Lifting of polynomial functors for logical reasoning

Radboud University Nijmegen 17 March 2021

Bart Jacobs bart@cs.ru.nl

Page 1 of 27 Jacobs 17 March 2021 Lifting polynomial functors

Lifting of polynomial functors

Where we are, so far

Introduction

Fibrations

- (Co)product in categories and fibrations
- (Co)algebras of lifted functors
- Induction & coinduction

Conclusions

Outline

Introduction

Fibrations

(Co)product in categories and fibrations

(Co)algebras of lifted functors

Induction & coinduction

Conclusions

Page 2 of 27 Jacobs 17 March 2021 Lifting polynomial functors

Topic

- This talk is on polynomial functors, as specific interpretations of polynomial expressions
- This talk is a tutorial on "classic" work, from the late nineties, on the associated logic
 - so new research actually very old work!
- ▶ It combines my own favourite work from two of my books:
 - Categorical Logic and Type Theory (North Holland, 1999)
 - Introduction to Coalgebra (CUP, 2016)

My own involvement with polynomial functors

(1) In coalgebra

• E.g. deterministic and non-deterministic automata are coalgebras of polynomial functors, in:

$$X \longrightarrow X^A \times 2 \qquad X \longrightarrow \mathcal{P}(X)^A \times 2$$

- The *Introduction to Coalgebra* book concentrates on polynomial functors since they are most relevant in examples not on functors in general.
- (2) In a principled approach to logic for algebras/coalgebras, as datatypes

(1) Many (co)datatypes are initial/final coalgebras of a polynomial

• This lifting happens from a category of types to a category of

• Technically, this involves a fibration, of predicates over types

(3) Existence of initial/final objects for the lifted functor may result

(2) Logical principles for these (co)datatypes are obtained by initiality/finality, but for a lifting of the polynomial functor
 These principles are induction and coinduction

functor, defined on a category of types

predicates or a category of relations

from comprehension or quotients in the logic.

- Topic for today.
- "Classic stuff", from: Hermida & Jacobs, *Structural induction* and coinduction in a fibrational setting, Inform. & Computation 1998

Page 4 of 27 Jacobs 17 March 2021 Lifting polynomial functors

Main points

What are polynomial functors?

Informally: (endo)functors built-up inductively from primitives, via products & coproducts.

Definition may include:

- identity functor, and constant functors $X \mapsto C$;
- Powerset, list, distribution ... (on <u>Sets</u>);
- ▶ Closure under products $X \mapsto F_1(X) \times F_2(X)$;
- Closure under coproducts $X \mapsto F_1(X) + F_2(X)$, possibly infinite;
- ▶ Possibly closure under "constant exponent" $X \mapsto F(X)^A$;
- ▶ Possibly closure under initial (or final) fixed point $X \mapsto \mu Y.F(X, Y)$.

We concentrate on:

- inductive build-up, not on preservation of structure;
- on finite products & coproducts yielding "simple" poynomial functors

Page 5 of 27 Jacobs 17 March 2021 Lifting polynomial functors

Page 7 of 27 Jacobs 17 March 2021 Lifting polynomial functors

Running example

- Fix a set of labels L and define a polynomial functor $T: \underline{Sets} \to \underline{Sets}$ as: $T(X) = L + (X \times X).$
- (1) Initial *T*-algebra $T(A) \stackrel{\simeq}{\rightarrow} A$ Finite binary *L*-labeled trees, such as:

(2) Final *T*-coalgebra $Z \stackrel{\simeq}{\rightarrow} T(Z)$ Finite & infinite binary *L*-labeled trees, like:

Explicit constructions

- ► If $\alpha = [\alpha_1, \alpha_2]$: $L + (A \times A) \stackrel{\cong}{\to} A$ is the initial algebra, then: $\bigcap_{a \to b} = \alpha_2(\alpha_1(a), \alpha_1(b)) \in A.$
- If $\zeta: Z \xrightarrow{\cong} L + (Z \times Z)$ is the final coalgebra, then:

$$a \qquad b \qquad = \quad \overline{f}(0)$$

where \overline{f} : $\{0, 1, 2\} \rightarrow Z$ is defined by finality in:

with: $L + (\{0, 1, 2\} \times \{0, 1, 2\}) \xrightarrow{\mathsf{id} + (\overline{f} \times \overline{f})} L + (Z \times Z)$ $f(0) = (1, 2) \qquad f \uparrow \qquad \cong \uparrow \zeta$ $f(1) = a \qquad \{0, 1, 2\} - - - \overline{f} - - - \gg Z$ f(2) = b

Page 8 of 27 Jacobs 17 March 2021 Lifting polynomial functors

Where we are, so far

Introduction

Fibrations

- (Co)product in categories and fibrations
- (Co)algebras of lifted functors
- Induction & coinduction
- Conclusions

Introduction

- The concept of fibration (or fibred category) arose in algebraic geometric, in the sixties, from work of Grothendieck and others
 - it's a categorical version of an indexed set $(X_i)_{i \in I}$, as function:

$$\begin{array}{ccc} \prod_{i\in I} X_i \\ \downarrow & \text{ or as } & I \longrightarrow \underline{\mathsf{Sets}} \\ I \end{array}$$

• Categorically, this becomes:

₽ ↓

ĪR

or
$$\mathbb{B}^{\mathrm{op}} \rightarrow \underline{\mathsf{Cat}}$$

- In logic and computer science, a fibration has become a standard categorical model for (typed) predicate logic
- See book Categorical Logic and Type Theory (North Holland, 1999).

The logical view on fibrations

We will skip the formal definition, but only give the main idea, namely substitution

For each map $f: X \to Y$ in \mathbb{B} and $Q \in \mathbb{E}$ "above" Y, that is, with p(Q) = Y, there is a suitably universal map $f^*(Q) \to Q$ above f.

$$\begin{array}{ccc} \mathbb{E} & f^*(Q) - - \succ Q \\ p_{\downarrow} & \\ \mathbb{B} & X \xrightarrow{f} Y \end{array}$$

In logical examples each fibre subcategory $\mathbb{E}_X \hookrightarrow \mathbb{E}$ of objects & maps above $X \in \mathbb{B}$ is a preorder.

A syntactic example (term/classifying model)

Definition

Let \mathbb{T} have types σ as objects, in some type theory. A morphism $\sigma \to \tau$ is (an equivalence class of) a term $x : \sigma \vdash M(x) : \tau$.

Definition

Let \mathbb{P} have type-proposition pairs (σ, φ) as objects, where $x: \sigma \vdash \varphi(x)$: Prop. A map:

$$\left(x: \sigma \vdash \varphi: \mathsf{Prop}\right) \stackrel{M}{\to} \left(y: \tau \vdash \psi: \mathsf{Prop}\right) \quad \text{is} \quad \begin{cases} M: \sigma \to \tau \text{ with:} \\ x: \sigma \mid \varphi \vdash \psi[M/y] \end{cases}$$

Substitution is then substitution: for a term $M: \sigma \to \tau$ and a predicate $y: \tau \vdash \psi$: Prop on τ we get as predicate on σ ,

$$(x: \sigma \vdash \psi[M(x)/y]: \operatorname{Prop}) \xrightarrow{M} (y: \tau \vdash \psi: \operatorname{Prop})$$

Page 11 of 27 Jacobs 17 March 2021 Lifting polynomial functors Fibrations

The logic of relations

If the base category $\mathbb B$ has products, we can form the fibration of relations via pullback:

A set-theoretic example

Definition

Let category <u>Pred</u> have pairs (X, P) as objects, where $P \subseteq X$. A map $(X, P) \rightarrow (Y, Q)$ is a function $f: X \rightarrow Y$ with $x \in P \Rightarrow f(x) \in Q$, that is, if $P \subseteq f^{-1}(Q)$. It comes with <u>Pred</u> \rightarrow <u>Sets</u>, given by $(X, P) \mapsto P$.

Substitution via inverse image:

$$\frac{\operatorname{Pred}}{p_{\downarrow}} \qquad (X, f^{-1}(Q)) - - \succ (Y, Q)$$

$$\frac{f}{Sets} \qquad X \xrightarrow{f} Y$$

There are many variations, like open/closed subsets of topological/metric/ordered spaces.

Page 12 of 27 Jacobs 17 March 2021 Lifting polynomial functors Fibrations

Where we are, so far

Introduction

Fibrations

(Co)product in categories and fibrations

(Co)algebras of lifted functors

Induction & coinduction

Conclusions

(Co)products for types

We fix a fibration $\overline{\psi}$ where the base category of types \mathbb{B} has: \blacktriangleright finite products $(1, \times)$ \blacktriangleright finite coproduct (0, +)

▶ distributivity of × over +.

Simple polynomial functors can then be interpreted as functors $F: \mathbb{B} \to \mathbb{B}$, once interpretations of constants are chosen.

For a set of labels L we thus have T : Sets \rightarrow Sets, via $T(X) = L + (X \times X).$

(Co)products for predicates

The corresponding "logical" requirement is:

- ▶ each fibre \mathbb{E}_X is a distributive lattice, with \top, \land and \bot, \lor
- \blacktriangleright substitution f^* preserves this lattice structure.

Lemma

The total category \mathbb{E} then has finite products: $\top \in \mathbb{E}_1$ is final, and the product of P, Q in \mathbb{E} is given by:

$$P \prec - -\pi_1^*(P) \wedge \pi_2^*(Q) - - \succ Q$$

$$X \xleftarrow{\pi_1} X \times Y \xrightarrow{\pi_2} Y$$

Remark The final/top objects in the fibres give a right adjoint:

Page 15 of 27 Jacobs 17 March 2021 Lifting polynomial functors (Co)product in categories and fibrations

iCIS | Digital Security Radboud University

Page 14 of 27 Jacobs 17 March 2021 Lifting polynomial functors (Co)product in categories and fibrations

Additional bifibration assumption

We also assume that our fibration is a **bifibration**. The easiest way formulation is: substitution functors f^* have left adjoints $\sum_f \dashv f^*$, as in:

In presence of such sums, for $X \in \mathbb{B}$, consider the diagonal $\Delta = \langle id, id \rangle \colon X \to X \times X$ and define the equality relation as:

$$Eq(X) = \sum_{\Delta} (\top_X). \quad \text{giving} \quad Eq(\mathbb{E})$$

Coproduct in the global category

Lemma

In presence of sums \sum , the total category \mathbb{E} has finite coproducts: $\perp \in \mathbb{E}_0$ is initial, and the coproduct of P, Q in \mathbb{E} is given by:

$$P - - \gg \sum_{\kappa_1} (P) \lor \sum_{\kappa_2} (Q) \lt - - Q$$

 $X \xrightarrow{\kappa_1} X + Y \xleftarrow{\kappa_2} Y$

Remark Basically the same constructions of products and coproducts work for relations — i.e. in $Rel(\mathbb{E})$

Predicate & relation lifting

- ► Under the previous assumptions, the total categories E and Rel(E) have finite products & coproducts
- ► Hence, a polynomial functor F can not only be interpreted on the base category B, but also on E and on Rel(E)
 - the only thing to decide is: what to do with constants?
 - an interpretation $\mathcal{C} \in \mathbb{B}$ is changed to:
 - truth $\top \in \mathbb{E}_{\textit{C}}$
 - equality $\mathit{Eq}(X) \in \mathit{Rel}(\mathbb{E})$
- ► This gives predicate lifting and relation lifting of *F*, by induction on the structure of *F*, in commuting rectangles:

These lifted functors commute with truth op and equality Eq.

Page 18 of 27 Jacobs 17 March 2021 Lifting polynomial functors (Co)product in categories and fibrations

Where we are, so far

Introduction

Fibrations

(Co)product in categories and fibrations

(Co)algebras of lifted functors

Induction & coinduction

Conclusions

iCIS | Digital Security Radboud University

(Co)algebras of so many functors

- Computationally relevant are categories of (co)algebras Alg(F) and CoAlg(F) of F: B → B
- But we can now also look at (co)algebras of lifted functors:

Alg(Pred(F))	CoAlg(Pred(F))	Alg(Rel(F))	CoAlg(Rel(F))
inductive predicates	invariants	congruences	bisimulations

- These are all predicate/relations which are suitably closed under the (co)algebraic operations.
- ► Nice illustrations of: *letting the formalism do the work for you*

Example: inductive predicate

Consider the set-theoretic fibration with a predicate $P \subseteq X$ carrying a Pred(T)-algebra, for $T(X) = L + (X \times X)$.

$$\begin{array}{ccc} Pred & Pred(T)(P \subseteq X) & \xrightarrow{h} & (P \subseteq X) \\ \downarrow & & \\ \underbrace{Sets} & L + (X \times X) & \xrightarrow{h=[h_1,h_2]} & X \end{array}$$

▶ where for $z \in T(X) = L + (X \times X)$, $Pred(T)(P \subseteq X)(a)$ always holds, for $z = a \in L$ $Pred(T)(P \subseteq X)(x_1, x_2) \iff P(x_1) \land P(x_2)$, when $z = (x_1, x_2)$

The fact that (P ⊆ X) carries an algebra thus means that it is closed under the algebra operations h = [h₁, h₂]: L + (X × X) → X, as in: P(h₁(a)) and P(x₁) ∧ P(x₂) ⇒ P(h₂(x₁, x₂)).

This is what we called an inductive predicate

Example: bisimulation

Page 21 of 27 Jacobs 17 March 2021 Lifting polynomial functors (Co)algebras of lifted functors

Back to diagrams

(2) **coinduction** if CoAlg(Eq): $CoAlg(F) \rightarrow CoAlg(Rel(F))$ preserves finality

Where we are, so far

Introduction

Fibrations

- (Co)product in categories and fibrations
- (Co)algebras of lifted functors

Induction & coinduction

Conclusions

iCIS | Digital Security Radboud University

Induction & coinduction

- induction means that each inductive predicate contains the image of the uniqe map from the initial algebra
- coinduction means that elements in a bisimulation are equal when mapped to the final coalgebra.

Aside: there is also a little-known relational version of induction: each congruence contains the image of the diagonal on the initial algebra.

it's equivalent to the usual predicate version of induction

Induction from comprehension

Where we are, so far

Introduction

Fibrations

(Co)product in categories and fibrations

(Co)algebras of lifted functors

Induction & coinduction

Conclusions

Coinduction from quotients

Page 25 of 27 Jacobs 17 March 2021 Lifting polynomial functors

iCIS | Digital Security Radboud University

Final remarks

- This structural approach to (co)induction has become mainstream in coalgebra
 - The paper from 1998 has 233 citations (Google Scholar)
 - sometimes called "Hermida-Jacobs" lifting
- Indeed, there are other / more general approaches to lifting functors, e.g.
 - via image-factorisation
 - codensity lifting
 - lifting via a parameter map, in presence of a generic object They typically coincide on simple polynomial functors.
- And many other variations & extensions, especially since the there are many variations of indistinguishability in coalgebra.

Thanks for your attention. Questions/remarks?

Page 27 of 27 Jacobs 17 March 2021 Lifting polynomial functors Conclusions

