
Coalgebras and their Modal Logics:
Polynomial Functors and Beyond
Part 1: Coalgebraic Modelling of Systems

Helle Hvid Hansen
Workshop on Polynomial Functors, 16 March 2021

University of Groningen, NL

Introduction

Coalgebra: Background and Motivation

Origins and general references

• Non-wellfounded set theory (Aczel’88, Barwise-Moss’96).
Solving systems of equations, self-referentiality.

• 1990s in Comp.Sci.: systems and data structures as coalgebras.
• J. Rutten. Universal Coalgebra, a theory of systems, 2000.
• B. Jacobs. Introduction to Coalgebra, CUP 2016.

Program semantics

• formal descriptions of data and program behaviours
• reasoning (what are useful principles?)

Formal veri�cation

• does system behave as intended?
• we need: formal models of system behaviours
• we need: formal languages for specifying properties
• trade-o�: expressiveness & tractability

1

Coalgebra: Background and Motivation

Origins and general references

• Non-wellfounded set theory (Aczel’88, Barwise-Moss’96).
Solving systems of equations, self-referentiality.

• 1990s in Comp.Sci.: systems and data structures as coalgebras.
• J. Rutten. Universal Coalgebra, a theory of systems, 2000.
• B. Jacobs. Introduction to Coalgebra, CUP 2016.

Program semantics

• formal descriptions of data and program behaviours
• reasoning (what are useful principles?)

Formal veri�cation

• does system behave as intended?
• we need: formal models of system behaviours
• we need: formal languages for specifying properties
• trade-o�: expressiveness & tractability

1

Overview of Today

Part 1:

1. Introduction

2. Systems as Coalgebras

3. Bisimulation, Coinduction, Behavioural Equivalence

4. Application: Language Semantics of Automata with Branching

Remarks:

• focus on applications and examples in Set.
• only basic category theory.
• polynomial functors: special case
• some pointers to further reading (necessarily incomplete)

2

Systems as Coalgebras

Big Picture: Algebra vs Coalgebra

Algebra

• construction
• (necessarily) well-founded
structures

• induction
• congruence
• compositionality
• universal algebra
• parametric in signature and
equations

Coalgebra

• destruction/observation
• (possibly) non-well-founded
structures

• coinduction
• bisimulation
• abstraction
• universal coalgebra
• parametric in transitions and
observations

cf. [Jacobs & Rutten,1997]

3

Category of F -Coalgebras

Def. Given F : C→ C, the category Coalg(F) consists of

• Objects: F -coalgebras γ : X → F (X).
• Arrows: F -coalgebra morphisms:

X

γ

��

f
// Y

δ

��

F (X)
F (f)

// F (Y)

We have:

• general notions of subobject, quotient, ...
• all colimits in Coalg(F) constructed as in C

• limits in Coalg(F) are non-trivial,
• for F : Set→ Set, Coalg(F) is complete and cocomplete

4

Example: Deterministic systems with output

• A deterministic system with output in a set B:
transition map t : X → X

output map o : X → B

combined 〈o, t〉 : X → B ×X, 〈o, t〉(x) = 〈o(x), t(x)〉
i.e., coalgebra for Set-functor F (X) = B ×X .

• Example:

x0|a // x1|b // x2|a // x3|b
vv

x4|aoo

where x|a // y|b means o(x) = a and t(x) = y.

• Observable behaviour is a stream (in�nite sequence):

[[x]] = (o(x), o(t(x)), o(t2(x)), . . .)

[[x0]] = (a, b, a, b, a, b, a, b, ...) = (ab)ω

[[x1]] = (b, a, b, a, b, a, b, a, ...) = (ba)ω

[[x2]] = (a, b, a, b, a, b, a, b, ...) = (ab)ω

5

Example: Deterministic systems with output

• A deterministic system with output in a set B:
transition map t : X → X

output map o : X → B

combined 〈o, t〉 : X → B ×X, 〈o, t〉(x) = 〈o(x), t(x)〉
i.e., coalgebra for Set-functor F (X) = B ×X .

• Example:

x0|a // x1|b // x2|a // x3|b
vv

x4|aoo

where x|a // y|b means o(x) = a and t(x) = y.
• Observable behaviour is a stream (in�nite sequence):

[[x]] = (o(x), o(t(x)), o(t2(x)), . . .)

[[x0]] = (a, b, a, b, a, b, a, b, ...) = (ab)ω

[[x1]] = (b, a, b, a, b, a, b, a, ...) = (ba)ω

[[x2]] = (a, b, a, b, a, b, a, b, ...) = (ab)ω

5

The Final Deterministic System of Streams

Streams over B: Bω = {σ : N→ B}. Write: σ = (σ(0), σ(1), σ(2), . . .)

• “head”: hd(σ) = σ(0), “tail”: tl(σ) = (σ(1), σ(2), . . .)

• Deterministic system of streams: 〈hd , tl〉 : Bω → B ×Bω

Universal property of (Bω, 〈hd , tl〉):
For all determ. systems (X, 〈o, t〉) there is a unique map
[[−]] : X → Bω

such that

hd([[x]]) = o(x)

tl([[x]]) = [[t(x)]]

i.e., the following diagram commutes

X

〈o,t〉
��

[[−]]
// Bω

〈hd,tl〉
��

B ×X
idB×[[−]]

// B ×Bω

(that is, [[−]] is a morphism of deterministic systems)

i.e., • (Bω, 〈hd , tl〉) is a �nal deterministic system with output in B.
• the map [[−]] : X → Bω is de�ned by coinduction.

6

The Final Deterministic System of Streams

Streams over B: Bω = {σ : N→ B}. Write: σ = (σ(0), σ(1), σ(2), . . .)

• “head”: hd(σ) = σ(0), “tail”: tl(σ) = (σ(1), σ(2), . . .)

• Deterministic system of streams: 〈hd , tl〉 : Bω → B ×Bω

Universal property of (Bω, 〈hd , tl〉):
For all determ. systems (X, 〈o, t〉) there is a unique map
[[−]] : X → Bω

such that

hd([[x]]) = o(x)

tl([[x]]) = [[t(x)]]

i.e., the following diagram commutes

X

〈o,t〉
��

[[−]]
// Bω

〈hd,tl〉
��

B ×X
idB×[[−]]

// B ×Bω

(that is, [[−]] is a morphism of deterministic systems)

i.e., • (Bω, 〈hd , tl〉) is a �nal deterministic system with output in B.
• the map [[−]] : X → Bω is de�ned by coinduction.

6

The Final Deterministic System of Streams

Streams over B: Bω = {σ : N→ B}. Write: σ = (σ(0), σ(1), σ(2), . . .)

• “head”: hd(σ) = σ(0), “tail”: tl(σ) = (σ(1), σ(2), . . .)

• Deterministic system of streams: 〈hd , tl〉 : Bω → B ×Bω

Universal property of (Bω, 〈hd , tl〉):
For all determ. systems (X, 〈o, t〉) there is a unique map
[[−]] : X → Bω

such that

hd([[x]]) = o(x)

tl([[x]]) = [[t(x)]]

i.e., the following diagram commutes

X

〈o,t〉
��

[[−]]
// Bω

〈hd,tl〉
��

B ×X
idB×[[−]]

// B ×Bω

(that is, [[−]] is a morphism of deterministic systems)

i.e., • (Bω, 〈hd , tl〉) is a �nal deterministic system with output in B.
• the map [[−]] : X → Bω is de�ned by coinduction. 6

Coinduction Proof Principle: Stream Operation Example

Want to de�ne alt : Bω ×Bω → Bω ,

alt(σ, τ) = (σ(0), τ(1), σ(2), τ(3), . . .)

De�ne deterministic system
〈o, t〉 : Bω ×Bω → B × (Bω ×Bω)

by
o(σ, τ) = hd(σ)

t(σ, τ) = (tl(τ), tl(σ))

Bω ×Bω

〈o,t〉
��

alt // Bω

〈hd,tl〉
��

B × (Bω ×Bω)
idB×alt// B ×Bω

Or equivalently, by the corecursive equations:

hd(alt(σ, τ)) = hd(σ)

tl(alt(σ, τ)) = alt(tl(τ), tl(σ))

or behavioural di�erential equation (BDE) (derivative σ′ = tl(σ)):

(alt(σ, τ))(0) = σ(0)

(alt(σ, τ))′ = alt(τ ′, σ′)

7

Coinduction Proof Principle: Stream Operation Example

Want to de�ne alt : Bω ×Bω → Bω ,

alt(σ, τ) = (σ(0), τ(1), σ(2), τ(3), . . .)

De�ne deterministic system
〈o, t〉 : Bω ×Bω → B × (Bω ×Bω)

by
o(σ, τ) = hd(σ)

t(σ, τ) = (tl(τ), tl(σ))

Bω ×Bω

〈o,t〉
��

alt // Bω

〈hd,tl〉
��

B × (Bω ×Bω)
idB×alt// B ×Bω

Or equivalently, by the corecursive equations:

hd(alt(σ, τ)) = hd(σ)

tl(alt(σ, τ)) = alt(tl(τ), tl(σ))

or behavioural di�erential equation (BDE) (derivative σ′ = tl(σ)):

(alt(σ, τ))(0) = σ(0)

(alt(σ, τ))′ = alt(τ ′, σ′)

7

Coinduction Proof Principle: Stream Operation Example

Want to de�ne alt : Bω ×Bω → Bω ,

alt(σ, τ) = (σ(0), τ(1), σ(2), τ(3), . . .)

De�ne deterministic system
〈o, t〉 : Bω ×Bω → B × (Bω ×Bω)

by
o(σ, τ) = hd(σ)

t(σ, τ) = (tl(τ), tl(σ))

Bω ×Bω

〈o,t〉
��

alt // Bω

〈hd,tl〉
��

B × (Bω ×Bω)
idB×alt// B ×Bω

Or equivalently, by the corecursive equations:

hd(alt(σ, τ)) = hd(σ)

tl(alt(σ, τ)) = alt(tl(τ), tl(σ))

or behavioural di�erential equation (BDE) (derivative σ′ = tl(σ)):

(alt(σ, τ))(0) = σ(0)

(alt(σ, τ))′ = alt(τ ′, σ′)

7

Coinductive Stream Calculus

Let B be a ring, e.g. B = Z (integers).

• We can de�ne constants, sum, convolution & shu�e product:

[r](0) = r, [r]′ = [0]

(σ + τ)(0) = σ(0) + τ(0) (σ + τ)′ = σ′ + τ ′

(σ × τ)(0) = σ(0) · τ(0) (σ × τ)′ = (σ′ × τ) + ([σ(0)]× τ)

...and many other operations on streams.

• Linear BDE, example: σ(0) = 0, σ′ = τ

τ(0) = 1, τ ′ = σ + τ

Solution σ = (0, 1, 1, 2, 3, 5, 8, 13, . . .) (Fibonacci numbers)
• A non-linear example: σ(0) = 1, σ′ = σ × σ
Solution σ = (1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .) (Catalan
numbers)

For more, see e.g. [Rutten’03], [Winter et al.’15], [H et al.’14]

8

Coinductive Stream Calculus

Let B be a ring, e.g. B = Z (integers).

• We can de�ne constants, sum, convolution & shu�e product:

[r](0) = r, [r]′ = [0]

(σ + τ)(0) = σ(0) + τ(0) (σ + τ)′ = σ′ + τ ′

(σ × τ)(0) = σ(0) · τ(0) (σ × τ)′ = (σ′ × τ) + ([σ(0)]× τ)

...and many other operations on streams.
• Linear BDE, example: σ(0) = 0, σ′ = τ

τ(0) = 1, τ ′ = σ + τ

Solution σ = (0, 1, 1, 2, 3, 5, 8, 13, . . .) (Fibonacci numbers)

• A non-linear example: σ(0) = 1, σ′ = σ × σ
Solution σ = (1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .) (Catalan
numbers)

For more, see e.g. [Rutten’03], [Winter et al.’15], [H et al.’14]

8

Coinductive Stream Calculus

Let B be a ring, e.g. B = Z (integers).

• We can de�ne constants, sum, convolution & shu�e product:

[r](0) = r, [r]′ = [0]

(σ + τ)(0) = σ(0) + τ(0) (σ + τ)′ = σ′ + τ ′

(σ × τ)(0) = σ(0) · τ(0) (σ × τ)′ = (σ′ × τ) + ([σ(0)]× τ)

...and many other operations on streams.
• Linear BDE, example: σ(0) = 0, σ′ = τ

τ(0) = 1, τ ′ = σ + τ

Solution σ = (0, 1, 1, 2, 3, 5, 8, 13, . . .) (Fibonacci numbers)
• A non-linear example: σ(0) = 1, σ′ = σ × σ
Solution σ = (1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .) (Catalan
numbers)

For more, see e.g. [Rutten’03], [Winter et al.’15], [H et al.’14]

8

Stream Transforms

Streams form a �nal system in several di�erent ways. This yields
“transforms” (�nal systems are isomorphic).

Example: Let B be a ring. We de�ne the di�erence operator:

∆(σ) = σ′ − σ = (σ(1)− σ(0), σ(2)− σ(1), . . .)

Then 〈(−)(0),∆〉 : Bω → B ×Bω is also �nal, and we get
isomorphism:

Bω

〈(−)(0),∆〉
��

N
∼=

// Bω

〈(−)(0),(−)′〉
��

B ×Bω idB×N// B ×Bω

(N is similar to Newton transform of di�erentiable functions, when
viewing σ as stream of Taylor coe�cients.)

For more, see [Pavlovic & Escardo, 1998], [Basold et al.,2017]
9

Example: Deterministic Automata

A small example:

x
a //

b

��

y

a

��

b

z

a

OO

b

VV
u

a
oo

b

OO

Alphabet A = {a, b},
State space X = {x, y, z, u},
Accepting states Acc = {y, u}.
A∗ = set of all �nite sequences (words) over A.
A language is a set of words: L ⊆ A∗.
Language accepted at a state consists of all
words that label a path to a �nal state.

L(x) = {w ∈ A∗ | #a(w) ≡ 1 mod 3} = {a, ab, ba, abb, bab, ...}
L(y) = {w ∈ A∗ | #a(w) ≡ 0 mod 3} = {ε, b, bb, ..., aaa, ...}
L(u) = {w ∈ A∗ | #a(w) ≡ 0 mod 3} = {ε, b, bb, ..., aaa, ...}
L(z) = {w ∈ A∗ | #a(w) ≡ 2 mod 3} = {aa, aab, ..., bbabab, ...}

10

Example: Deterministic Automata

A small example:

x
a //

b

��

y

a

��

b

z

a

OO

b

VV
u

a
oo

b

OO

Alphabet A = {a, b},
State space X = {x, y, z, u},
Accepting states Acc = {y, u}.
A∗ = set of all �nite sequences (words) over A.
A language is a set of words: L ⊆ A∗.
Language accepted at a state consists of all
words that label a path to a �nal state.

L(x) = {w ∈ A∗ | #a(w) ≡ 1 mod 3} = {a, ab, ba, abb, bab, ...}

L(y) = {w ∈ A∗ | #a(w) ≡ 0 mod 3} = {ε, b, bb, ..., aaa, ...}
L(u) = {w ∈ A∗ | #a(w) ≡ 0 mod 3} = {ε, b, bb, ..., aaa, ...}
L(z) = {w ∈ A∗ | #a(w) ≡ 2 mod 3} = {aa, aab, ..., bbabab, ...}

10

Example: Deterministic Automata

A small example:

x
a //

b

��

y

a

��

b

z

a

OO

b

VV
u

a
oo

b

OO

Alphabet A = {a, b},
State space X = {x, y, z, u},
Accepting states Acc = {y, u}.
A∗ = set of all �nite sequences (words) over A.
A language is a set of words: L ⊆ A∗.
Language accepted at a state consists of all
words that label a path to a �nal state.

L(x) = {w ∈ A∗ | #a(w) ≡ 1 mod 3} = {a, ab, ba, abb, bab, ...}
L(y) = {w ∈ A∗ | #a(w) ≡ 0 mod 3} = {ε, b, bb, ..., aaa, ...}
L(u) = {w ∈ A∗ | #a(w) ≡ 0 mod 3} = {ε, b, bb, ..., aaa, ...}
L(z) = {w ∈ A∗ | #a(w) ≡ 2 mod 3} = {aa, aab, ..., bbabab, ...}

10

Deterministic Automata as Coalgebra

• A deterministic automaton over alphabet A (omit initial state):
transition map t : X → XA

output/acceptance map o : X → 2 (2 = {0, 1})
combined 〈o, t〉 : X → 2×XA,

i.e., coalgebra for Set-functor F (X) = 2×XA.
• Morphisms of deterministic automata:

X

〈o,t〉
��

f
// Y

〈p,s〉
��

2×XA id×fA

// 2× Y A

i.e. ∀x ∈ X,∀a ∈ A :

p(f(x)) = o(x)

s(f(x))(a) = f(t(x)(a))

i.e. f preserves output and transitions.

Theorem (Morphisms respect language):
If f is a morphism from (X, 〈o, t〉) to (Y, 〈p, s〉),
then for all x ∈ X , L(f(x)) = L(x).

11

The Deterministic Automaton of Languages

Let L = P(A∗) = {L ⊆ A∗} be the set of all languages over A.
The automaton of languages is the deterministic automaton

〈O, T 〉 : L → 2× LA

where for all L ∈ L, all a ∈ A:
T (L)(a) = {w ∈ A∗ | aw ∈ L} = La (a-derivative of L).
O(L) = 1 i� ε ∈ L

The automaton of languages is a �nal deterministic automaton, and
the unique morphism maps a state to its language:

X

〈o,t〉
��

L(−)
// L
〈O,T 〉
��

2×XA
idB×L(−)A

// 2× LA

∀x ∈ X,∀a ∈ A :

ε ∈ L(x) i� o(x) = 1

L(x)a = L(t(x)(a))

(Observable) behaviour = language. Morphisms preserve behaviour.
12

Back to Example

x
a //

b

��

y

a

��

b

z

a

OO

b

VV
u

a
oo

b

OO

7→

L1
a //

b

��

L0

a

��

b

L2

a

OO

b

VV

where Li = {w ∈ A∗ | #a(w) ≡ i mod 3}.

In the image of (X, 〈o, t〉) under L in the �nal deterministic
automaton, di�erent states accept di�erent languages; it is
observable (or minimal, fully abstract).

13

Behavioural Equivalence and Bisimulation of Det. Automata

Two states in a deterministic automaton are behaviourally
equivalent if they accept the same language.

• How can we (e�ectively) prove that two states are equivalent?

(Note: Languages L ⊆ P(A∗) are generally in�nite.)

Def. Let 〈o, t〉 : X → 2×XA be a deterministic automaton.
A relation R on X is a bisimulation if for all states x, y

if (x, y) ∈ R then (i) o(x) = o(y)

(ii) for all a ∈ A : 〈t(x)(a), t(y)(a)〉 ∈ R

(A bisimulation respects output and is closed under transitions)
Two states x and y are bisimilar if there is a bisimulation R such that
(x, y) ∈ R. (Note: If X is �nite, then �nitely many relations R on X .)

Theorem (Coinduction proof principle):
If x and y are bisimilar, then L(x) = L(y). In particular, if L1 and L2

are bisimilar, then L1 = L2.

14

Behavioural Equivalence and Bisimulation of Det. Automata

Two states in a deterministic automaton are behaviourally
equivalent if they accept the same language.

• How can we (e�ectively) prove that two states are equivalent?

(Note: Languages L ⊆ P(A∗) are generally in�nite.)

Def. Let 〈o, t〉 : X → 2×XA be a deterministic automaton.
A relation R on X is a bisimulation if for all states x, y

if (x, y) ∈ R then (i) o(x) = o(y)

(ii) for all a ∈ A : 〈t(x)(a), t(y)(a)〉 ∈ R

(A bisimulation respects output and is closed under transitions)
Two states x and y are bisimilar if there is a bisimulation R such that
(x, y) ∈ R. (Note: If X is �nite, then �nitely many relations R on X .)

Theorem (Coinduction proof principle):
If x and y are bisimilar, then L(x) = L(y). In particular, if L1 and L2

are bisimilar, then L1 = L2.

14

Behavioural Equivalence and Bisimulation of Det. Automata

Two states in a deterministic automaton are behaviourally
equivalent if they accept the same language.

• How can we (e�ectively) prove that two states are equivalent?

(Note: Languages L ⊆ P(A∗) are generally in�nite.)

Def. Let 〈o, t〉 : X → 2×XA be a deterministic automaton.
A relation R on X is a bisimulation if for all states x, y

if (x, y) ∈ R then (i) o(x) = o(y)

(ii) for all a ∈ A : 〈t(x)(a), t(y)(a)〉 ∈ R

(A bisimulation respects output and is closed under transitions)
Two states x and y are bisimilar if there is a bisimulation R such that
(x, y) ∈ R. (Note: If X is �nite, then �nitely many relations R on X .)

Theorem (Coinduction proof principle):
If x and y are bisimilar, then L(x) = L(y). In particular, if L1 and L2

are bisimilar, then L1 = L2. 14

Systems as Coalgebras (examples over Set)

Determ. system with output in B: X → B ×X
B-labelled, non-wellfounded binary trees : X → B ×X ×X
B-labelled, possibly non-wellfnd binary trees : X → 1 +B ×X ×X
Determ. automaton on alphabet A: X → 2×XA

Moore machines with input in A and output in B: X → B ×XA

Mealy machines with input in A and output in B: X → (B ×X)A

Nondeterministic automaton on alphabet A: X → 2× P(X)A

Alternating automaton on alphabet A: X → 2× (QQX)A

A-labelled transition system: X → P(X)A

Markov chains (D is distribution monad): X → D(X)

Markov decision process: X → R×D(X)A

Linear weighted automata: X → R× (RX)A

.
F -coalgebra : X → F (X)

15

Systems as Coalgebras (examples over Set)

Determ. system with output in B: X → B ×X
B-labelled, non-wellfounded binary trees : X → B ×X ×X
B-labelled, possibly non-wellfnd binary trees : X → 1 +B ×X ×X
Determ. automaton on alphabet A: X → 2×XA

Moore machines with input in A and output in B: X → B ×XA

Mealy machines with input in A and output in B: X → (B ×X)A

Nondeterministic automaton on alphabet A: X → 2× P(X)A

Alternating automaton on alphabet A: X → 2× (QQX)A

A-labelled transition system: X → P(X)A

Markov chains (D is distribution monad): X → D(X)

Markov decision process: X → R×D(X)A

Linear weighted automata: X → R× (RX)A

.
F -coalgebra : X → F (X)

15

Bisimulation, Coinduction,
Behavioural Equivalence

Bisimulations in Coalg(F)

Def. A relation R ⊆ X1 ×X2 is an F -bisimulation if there is a
ρ : R→ F (R) such that projections are F -coalgebra morphisms:

X1

γ1

��

R
π1oo

∃ρ
��

π2 // X2

γ2

��

F (X1) F (R)
F (π1)
oo

f(π2)
// F (X2)

Two states are F -bisimilar
(notation: x1 ↔ x2) if (x1, x2) ∈ Z
for some F -bisimulation Z .

Equivalently (via relation lifting): R is an F -bisimulation if
R ⊆ (γ1 × γ2)−1(F (R)) where F : Rel→ Rel is:

F (R) = {〈F (π1)(u), F (π2)(u)〉 | u ∈ F (R)} ⊆ F (X1)× F (X2)

F -bisimilarity is the greatest �xpoint of (γ1 × γ2)−1(F (−)).

Coinduction proof principle:
Theorem: In �nal F -coalgebra (Z, ζ), bisimilarity implies equality.

Proof: If (R, ρ)
π1 //

π2

// (Z, ζ) then π1 = π2, hence R ⊆ {〈z, z〉 | z ∈ Z}.

16

Bisimulations in Coalg(F)

Def. A relation R ⊆ X1 ×X2 is an F -bisimulation if there is a
ρ : R→ F (R) such that projections are F -coalgebra morphisms:

X1

γ1

��

R
π1oo

∃ρ
��

π2 // X2

γ2

��

F (X1) F (R)
F (π1)
oo

f(π2)
// F (X2)

Two states are F -bisimilar
(notation: x1 ↔ x2) if (x1, x2) ∈ Z
for some F -bisimulation Z .

Equivalently (via relation lifting): R is an F -bisimulation if
R ⊆ (γ1 × γ2)−1(F (R)) where F : Rel→ Rel is:

F (R) = {〈F (π1)(u), F (π2)(u)〉 | u ∈ F (R)} ⊆ F (X1)× F (X2)

F -bisimilarity is the greatest �xpoint of (γ1 × γ2)−1(F (−)).

Coinduction proof principle:
Theorem: In �nal F -coalgebra (Z, ζ), bisimilarity implies equality.

Proof: If (R, ρ)
π1 //

π2

// (Z, ζ) then π1 = π2, hence R ⊆ {〈z, z〉 | z ∈ Z}.

16

Bisimulations in Coalg(F)

Def. A relation R ⊆ X1 ×X2 is an F -bisimulation if there is a
ρ : R→ F (R) such that projections are F -coalgebra morphisms:

X1

γ1

��

R
π1oo

∃ρ
��

π2 // X2

γ2

��

F (X1) F (R)
F (π1)
oo

f(π2)
// F (X2)

Two states are F -bisimilar
(notation: x1 ↔ x2) if (x1, x2) ∈ Z
for some F -bisimulation Z .

Equivalently (via relation lifting): R is an F -bisimulation if
R ⊆ (γ1 × γ2)−1(F (R)) where F : Rel→ Rel is:

F (R) = {〈F (π1)(u), F (π2)(u)〉 | u ∈ F (R)} ⊆ F (X1)× F (X2)

F -bisimilarity is the greatest �xpoint of (γ1 × γ2)−1(F (−)).

Coinduction proof principle:
Theorem: In �nal F -coalgebra (Z, ζ), bisimilarity implies equality.

Proof: If (R, ρ)
π1 //

π2

// (Z, ζ) then π1 = π2, hence R ⊆ {〈z, z〉 | z ∈ Z}.
16

Behavioural Equivalence in Coalg(F)

Basic idea: Behaviour is invariant under coalgebra morphisms.

Let (X1, γ1) and (X2, γ2) be F -coalgebras.

Def. Two states x1 ∈ X1 and x2 ∈ X2 are behaviourally equivalent
(notation: x1 ∼ x2) if there exist F -coalgebra morphisms
fi : (Xi, γi)→ (Y, δ) such that f1(x1) = f2(x2).

X1
f1 //

γ1

��

Y

δ

��

X2
f2oo

γ2

��

(cospan/cocongruence)

F (X1)
F (f1)

// F (Y) F (X2)
F (f2)
oo

Some basic facts:

• If �nal F -coalgebra exists, then
[[x1]] = [[x2]] ⇐⇒ x1 ∼ x2.

• For all F -coalgebras: x1 ↔ x2 implies x1 ∼ x2.
• If F preserves weak pullbacks, then x1 ∼ x2 implies x1 ↔ x2.
(Includes all polynomial Set-functors.)

17

Behavioural Equivalence in Coalg(F)

Basic idea: Behaviour is invariant under coalgebra morphisms.

Let (X1, γ1) and (X2, γ2) be F -coalgebras.

Def. Two states x1 ∈ X1 and x2 ∈ X2 are behaviourally equivalent
(notation: x1 ∼ x2) if there exist F -coalgebra morphisms
fi : (Xi, γi)→ (Y, δ) such that f1(x1) = f2(x2).

X1
f1 //

γ1

��

Y

δ

��

X2
f2oo

γ2

��

(cospan/cocongruence)

F (X1)
F (f1)

// F (Y) F (X2)
F (f2)
oo

Some basic facts:

• If �nal F -coalgebra exists, then
[[x1]] = [[x2]] ⇐⇒ x1 ∼ x2.

• For all F -coalgebras: x1 ↔ x2 implies x1 ∼ x2.
• If F preserves weak pullbacks, then x1 ∼ x2 implies x1 ↔ x2.
(Includes all polynomial Set-functors.)

17

Behavioural Equivalence in Coalg(F)

Basic idea: Behaviour is invariant under coalgebra morphisms.

Let (X1, γ1) and (X2, γ2) be F -coalgebras.

Def. Two states x1 ∈ X1 and x2 ∈ X2 are behaviourally equivalent
(notation: x1 ∼ x2) if there exist F -coalgebra morphisms
fi : (Xi, γi)→ (Y, δ) such that f1(x1) = f2(x2).

X1
f1 //

γ1

��

Y

δ

��

X2
f2oo

γ2

��

(cospan/cocongruence)

F (X1)
F (f1)

// F (Y) F (X2)
F (f2)
oo

Some basic facts:

• If �nal F -coalgebra exists, then
[[x1]] = [[x2]] ⇐⇒ x1 ∼ x2.

• For all F -coalgebras: x1 ↔ x2 implies x1 ∼ x2.
• If F preserves weak pullbacks, then x1 ∼ x2 implies x1 ↔ x2.
(Includes all polynomial Set-functors.)

17

Existence of Final F -Coalgebra

Final F -coalgebra provides coinductive de�nition and proof
principle, but they do not always exist.
By Lambek’s Lemma, if (Z, ζ) is �nal F -coalgebra, then Z ∼= F (Z).
(So powerset functor P has no �nal coalgebra.)

When do we have a �nal F -coalgebra, and how to obtain it?

• If F is ωop-continuous (includes all polynomial Set-functors), as
limit of �nal sequence:

1 F (1)
!oo F 2(1)

F (!)
oo F 3(1)

F 2(!)
oo · · ·

F 3(!)
oo

• If F is κ-accessible (κ regular cardinal), as the (κ+ κ)’th
element of the �nal sequence [Worrell, 2005].
(Includes e.g. �nitary powerset Pω .)

18

Existence of Final F -Coalgebra

Final F -coalgebra provides coinductive de�nition and proof
principle, but they do not always exist.
By Lambek’s Lemma, if (Z, ζ) is �nal F -coalgebra, then Z ∼= F (Z).
(So powerset functor P has no �nal coalgebra.)

When do we have a �nal F -coalgebra, and how to obtain it?

• If F is ωop-continuous (includes all polynomial Set-functors), as
limit of �nal sequence:

1 F (1)
!oo F 2(1)

F (!)
oo F 3(1)

F 2(!)
oo · · ·

F 3(!)
oo

• If F is κ-accessible (κ regular cardinal), as the (κ+ κ)’th
element of the �nal sequence [Worrell, 2005].
(Includes e.g. �nitary powerset Pω .)

18

Application: Language Semantics
of Automata with Branching

Automata with Branching

Examples of branching automata (let A be alphabet):
Nondeterministic automaton: X → 2× (PX)A

Weighted automaton (over semiring/rig S): X → S × (MSX)A

Probabilistic automaton: X → [0, 1]× (DX)A

(whereMS(X) = {f : X → S | f has �nite support})

General form: X → B × (TX)A, i.e., FT -coalgebras where

• F (X) = B ×XA,
• T is Set-monad (T, η, µ)

• B is (carrier of) Eilenberg-Moore algebra for T .

FT -behaviours are “branching behaviours”. E.g. for NDA, bisimilarity
is stronger than language equivalence.

Often, we are interested in (weighted/probabilistic) language
semantics: [[x]] : A∗ → B.

19

Automata with Branching

Examples of branching automata (let A be alphabet):
Nondeterministic automaton: X → 2× (PX)A

Weighted automaton (over semiring/rig S): X → S × (MSX)A

Probabilistic automaton: X → [0, 1]× (DX)A

(whereMS(X) = {f : X → S | f has �nite support})

General form: X → B × (TX)A, i.e., FT -coalgebras where

• F (X) = B ×XA,
• T is Set-monad (T, η, µ)

• B is (carrier of) Eilenberg-Moore algebra for T .

FT -behaviours are “branching behaviours”. E.g. for NDA, bisimilarity
is stronger than language equivalence.

Often, we are interested in (weighted/probabilistic) language
semantics: [[x]] : A∗ → B.

19

Language Semantics for Automata with Branching

We have a distributive law λ : TF ⇒ FT of monad (T, η, µ) over
functor F .

T (B ×XA)
〈Tπ1,Tπ2〉

// TB × T (XA)
β×str

// B × (TX)A

We obtain “determinization” functor
(−)] : CoalgSet(FT)→ CoalgEM(T)(Fλ) where Fλ : EM(T)→ EM(T)

is Fλ(Y, α : TY → Y) = (FY, Fα ◦ λY).

The �nal F -coalgebra of languages lifts to �nal Fλ-coalgebra,
yielding language semantics for FT -coalgebras:

X

γ

��

η
// TX

γ]

||

[[−]]
// BA

∗

∼=
��

FTX
idB×[[−]]A

// B × (BA
∗
)A

(cf. [Bartels’03], [Jacobs’06], [Silva et al.’13], [Jacobs et al.’15])

20

Language Semantics for Automata with Branching

We have a distributive law λ : TF ⇒ FT of monad (T, η, µ) over
functor F .

T (B ×XA)
〈Tπ1,Tπ2〉

// TB × T (XA)
β×str

// B × (TX)A

We obtain “determinization” functor
(−)] : CoalgSet(FT)→ CoalgEM(T)(Fλ) where Fλ : EM(T)→ EM(T)

is Fλ(Y, α : TY → Y) = (FY, Fα ◦ λY).

The �nal F -coalgebra of languages lifts to �nal Fλ-coalgebra,
yielding language semantics for FT -coalgebras:

X

γ

��

η
// TX

γ]

||

[[−]]
// BA

∗

∼=
��

FTX
idB×[[−]]A

// B × (BA
∗
)A

(cf. [Bartels’03], [Jacobs’06], [Silva et al.’13], [Jacobs et al.’15])
20

Concluding Part 1

Summary: Universal Coalgebra

• Unifying theory of state-based systems (black-box view,
observable behaviour).

• Includes many familiar system types (streams, trees, automata,
Markov decision processes,...)

• Developed parametric in system type F : C→ C

• A coalgebra X → F (X) speci�es (local) one-step behavior
• Coinductive proof and de�nition principle

Current coalgebra research (cf. conferences CMCS, CALCO)

• automata and formal language theory
• concurrency
• modular veri�cation tools
• coalgebraic logic
• algebra and coalgebra

Part 2: Modal logics for coalgebras. 21

	Introduction
	Systems as Coalgebras
	Bisimulation, Coinduction, Behavioural Equivalence
	Application: Language Semantics of Automata with Branching

