C}$, the category $\mathsf{Coalg}(F)$ consists of

- Objects: F-coalgebras $\gamma \colon X \to F(X)$.
- Arrows: *F*-coalgebra morphisms:

We have:

- general notions of subobject, quotient, ...
- all colimits in Coalg(F) constructed as in C
- · limits in Coalg(F) are non-trivial,
- for $F: Set \to Set$, Coalg(F) is complete and cocomplete

Example: Deterministic systems with output

- A deterministic system with output in a set *B*:
 - transition map $t: X \to X$ output map $o: X \to B$ combined $\langle o, t \rangle : X \to B \times X$, $\langle o, t \rangle (x) = \langle o(x), t(x) \rangle$ i.e., coalgebra for Set-functor $F(X) = B \times X$.
- Example:

$$x_0|a \xrightarrow{\longleftarrow} x_1|b \longrightarrow x_2|a \longrightarrow x_3|b \longleftarrow x_4|a$$

where $x|a \longrightarrow y|b$ means o(x) = a and t(x) = y.

Example: Deterministic systems with output

- A deterministic system with output in a set *B*:
 - transition map $t: X \to X$ output map $o: X \to B$ combined $\langle o, t \rangle : X \to B \times X$, $\langle o, t \rangle (x) = \langle o(x), t(x) \rangle$ i.e., coalgebra for Set-functor $F(X) = B \times X$.
- Example:

where $x|a \longrightarrow y|b$ means o(x) = a and t(x) = y.

• Observable behaviour is a stream (infinite sequence):

$$\llbracket x \rrbracket = (o(x), o(t(x)), o(t^{2}(x)), \ldots)$$
$$\llbracket x_{0} \rrbracket = (a, b, a, b, a, b, a, b, \ldots) = (ab)^{\omega}$$
$$\llbracket x_{1} \rrbracket = (b, a, b, a, b, a, b, a, \ldots) = (ba)^{\omega}$$
$$\llbracket x_{2} \rrbracket = (a, b, a, b, a, b, a, b, \ldots) = (ab)^{\omega}$$

The Final Deterministic System of Streams

Streams over $B: B^{\omega} = \{ \sigma \colon \mathbb{N} \to B \}$. Write: $\sigma = (\sigma(0), \sigma(1), \sigma(2), \ldots)$

- "head": $hd(\sigma) = \sigma(0)$, "tail": $tl(\sigma) = (\sigma(1), \sigma(2), \ldots)$
- Deterministic system of streams: $\langle hd, tl \rangle \colon B^{\omega} \to B \times B^{\omega}$

The Final Deterministic System of Streams

Streams over $B: B^{\omega} = \{ \sigma \colon \mathbb{N} \to B \}$. Write: $\sigma = (\sigma(0), \sigma(1), \sigma(2), \ldots)$

- "head": $hd(\sigma) = \sigma(0)$, "tail": $tl(\sigma) = (\sigma(1), \sigma(2), \ldots)$
- Deterministic system of streams: $\langle hd, tl \rangle \colon B^{\omega} \to B \times B^{\omega}$

Universal property of $(B^{\omega}, \langle hd, tl \rangle)$:

For all determ. systems $(X,\langle o,t\rangle)$ there is a unique map $[\![-]\!]\colon X\to B^\omega$

such that $hd(\llbracket x \rrbracket) = o(x)$ $tl(\llbracket x \rrbracket) = \llbracket t(x) \rrbracket$ $B \times X \xrightarrow{\llbracket - \rrbracket} B \times B^{\omega}$ $\downarrow^{\langle hd, tl \rangle}$

(that is, $\llbracket - \rrbracket$ is a morphism of deterministic systems)

The Final Deterministic System of Streams

Streams over $B: B^{\omega} = \{ \sigma \colon \mathbb{N} \to B \}$. Write: $\sigma = (\sigma(0), \sigma(1), \sigma(2), \ldots)$

- "head": $hd(\sigma) = \sigma(0)$, "tail": $tl(\sigma) = (\sigma(1), \sigma(2), \ldots)$
- Deterministic system of streams: $\langle hd, tl \rangle \colon B^{\omega} \to B \times B^{\omega}$

Universal property of $(B^{\omega}, \langle hd, tl \rangle)$:

For all determ. systems $(X,\langle o,t\rangle)$ there is a unique map $[\![-]\!]\colon X\to B^\omega$

such that $hd(\llbracket x \rrbracket) = o(x)$ $tl(\llbracket x \rrbracket) = \llbracket t(x) \rrbracket$ $B \times X \xrightarrow{\llbracket - \rrbracket} B \times B^{\omega}$ $\downarrow^{\langle hd, tl \rangle}$

(that is, [-] is a morphism of deterministic systems)

- $(B^{\omega}, \langle hd, tl \rangle)$ is a final deterministic system with output in B.
 - the map $\llbracket \rrbracket : X \to B^{\omega}$ is defined by coinduction.

i.e.,

Coinduction Proof Principle: Stream Operation Example

Want to define $alt: B^{\omega} \times B^{\omega} \to B^{\omega}$,

 $alt(\sigma,\tau) = (\sigma(0),\tau(1),\sigma(2),\tau(3),\ldots)$

Coinduction Proof Principle: Stream Operation Example

Want to define $alt: B^{\omega} \times B^{\omega} \to B^{\omega}$,

 $alt(\sigma,\tau) = (\sigma(0),\tau(1),\sigma(2),\tau(3),\ldots)$

Define deterministic system $\langle o, t \rangle \colon B^{\omega} \times B^{\omega} \to B \times (B^{\omega} \times B^{\omega})$ by $o(\sigma, \tau) = hd(\sigma)$ $t(\sigma, \tau) = (tl(\tau), tl(\sigma))$

Coinduction Proof Principle: Stream Operation Example

Want to define $alt: B^{\omega} \times B^{\omega} \to B^{\omega}$,

 $alt(\sigma,\tau) = (\sigma(0),\tau(1),\sigma(2),\tau(3),\ldots)$

Or equivalently, by the corecursive equations:

$$\begin{array}{lll} hd(alt(\sigma,\tau)) &=& hd(\sigma) \\ tl(alt(\sigma,\tau)) &=& alt(tl(\tau),tl(\sigma)) \end{array} \end{array}$$

or behavioural differential equation (BDE) (derivative $\sigma' = tl(\sigma)$):

$$\begin{aligned} (alt(\sigma,\tau))(0) &= \sigma(0) \\ (alt(\sigma,\tau))' &= alt(\tau',\sigma') \end{aligned}$$

Coinductive Stream Calculus

Let B be a ring, e.g. $B = \mathbb{Z}$ (integers).

• We can define constants, sum, convolution & shuffle product:

$$\begin{aligned} & [r](0) = r, & [r]' = [0] \\ & (\sigma + \tau)(0) = \sigma(0) + \tau(0) & (\sigma + \tau)' = \sigma' + \tau' \\ & (\sigma \times \tau)(0) = \sigma(0) \cdot \tau(0) & (\sigma \times \tau)' = (\sigma' \times \tau) + ([\sigma(0)] \times \tau) \end{aligned}$$

...and many other operations on streams.

Coinductive Stream Calculus

Let B be a ring, e.g. $B = \mathbb{Z}$ (integers).

• We can define constants, sum, convolution & shuffle product:

$$\begin{split} & [r](0) = r, & [r]' = [0] \\ & (\sigma + \tau)(0) = \sigma(0) + \tau(0) & (\sigma + \tau)' = \sigma' + \tau' \\ & (\sigma \times \tau)(0) = \sigma(0) \cdot \tau(0) & (\sigma \times \tau)' = (\sigma' \times \tau) + ([\sigma(0)] \times \tau) \end{split}$$

...and many other operations on streams.

• Linear BDE, example: $\sigma(0) = 0$, $\sigma' = \tau$ $\tau(0) = 1$, $\tau' = \sigma + \tau$

Solution $\sigma = (0, 1, 1, 2, 3, 5, 8, 13, ...)$ (Fibonacci numbers)

Let B be a ring, e.g. $B = \mathbb{Z}$ (integers).

 $\cdot\,$ We can define constants, sum, convolution & shuffle product:

$$\begin{split} & [r](0) = r, & [r]' = [0] \\ & (\sigma + \tau)(0) = \sigma(0) + \tau(0) & (\sigma + \tau)' = \sigma' + \tau' \\ & (\sigma \times \tau)(0) = \sigma(0) \cdot \tau(0) & (\sigma \times \tau)' = (\sigma' \times \tau) + ([\sigma(0)] \times \tau) \end{split}$$

...and many other operations on streams.

- Linear BDE, example: $\sigma(0) = 0, \quad \sigma' = \tau$ $\tau(0) = 1, \quad \tau' = \sigma + \tau$

Solution $\sigma = (0, 1, 1, 2, 3, 5, 8, 13, \ldots)$ (Fibonacci numbers)

• A non-linear example: $\sigma(0) = 1$, $\sigma' = \sigma \times \sigma$ Solution $\sigma = (1, 1, 2, 5, 14, 42, 132, 429, 1430, ...)$ (Catalan numbers)

For more, see e.g. [Rutten'03], [Winter et al.'15], [H et al.'14]

Stream Transforms

Streams form a final system in several different ways. This yields "transforms" (final systems are isomorphic).

Example: Let *B* be a ring. We define the difference operator:

$$\Delta(\sigma) = \sigma' - \sigma = (\sigma(1) - \sigma(0), \sigma(2) - \sigma(1), \ldots)$$

Then $\langle (-)(0), \Delta \rangle \colon B^{\omega} \to B \times B^{\omega}$ is also final, and we get isomorphism:

(N is similar to Newton transform of differentiable functions, when viewing σ as stream of Taylor coefficients.)

For more, see [Pavlovic & Escardo, 1998], [Basold et al.,2017]

A small example:

Alphabet $A = \{a, b\}$, State space $X = \{x, y, z, u\}$, Accepting states $Acc = \{y, u\}$. $A^* =$ set of all finite sequences (words) over A. A language is a set of words: $L \subseteq A^*$. Language accepted at a state consists of all words that label a path to a final state. A small example:

Alphabet $A = \{a, b\}$, State space $X = \{x, y, z, u\}$, Accepting states $Acc = \{y, u\}$. $A^* =$ set of all finite sequences (words) over A. A language is a set of words: $L \subseteq A^*$. Language accepted at a state consists of all words that label a path to a final state.

 $L(x) = \{ w \in A^* \mid \#_a(w) \equiv 1 \mod 3 \} = \{ a, ab, ba, abb, bab, \ldots \}$

A small example:

Alphabet $A = \{a, b\}$, State space $X = \{x, y, z, u\}$, Accepting states $Acc = \{y, u\}$. $A^* =$ set of all finite sequences (words) over A. A language is a set of words: $L \subseteq A^*$. Language accepted at a state consists of all words that label a path to a final state.

$$\begin{array}{lll} L(x) &=& \{w \in A^* \mid \#_a(w) \equiv 1 \mod 3\} = \{a, ab, ba, abb, bab, \ldots\} \\ L(y) &=& \{w \in A^* \mid \#_a(w) \equiv 0 \mod 3\} = \{\epsilon, b, bb, \ldots, aaa, \ldots\} \\ L(u) &=& \{w \in A^* \mid \#_a(w) \equiv 0 \mod 3\} = \{\epsilon, b, bb, \ldots, aaa, \ldots\} \\ L(z) &=& \{w \in A^* \mid \#_a(w) \equiv 2 \mod 3\} = \{aa, aab, \ldots, bbabab, \ldots\} \end{array}$$

Deterministic Automata as Coalgebra

• A deterministic automaton over alphabet A (omit initial state): transition map $t: X \to X^A$ output/acceptance map $o: X \to 2$ $(2 = \{0, 1\})$ combined $\langle o, t \rangle : X \to 2 \times X^A$,

i.e., coalgebra for Set-functor $F(X) = 2 \times X^A$.

Morphisms of deterministic automata:

Theorem (Morphisms respect language): If f is a morphism from $(X, \langle o, t \rangle)$ to $(Y, \langle p, s \rangle)$, then for all $x \in X$, L(f(x)) = L(x).

The Deterministic Automaton of Languages

Let $\mathcal{L} = \mathcal{P}(A^*) = \{L \subseteq A^*\}$ be the set of all languages over A. The automaton of languages is the deterministic automaton

$$\langle O, T \rangle \colon \mathcal{L} \to 2 \times \mathcal{L}^A$$

where for all $L \in \mathcal{L}$, all $a \in A$:

 $\begin{aligned} T(L)(a) &= \{ w \in A^* \mid aw \in L \} = L_a & (a\text{-derivative of } L). \\ O(L) &= 1 \text{ iff } \epsilon \in L \end{aligned}$

The automaton of languages is a final deterministic automaton, and the unique morphism maps a state to its language:

 $\begin{array}{ccc} X & \xrightarrow{L(-)} & \mathcal{L} & \forall x \in X, \forall a \in A: \\ & & \downarrow_{\langle o, t \rangle} & \downarrow_{\langle o, T \rangle} & \downarrow_{\langle O, T \rangle} & \epsilon \in L(x) & \text{iff} & o(x) = 1 \\ & & L(x)_a & = & L(t(x)(a)) \end{array}$

(Observable) behaviour = language. Morphisms preserve behaviour.

Back to Example

where $L_i = \{ w \in A^* \mid \#_a(w) \equiv i \mod 3 \}.$

In the image of $(X, \langle o, t \rangle)$ under *L* in the final deterministic automaton, different states accept different languages; it is observable (or minimal, fully abstract).

Behavioural Equivalence and Bisimulation of Det. Automata

Two states in a deterministic automaton are behaviourally equivalent if they accept the same language.

• How can we (effectively) prove that two states are equivalent?

(Note: Languages $L \subseteq \mathcal{P}(A^*)$ are generally infinite.)

Behavioural Equivalence and Bisimulation of Det. Automata

Two states in a deterministic automaton are behaviourally equivalent if they accept the same language.

• How can we (effectively) prove that two states are equivalent?

(Note: Languages $L \subseteq \mathcal{P}(A^*)$ are generally infinite.)

Def. Let $\langle o, t \rangle \colon X \to 2 \times X^A$ be a deterministic automaton. A relation R on X is a bisimulation if for all states x, y

$$\begin{array}{ll} \text{if } (x,y) \in R \text{ then } & (i) & o(x) = o(y) \\ & (ii) & \text{ for all } a \in A : \langle t(x)(a), t(y)(a) \rangle \in R \end{array}$$

(A bisimulation respects output and is closed under transitions) Two states x and y are bisimilar if there is a bisimulation R such that $(x, y) \in R$. (Note: If X is finite, then finitely many relations R on X.)

Behavioural Equivalence and Bisimulation of Det. Automata

Two states in a deterministic automaton are behaviourally equivalent if they accept the same language.

• How can we (effectively) prove that two states are equivalent?

(Note: Languages $L \subseteq \mathcal{P}(A^*)$ are generally infinite.)

Def. Let $\langle o, t \rangle \colon X \to 2 \times X^A$ be a deterministic automaton. A relation R on X is a bisimulation if for all states x, y

$$\begin{array}{ll} \text{if } (x,y) \in R \text{ then } & (i) & o(x) = o(y) \\ & (ii) & \text{ for all } a \in A : \langle t(x)(a), t(y)(a) \rangle \in R \end{array}$$

(A bisimulation respects output and is closed under transitions) Two states x and y are bisimilar if there is a bisimulation R such that $(x, y) \in R$. (Note: If X is finite, then finitely many relations R on X.)

Theorem (Coinduction proof principle):

If x and y are bisimilar, then L(x) = L(y). In particular, if L_1 and L_2 are bisimilar, then $L_1 = L_2$.

Systems as Coalgebras (examples over Set)

Determ. system with output in B: B-labelled, non-wellfounded binary trees : *B*-labelled, possibly non-wellfnd binary trees : Determ. automaton on alphabet A: Moore machines with input in A and output in B: $X \to B \times X^A$

Mealy machines with input in A and output in B:

 $X \to B \times X$ $X \to B \times X \times X$ $X \to 1 + B \times X \times X$ $X \to 2 \times X^A$ $X \to (B \times X)^A$

Systems as Coalgebras (examples over Set)

Determ. system with output in B: B-labelled, non-wellfounded binary trees : *B*-labelled, possibly non-wellfnd binary trees : Determ. automaton on alphabet A: Moore machines with input in A and output in B: $X \rightarrow B \times X^A$ Mealy machines with input in A and output in B: Nondeterministic automaton on alphabet A: Alternating automaton on alphabet A: *A*-labelled transition system: Markov chains (\mathcal{D} is distribution monad): Markov decision process: Linear weighted automata:

 $X \to B \times X$ $X \to B \times X \times X$ $X \to 1 + B \times X \times X$ $X \to 2 \times X^A$ $X \to (B \times X)^A$ $X \to 2 \times \mathcal{P}(X)^A$ $X \to 2 \times (\mathcal{Q} \mathcal{Q} X)^A$ $X \to \mathcal{P}(X)^A$ $X \to \mathcal{D}(X)$ $X \to \mathbb{R} \times \mathcal{D}(X)^A$ $X \to \mathbb{R} \times (\mathbb{R}^X)^A$

F-coalgebra :

 $X \to F(X)$

. . .

Bisimulation, Coinduction, Behavioural Equivalence

Bisimulations in Coalg(F)

Def. A relation $R \subseteq X_1 \times X_2$ is an *F*-bisimulation if there is a $\rho: R \to F(R)$ such that projections are *F*-coalgebra morphisms:

Two states are *F*-bisimilar

Bisimulations in Coalg(F)

Def. A relation $R \subseteq X_1 \times X_2$ is an *F*-bisimulation if there is a $\rho: R \to F(R)$ such that projections are *F*-coalgebra morphisms:

$$\begin{array}{c|c} X_1 & \xleftarrow{\pi_1} & R & \xrightarrow{\pi_2} & X_2 \\ \gamma_1 & \exists \rho & & & \downarrow \gamma_2 \\ F(X_1) & \xleftarrow{F(\pi_1)} & F(R) & \xrightarrow{f(\pi_2)} & F(X_2) \end{array}$$

Two states are *F*-bisimilar (notation: $x_1 \Leftrightarrow x_2$) if $(x_1, x_2) \in Z$ for some *F*-bisimulation *Z*.

Equivalently (via relation lifting): R is an F-bisimulation if $R \subseteq (\gamma_1 \times \gamma_2)^{-1}(\overline{F}(R))$ where $\overline{F} \colon \text{Rel} \to \text{Rel}$ is:

 $\overline{F}(R) = \{ \langle F(\pi_1)(u), F(\pi_2)(u) \rangle \mid u \in F(R) \} \subseteq F(X_1) \times F(X_2)$

F-bisimilarity is the greatest fixpoint of $(\gamma_1 \times \gamma_2)^{-1}(\overline{F}(-))$.

Bisimulations in Coalg(F)

Def. A relation $R \subseteq X_1 \times X_2$ is an *F*-bisimulation if there is a $\rho: R \to F(R)$ such that projections are *F*-coalgebra morphisms:

$$\begin{array}{c|c} X_1 & \xleftarrow{\pi_1} & R & \xrightarrow{\pi_2} & X_2 \\ \gamma_1 & \exists \rho & & & \downarrow \gamma_2 \\ F(X_1) & \xleftarrow{F(\pi_1)} & F(R) & \xrightarrow{f(\pi_2)} & F(X_2) \end{array}$$

Two states are *F*-bisimilar (notation: $x_1 \Leftrightarrow x_2$) if $(x_1, x_2) \in Z$ for some *F*-bisimulation *Z*.

Equivalently (via relation lifting): R is an F-bisimulation if $R \subseteq (\gamma_1 \times \gamma_2)^{-1}(\overline{F}(R))$ where $\overline{F} \colon \text{Rel} \to \text{Rel}$ is:

 $\overline{F}(R) = \{ \langle F(\pi_1)(u), F(\pi_2)(u) \rangle \mid u \in F(R) \} \subseteq F(X_1) \times F(X_2)$

F-bisimilarity is the greatest fixpoint of $(\gamma_1 \times \gamma_2)^{-1}(\overline{F}(-))$.

Coinduction proof principle:

Theorem: In final *F*-coalgebra (Z, ζ) , bisimilarity implies equality.

Proof: If $(R, \rho) \xrightarrow[\pi_2]{\pi_1} (Z, \zeta)$ then $\pi_1 = \pi_2$, hence $R \subseteq \{ \langle z, z \rangle \mid z \in Z \}$.

Behavioural Equivalence in Coalg(F)

Basic idea: Behaviour is invariant under coalgebra morphisms.

Behavioural Equivalence in Coalg(F)

Basic idea: Behaviour is invariant under coalgebra morphisms.

Let (X_1, γ_1) and (X_2, γ_2) be *F*-coalgebras.

Def. Two states $x_1 \in X_1$ and $x_2 \in X_2$ are behaviourally equivalent (notation: $x_1 \sim x_2$) if there exist *F*-coalgebra morphisms $f_i: (X_i, \gamma_i) \to (Y, \delta)$ such that $f_1(x_1) = f_2(x_2)$.

$$\begin{array}{c} X_1 \xrightarrow{f_1} Y \xleftarrow{f_2} X_2 \\ \gamma_1 \downarrow & \delta \downarrow & \downarrow \gamma_2 \\ F(X_1) \xrightarrow{F(f_1)} F(Y) \xleftarrow{F(f_2)} F(X_2) \end{array}$$

(cospan/cocongruence)

Behavioural Equivalence in Coalg(F)

Basic idea: Behaviour is invariant under coalgebra morphisms.

Let (X_1, γ_1) and (X_2, γ_2) be *F*-coalgebras.

Def. Two states $x_1 \in X_1$ and $x_2 \in X_2$ are behaviourally equivalent (notation: $x_1 \sim x_2$) if there exist *F*-coalgebra morphisms $f_i: (X_i, \gamma_i) \to (Y, \delta)$ such that $f_1(x_1) = f_2(x_2)$.

$$\begin{array}{c} X_1 \xrightarrow{f_1} Y \xleftarrow{f_2} X_2 \\ \gamma_1 \downarrow & \delta \downarrow & \downarrow \gamma_2 \\ F(X_1) \xrightarrow{F(f_1)} F(Y) \xleftarrow{F(f_2)} F(X_2) \end{array}$$

(cospan/cocongruence)

Some basic facts:

 \cdot If final F-coalgebra exists, then

 $\llbracket x_1 \rrbracket = \llbracket x_2 \rrbracket \quad \iff \quad x_1 \sim x_2.$

- For all *F*-coalgebras: $x_1 \leftrightarrow x_2$ implies $x_1 \sim x_2$.
- If F preserves weak pullbacks, then $x_1 \sim x_2$ implies $x_1 \nleftrightarrow x_2$. (Includes all polynomial Set-functors.)

Final *F*-coalgebra provides coinductive definition and proof principle, but they do not always exist. By Lambek's Lemma, if (Z, ζ) is final *F*-coalgebra, then $Z \cong F(Z)$. (So powerset functor \mathcal{P} has no final coalgebra.)

When do we have a final F-coalgebra, and how to obtain it?

Final *F*-coalgebra provides coinductive definition and proof principle, but they do not always exist. By Lambek's Lemma, if (Z, ζ) is final *F*-coalgebra, then $Z \cong F(Z)$. (So powerset functor \mathcal{P} has no final coalgebra.)

When do we have a final F-coalgebra, and how to obtain it?

• If F is ω^{op} -continuous (includes all polynomial Set-functors), as limit of final sequence:

$$1 \xleftarrow{!} F(1) \xleftarrow{F^{(1)}} F^2(1) \xleftarrow{F^2(1)} F^3(1) \xleftarrow{F^3(1)} \cdots$$

• If F is κ -accessible (κ regular cardinal), as the ($\kappa + \kappa$)'th element of the final sequence [Worrell, 2005]. (Includes e.g. finitary powerset \mathcal{P}_{ω} .)

Application: Language Semantics of Automata with Branching

Automata with Branching

Examples of branching automata (let *A* be alphabet): Nondeterministic automaton: $X \to 2 \times (\mathcal{P}X)^A$ Weighted automaton (over semiring/rig *S*): $X \to S \times (\mathcal{M}_S X)^A$ Probabilistic automaton: $X \to [0,1] \times (\mathcal{D}X)^A$

(where $\mathcal{M}_S(X) = \{f : X \to S \mid f \text{ has finite support}\}$)

Automata with Branching

Examples of branching automata (let A be alphabet): Nondeterministic automaton: Weighted automaton (over semiring/rig S): $X \to 2 \times (\mathcal{P}X)^A$ Probabilistic automaton: $X \to [0,1] \times (\mathcal{D}X)^A$ (where $\mathcal{M}_S(X) = \{f : X \to S \mid f \text{ has finite support}\}$)

General form: $X \rightarrow B \times (TX)^A$, i.e., FT-coalgebras where

- $F(X) = B \times X^A$,
- + T is Set-monad (T, η, μ)
- \cdot *B* is (carrier of) Eilenberg-Moore algebra for *T*.

FT-behaviours are "branching behaviours". E.g. for NDA, bisimilarity is stronger than language equivalence.

Often, we are interested in (weighted/probabilistic) language semantics: $[x]: A^* \to B$.

Language Semantics for Automata with Branching

We have a distributive law $\lambda: TF \Rightarrow FT$ of monad (T, η, μ) over functor F.

$$T(B \times X^A) \xrightarrow{\langle T\pi_1, T\pi_2 \rangle} TB \times T(X^A) \xrightarrow{\beta \times str} B \times (TX)^A$$

We obtain "determinization" functor $(-)^{\sharp}: \operatorname{Coalg}_{Set}(FT) \to \operatorname{Coalg}_{EM(T)}(F_{\lambda})$ where $F_{\lambda}: EM(T) \to EM(T)$ is $F_{\lambda}(Y, \alpha: TY \to Y) = (FY, F\alpha \circ \lambda_Y).$

Language Semantics for Automata with Branching

We have a distributive law $\lambda: TF \Rightarrow FT$ of monad (T, η, μ) over functor F.

$$T(B \times X^A) \xrightarrow{\langle T\pi_1, T\pi_2 \rangle} TB \times T(X^A) \xrightarrow{\beta \times str} B \times (TX)^A$$

We obtain "determinization" functor $(-)^{\sharp}: \operatorname{Coalg}_{Set}(FT) \to \operatorname{Coalg}_{EM(T)}(F_{\lambda})$ where $F_{\lambda}: EM(T) \to EM(T)$ is $F_{\lambda}(Y, \alpha: TY \to Y) = (FY, F\alpha \circ \lambda_Y).$

The final F-coalgebra of languages lifts to final F_{λ} -coalgebra, yielding language semantics for FT-coalgebras:

(cf. [Bartels'03], [Jacobs'06], [Silva et al.'13], [Jacobs et al.'15])

Concluding Part 1

Summary: Universal Coalgebra

- Unifying theory of state-based systems (black-box view, observable behaviour).
- Includes many familiar system types (streams, trees, automata, Markov decision processes,...)
- Developed parametric in system type $F\colon\mathsf{C}\to\mathsf{C}$
- A coalgebra $X \to F(X)$ specifies (local) one-step behavior
- Coinductive proof and definition principle

Current coalgebra research (cf. conferences CMCS, CALCO)

- \cdot automata and formal language theory
- concurrency
- modular verification tools
- coalgebraic logic
- algebra and coalgebra

Part 2: Modal logics for coalgebras.