Lifting of polynomial functors for logical reasoning

Radboud University Nijmegen
17 March 2021
Bart Jacobs
bart@cs.ru.nl

```
Page 1 of 27 Jacobs 17 March 2021 Lifting polynomial functors
```


Outline

Introduction

Fibrations
(Co)product in categories and fibrations
(Co)algebras of lifted functors
Induction \& coinduction

Conclusions

Topic

- This talk is on polynomial functors, as specific interpretations of polynomial expressions
- This talk is a tutorial on "classic" work, from the late nineties, on the associated logic
- so new research - actually very old work!
- It combines my own favourite work from two of my books:
- Categorical Logic and Type Theory (North Holland, 1999)
- Introduction to Coalgebra (CUP, 2016)

My own involvement with polynomial functors
（1）In coalgebra
－E．g．deterministic and non－deterministic automata are coalgebras of polynomial functors，in：

$$
X \longrightarrow X^{A} \times 2 \quad X \longrightarrow \mathcal{P}(X)^{A} \times 2
$$

－The Introduction to Coalgebra book concentrates on polynomial functors－since they are most relevant in examples－not on functors in general．
（2）In a principled approach to logic for algebras／coalgebras，as datatypes
－Topic for today．
－＂Classic stuff＂，from：Hermida \＆Jacobs，Structural induction and coinduction in a fibrational setting，Inform．\＆Computation 1998

Main points

（1）Many（co）datatypes are initial／final coalgebras of a polynomial functor，defined on a category of types
（2）Logical principles for these（co）datatypes are obtained by initiality／finality，but for a lifting of the polynomial functor
－These principles are induction and coinduction
－This lifting happens from a category of types to a category of predicates or a category of relations
－Technically，this involves a fibration，of predicates over types
（3）Existence of initial／final objects for the lifted functor may result from comprehension or quotients in the logic

What are polynomial functors？

Informally：（endo）functors built－up inductively from primitives，via products \＆coproducts．

Definition may include：

－identity functor，and constant functors $X \mapsto C$ ；
－Powerset，list，distribution ．．．（on Sets）；
－Closure under products $X \mapsto F_{1}(X) \times F_{2}(X)$ ；
－Closure under coproducts $X \mapsto F_{1}(X)+F_{2}(X)$ ，possibly infinite；
－Possibly closure under＂constant exponent＂$X \mapsto F(X)^{A}$ ；
－Possibly closure under initial（or final）fixed point $X \mapsto \mu Y . F(X, Y)$
We concentrate on：
－inductive build－up，not on preservation of structure；
－on finite products \＆coproducts－yielding＂simple＂poynomial functors

Running example

Fix a set of labels L and define a polynomial functor T ：Sets \rightarrow Sets as：

$$
T(X)=L+(X \times X)
$$

（1）Initial T－algebra $T(A) \cong A$ Finite binary L－labeled trees，such as：

（2）Final T－coalgebra $Z \xlongequal[\leftrightharpoons]{\cong} T(Z)$ Finite \＆infinite binary L－labeled trees，like：

Explicit constructions

－If $\alpha=\left[\alpha_{1}, \alpha_{2}\right]: L+(A \times A) \xlongequal{\cong} A$ is the initial algebra，then：

$=\alpha_{2}\left(\alpha_{1}(a), \alpha_{1}(b)\right) \in A$.
－If $\zeta: Z \cong \xlongequal[\Rightarrow]{\cong}+(Z \times Z)$ is the final coalgebra，then：

$$
\underbrace{}_{a}=\bar{f}(0)
$$

where $\bar{f}:\{0,1,2\} \rightarrow Z$ is defined by finality in：
with：$\quad L+(\{0,1,2\} \times\{0,1,2\}) \stackrel{\text { id }+(\bar{f} \times \bar{f})}{-} L+(Z \times Z)$
$f(0)=(1,2)$
$f(1)=a$
$f(2)=b$
$\{0,1,2\}---\bar{f}--->Z$

Where we are，so far

Introduction

Fibrations
（Co）product in categories and fibrations
（Co）algebras of lifted functors
Induction \＆coinduction

Conclusions

The logical view on fibrations

We will skip the formal definition，but only give the main idea，namely substitution
For each map $f: X \rightarrow Y$ in \mathbb{B} and $Q \in \mathbb{E}$＂above＂Y ，that is，with $p(Q)=Y$ ，there is a suitably universal map $f^{*}(Q) \rightarrow Q$ above f ．

In logical examples each fibre subcategory $\mathbb{E}_{X} \hookrightarrow \mathbb{E}$ of objects \＆maps above $X \in \mathbb{B}$ is a preorder．

A syntactic example（term／classifying model）

Definition

Let \mathbb{T} have types σ as objects，in some type theory．A morphism $\sigma \rightarrow \tau$ is（an equivalence class of）a term $x: \sigma \vdash M(x): \tau$ ．

Definition

Let \mathbb{P} have type－proposition pairs (σ, φ) as objects，where

$$
\begin{aligned}
& x: \sigma \vdash \varphi(x): \text { Prop. A map: } \\
& \quad(x: \sigma \vdash \varphi: \text { Prop }) \xrightarrow{M}(y: \tau \vdash \psi: \text { Prop }) \quad \text { is } \quad\left\{\begin{array}{c}
M: \sigma \rightarrow \tau \text { with: } \\
x: \sigma \mid \varphi \vdash \psi[M / y]
\end{array}\right.
\end{aligned}
$$

Substitution is then substitution：for a term $M: \sigma \rightarrow \tau$ and a predicate $y: \tau \vdash \psi$ ：Prop on τ we get as predicate on σ ，

$$
(x: \sigma \vdash \psi[M(x) / y]: \text { Prop }) \xrightarrow{M}(y: \tau \vdash \psi: \text { Prop })
$$

Definition

Let category Pred have pairs (X, P) as objects，where $P \subseteq X$ ．A map $(X, P) \rightarrow(Y, Q)$ is a function $f: X \rightarrow Y$ with $x \in P \Rightarrow f(x) \in Q$ ，that is，if $P \subseteq f^{-1}(Q)$ ．It comes with Pred \rightarrow Sets，given by $(X, P) \mapsto P$ ．

Substitution via inverse image：

Pred	$\left(X, f^{-1}(Q)\right)-->(Y, Q)$
$p_{\downarrow} \downarrow$	
Sets	$X \xrightarrow{f} Y$

There are many variations，like open／closed subsets of topological／metric／ordered spaces．

If the base category \mathbb{B} has products，we can form the fibration of relations via pullback：
> logic of predicates

logic of predicates

The logic of relations

A set－theoretic example

Where we are，so far

Introduction

Fibrations
（Co）product in categories and fibrations
（Co）algebras of lifted functors

Induction \＆coinduction

Conclusions
（Co）products for types
We fix a fibration $\begin{gathered}\underset{\mathbb{E}}{\downarrow} \\ \underset{\mathbb{B}}{ }\end{gathered}$ where the base category of types \mathbb{B} has：
－finite products $(1, \times)$
－finite coproduct $(0,+)$
－distributivity of \times over + ．
Simple polynomial functors can then be interpreted as functors
$F: \mathbb{B} \rightarrow \mathbb{B}$ ，once interpretations of constants are chosen．
For a set of labels L we thus have $T: \underline{\text { Sets }} \rightarrow \underline{\text { Sets，via }}$ $T(X)=L+(X \times X)$ ．

Additional bifibration assumption

We also assume that our fibration is a bifibration．The easiest way formulation is：substitution functors f^{*} have left adjoints $\sum_{f} \dashv f^{*}$ ，as in：

In presence of such sums，for $X \in \mathbb{B}$ ，consider the diagonal $\Delta=\langle\mathrm{id}, \mathrm{id}\rangle: X \rightarrow X \times X$ and define the equality relation as：

Remark Basically the same constructions of products and coproducts work for relations－i．e．in $\operatorname{Rel}(\mathbb{E})$

Lemma

In presence of sums \sum ，the total category \mathbb{E} has finite coproducts： $\perp \in \mathbb{E}_{0}$ is initial，and the coproduct of P, Q in \mathbb{E} is given by：

$$
\begin{aligned}
& P-->\sum_{\kappa_{1}}(P) \vee \sum_{\kappa_{2}}(Q)<--Q \\
& X \xrightarrow[\kappa_{1}]{ } X+Y \longleftarrow \kappa_{2}
\end{aligned}
$$

Coproduct in the global category

Predicate \& relation lifting

- Under the previous assumptions, the total categories \mathbb{E} and $\operatorname{Rel}(\mathbb{E})$
have finite products \& coproducts
- Hence, a polynomial functor F can not only be interpreted on the base category \mathbb{B}, but also on \mathbb{E} and on $\operatorname{Rel}(\mathbb{E})$
- the only thing to decide is: what to do with constants?
- an interpretation $C \in \mathbb{B}$ is changed to:
- truth $T \in \mathbb{E}_{C}$
- equality $E q(X) \in \operatorname{Re}(\mathbb{E})$
- This gives predicate lifting and relation lifting of F, by induction on the structure of F, in commuting rectangles:

These lifted functors commute with truth T and equality $E q$.
(Co)algebras of lifted functors
Induction \& coinduction

Conclusions

Example: inductive predicate

Consider the set-theoretic fibration with a predicate $P \subseteq X$ carrying a $\operatorname{Pred}(T)$-algebra, for $T(X)=L+(X \times X)$.

- where for $z \in T(X)=L+(X \times X)$,

$$
\operatorname{Pred}(T)(P \subseteq X)(a) \quad \text { always holds, for } z=a \in L
$$

$$
\operatorname{Pred}(T)(P \subseteq X)\left(x_{1}, x_{2}\right) \Longleftrightarrow P\left(x_{1}\right) \wedge P\left(x_{2}\right), \quad \text { when } z=\left(x_{1}, x_{2}\right)
$$

- The fact that $(P \subseteq X)$ carries an algebra thus means that it is closed under the algebra operations $h=\left[h_{1}, h_{2}\right]: L+(X \times X) \rightarrow X$, as in:

$$
P\left(h_{1}(a)\right) \quad \text { and } \quad P\left(x_{1}\right) \wedge P\left(x_{2}\right) \Longrightarrow P\left(h_{2}\left(x_{1}, x_{2}\right)\right)
$$

This is what we called an inductive predicate

Example: bisimulation

Consider a relation $R \subseteq X \times X$ carrying a $\operatorname{Rel}(T)$-coalgebra

Rel	$(R \subseteq X \times X) \xrightarrow{c} \operatorname{Re}((T)(R \subseteq X \times X)$
\downarrow	$X \xrightarrow{\downarrow}$
Sets	c

- where for $\left(z_{1}, z_{2}\right) \in(L+(X \times X)) \times(L+(X \times X))$,

$$
\operatorname{Rel}(T)(R \subseteq X \times X)\left(a_{1}, a_{2}\right) \Longleftrightarrow a_{1}=a_{2}
$$

$$
\operatorname{Rel}(T)(R \subseteq X \times X)\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \Longleftrightarrow R\left(x_{1}, y_{1}\right) \wedge R\left(x_{2}, y_{2}\right)
$$

- The relation $(R \subseteq X \times X)$ carries a coalgebra means that it is closed under the coalgebra operations $c: X \rightarrow L+(X \times X)$, as in:
$R\left(x_{1}, x_{2}\right) \Longrightarrow\left\{\begin{array}{l}c\left(x_{1}\right)=a_{1} \in L \text { iff } c\left(x_{2}\right)=a_{2} \in L, \text { and then } a_{1}=a_{2} \\ c\left(x_{1}\right)=\left(y_{1}, y_{1}^{\prime}\right) \text { iff } c\left(x_{2}\right)=\left(y_{2}, y_{2}^{\prime}\right), \text { and } R\left(y_{1}, y_{2}\right) \wedge R\left(y_{1}^{\prime}, y_{2}^{\prime}\right)\end{array}\right.$
This is what's called a bisimulation

Introduction

Fibrations
(Co)product in categories and fibrations
(Co)algebras of lifted functors
Induction \& coinduction

Conclusions

Back to diagrams
Lemma

Definition (The logic admits:)
(1) induction if $A \lg (T): A \lg (F) \rightarrow A \lg (\operatorname{Pred}(F))$ preserves initiality
(2) coinduction if $\operatorname{CoAlg}(E q): \operatorname{CoAlg}(F) \rightarrow \operatorname{CoAlg}(\operatorname{Rel}(F))$ preserves finality

Induction \& coinduction

- induction means that each inductive predicate contains the image of the uniqe map from the initial algebra
- coinduction means that elements in a bisimulation are equal when mapped to the final coalgebra.

Aside: there is also a little-known relational version of induction: each congruence contains the image of the diagonal on the initial algebra.

- it's equivalent to the usual predicate version of induction

Induction from comprehension

Definition（Lawvere）

A fibration admits comprehension if the truth functor has a right adjoint $\{-\}$ ，as in：

Lemma

Comprehension guarantees induction

$\operatorname{Alg}(\operatorname{Pred}(F))$	The functor $\operatorname{Alg}(F) \rightarrow \operatorname{Alg}(\operatorname{Pred}(F))$ $\downarrow)^{2}-$
is igen a left adjoint and thus preserves	

Page 24 of 27 Jacobs 17 March 2021 Lifting polynomial functors
Induction $\&$ coinduction

Coinduction from quotients

Definition（Jacobs）

A fibration admits qotients if the equality functor has a left adjoint \mathcal{Q} in：

Lemma

Quotients guarantee coinduction

$$
\begin{array}{cl}
\operatorname{CoAlg}(\operatorname{Rel}(F)) & \text { The functor } \operatorname{CoAlg}(F) \rightarrow \operatorname{CoAlg}(\operatorname{Rel}(F)) \\
-1 \downarrow & \text { is then a right adjoint and thus preserves } \\
\operatorname{CoAlg}(F) & \text { finality }
\end{array}
$$

iCIS｜Digital Security Radboud University

Final remarks
－This structural approach to（co）induction has become mainstream in coalgebra
－The paper from 1998 has 233 citations（Google Scholar）
－sometimes called＂Hermida－Jacobs＂lifting
－Indeed，there are other／more general approaches to lifting functors， e．g．
－via image－factorisation
－codensity lifting
－lifting via a parameter map，in presence of a generic object They typically coincide on simple polynomial functors．
－And many other variations \＆extensions，especially since the there are many variations of indistinguishability in coalgebra．

[^0]Thanks for your attention. Questions/remarks?

[^1]
[^0]: Conclusions

[^1]: Page 27 of 27 Jacobs 17 March 2021 Lifting polynomial functors

