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(1)Introduction

The following set of notes was initially prepared for the talk I gave
at the workshop on Polynomial Functors. I thank my collaborators
for their precious help in improving the notes.

The goal of my talk was to show that the category of polynomial
functors is cartesian closed for three kinds of polynomial functors.
They are polynomial functors associated to the three kinds of
categorical ring (or rig). Roughfly speaking, they are,

1. a symmetric monoidal closed category

2. a topos

3. a cartesian closed category



(2)Introduction

The notions of categorical rig listed above are ambiguous, since we
do not include the internal hom in the structure of these symmetric
monoidal closed categories! We shall use the following alternative
terminology for the three notions listed above:

1. a cosmos

2. a logos

3. a cartesian cosmos

A cosmos is a symmetric monoidal category E which is a (locally)
presentable and in which the tensor product is distributive over
colimits. These conditions imply that the internal hom exists,
althought it is not generally preserved by homomorphisms of
cosmoi.



(3)Introduction

A cosmos is a ring-like structure in which the colimit operations
are taking the role of the addition, and the tensor product is taking
the role of the multiplication.

Sets Categories

rigs cosmos

addition colimits

multiplication tensor product



(4)Introduction

Grothendieck topos can be viewed as a ring like structure, with the
operations of colimits (resp. of finite limits) taking the role of the
addition (resp. of the multiplication). We will call such a structure
a logos.

A cartesian cosmos E is a cosmos in which the tensor product
⊗ : E × E → E is the cartesian product × : E × E → E .

To each notion of categorical rig corresponds a notion of free rig
and a notion of polynomial. If V is a cosmos, then every small
V-category C generates freely a V-cosmos denoted V[C]. An
element of p ∈ V[C] is a polynomial functor with objective
variables in C. For example, if C is the unit V-category with one
object X , then a polynomial p ∈ V[X ] is an exponential power
series,

p(X ) =
∑
n≥0

p[n]⊗Σn X
⊗n



(5)Introduction

The category of V-polynomial functors Poly(V) is defined to be
the opposite of the category of free V-algebras. The category
Poly(V) is cartesian closed by [GJ][FGHW]. There is a similar
result for the category of L-polynomial functors in the case of
logoi, and the category of C -polynomial functors in the case of
cartesian cosmoi [FJ]. The paper of Cattani and Winskel [CW] is
an important source of categorification ideas. The cartesian
closeness of the category of polynomial functors is true for a wider
range of categorical rings ([Ol] Def. 2.3, Thm 3.1).

The characterisation of co-exponentiable V-cosmoi is presently an
open problem. When V is a quantale, a complete solution was
obtained by Susan Niefield [Ni]. Our main conjecture is a
categorification of her theory.



(6)Introduction

In the first section of the notes, we recall the notions of cartesian
closed category and of function space. In the second section, we
recall a few basic aspects of the theory of commutative algebras
and polynomials. In the third and fourth sections, we recall the
basic aspects of theory of commutative quantales and we sketch
Niefield’s theory of co-exponentiable quantales. In the fifth section,
we categorify the theory of quantales to obtain the theory of
cosmoi and V-cosmoi. In the sixth section, we describe the
topos-theoretic analog of the theory of cosmoi. The seventh
section is devoted to cartesian cosmoi.

We added an epilogue for some remarks and references.
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Section 1: Cartesian closed categories and exponentials

Sub-sections:

I Cartesian closed categories

I Function spaces

I Co-exponentiable objects

I Co-exponentiable algebras

I Co-exponentiable boolean rings



Cartesian closed categories

We will say that a category C is cartesian if it has finite cartesian
products. Recall that a cartesian category C is said to be closed
(to be a CCC ) if the functor A× (−) : C → C has a right adjoint
[A,−] : C → C for every object A ∈ C.

The object [A,B] ∈ C is often denoted BA and called the space of
maps A→ B, or the function space BA.

For examples, the category of sets Set, the category of posets
Poset, and the category of small categories Cat are cartesian
closed.



Function spaces

Let C be a cartesian category.

The function space BA may exists for a pair of objects A,B ∈ C,
even if the category C is not closed.

By definition [Hyl], a function space BA is equipped with a map
ε : BA × A→ B such that the map

β : Hom(Z ,BA)→ Hom(Z × A,B)

defined by putting β(f ) = ε ◦ (f × A) is bijective for every object
Z ∈ C.

An object A ∈ C is said to be exponentiable if the function space
BA exists for every object B ∈ C. This means that the functor
A× (−) : C → C has a right adjoint (−)A.

A cartesian category C is closed if and only if every object of C is
exponentiable.



Co-exponentiable objects

We shall denote by Cop the opposite of a category C.

To every morphism f : A→ B in C corresponds a morphism
f o : Bo → Ao in Cop.

We shall say that a category C is co-cartesian if the opposite
category Cop is cartesian. We shall say that C is co-cartesian closed
if Cop is cartesian closed.

Let C be a co-cartesian category, with the coproduct denoted
AtB. We shall say that an object A .B is the co-exponential of B
by A if the object (A . B)o is the exponential of Bo by Ao in Cop.

The object A . B is equipped with a morphism
η : B → A t (A . B) such the map

β : Hom(A . B,Z )→ Hom(B,A t Z )

defined by putting β(f ) = (A t f ) ◦ η is bijective for every object
Z ∈ C.



(1) Co-exponentiable algebras

If R is a commutative ring, we shall denote the category of
commutative R-algebras by CAlg(R).

Recall that the coproduct of two commutative R-algebras A and B
is their tensor product A⊗R B. The initial R-algebra is the algebra
R itself. Hence the category CAlg(R) is cocartesian.

If it exists, the R-algebra A . B is equipped with an algebra
homomorphism η : B → A⊗R (A . B) such that the map

β : HomR(A . B,Z )→ HomR(B,A⊗R Z )

defined by putting β(f ) = (A⊗R f ) ◦ η is bijective for every
commutative R-algebra Z .



(2) Co-exponentiable algebras

Let R be a commutative ring. Not every R-algebra is
co-exponentiable, but they have a simple characterisation.

Let Mod(R) be the category of R-modules.

Recall that an R-module M is said to be dualisable if the functor
M ⊗R (−) : Mod(R)→ Mod(R) has a left adjoint. If M is
dualisable and M? := HomR(M,R), then the functor M? ⊗R (−) is
left adjoint to the functor M ⊗R (−). An R-module M is
dualisable if and only if it is finitely generated and projective.

Theorem
[Ni2] An R-algebra A is co-exponentiable if and only if the
R-module A is dualisable.



Co-exponentiable boolean rings

Recall that a commutative ring R is boolean if x2 = x for every
x ∈ R. A boolean ring is an F2-algebra.

Let F2〈S〉 be the boolean ring freely generated by a set S .

For example, F2〈x〉 := F2〈{x}〉 = {0, 1, x , 1 + x}.

By Stone duality, a finite boolean ring is co-exponentiable.

Recall that the algebraic theory of boolean rings B has for objects
the sets 2n for n ≥ 0 and for morphisms the maps 2m → 2n.

The category B is cartesian closed, since (2m)2n = 2m×2n . It
follows that

F2〈S〉 . F2〈T 〉 = F2〈2S × T 〉 (1)

for any finite sets S and T . This formula is typical!



Section 2: Rings and Polynomials

Sub-sections:

I Free commutative R-algebras

I R-polynomials

I The category Poly(R)



Free commutative R-algebras

Let R be a commutative ring.

Thanks to Beck’s distributive law, the commutative R-algebra
freely generated by a set S can be constructed in two steps:
R[S ] := R ⊗ CM(S),

CAlg(R)
forget

// CMonoid
forget

//

R⊗−

{{
Set

CM

}}

I CM is the free commutative monoid functor

I R ⊗ (−) is the free R-module functor

If M is a (commutative) monoid, then the R-module R ⊗M has
the structure of a (commutative) R-algebra, called the envelopping
R-algebra of M.



R-polynomials

An element p ∈ R[S ] is a polynomial with coefficients in R and
variables in S .

If A is a commutative R-algebra, then Hom(R[S ],A) = AS .

If φ : R[S ]→ R[T ] is a homomorphism of R-algebras, then

Hom(φ,A) : AT → AS

is a polynomial map.



The category Poly(R)

Let R be a commutative ring.

We shall denote the category of free commutative R-algebras by
FreeCAlg(R).

The category of R-polynomials is defined to be the opposite
category:

Poly(R) := FreeCAlg(R)op

The category Poly(R) is the algebraic theory of commutative
R-algebras (in the Lawvere-Linton sense).



Section 3: Rigs and Quantales

Sub-sections:

I Rigs

I Quantales

I Free sup-lattices

I Tensor product of sup-lattices

I Free commutative quantales

I Q-polynomials

I Co-exponentiable quantales

I The category QPoly

I What about frames?



Rigs

Recall that a rig R = (R,+, 0, ?, 1) is a ring-like structure except
that the additive structure (R,+, 0) is a commutative monoid, not
a group in general. For example, the set of natural numbers
N = (N,+, 0,×, 1) has the structure of a rig.

The notion of rig is vastly more general than that of ring, since the
notion of commutative monoid is vastly more general than that of
abelian group. For examples,

A distributive lattice (L,∨, 0,∧, 1) is a rig. In particular, a Boolean
algebra (B,∨, 0,∧, 1,¬) is a rig. Of course, every Boolean algebra
has also the structure of a Boolean ring (B,+, 0, ·, 1) if we let
x + y := (¬x ∧ y) ∨ (x ∧ ¬y) and x · y := x ∧ y .



Quantales

Recall that a poset (R,≤) is a sup-lattice if every subset A ⊆ R as
a supremum sup(A) ∈ R.

Definition
A quantale is a sup-lattice (R,≤) equipped with a monoid
structure (R, ?, 1) such that

sup(A ? B) = sup(A) ? sup(B) (2)

for subsets A,B ⊆ R, where A ? B := {a ? b |a ∈ A and b ∈ B}.

A quantale (R,≤, ?, 1) is commutative if the monoid (R, ?, 1) is
commutative.

For example, the interval of real numbers [0, 1] equipped with the
product of real numbers, is a commutative quantale.



Free sup-lattices

Let us denote by SLat the category of sup-lattices and maps
preserving suprema.

The forgetful functor SLat → Poset has a left adjoint:

SLat
forget

// Poset

P≤(−)

~~

If S is a poset, then P≤(S) is the poset of downward closed
subsets of S .

The map y : S → P≤(S) defined by putting y(s) = {x ∈ S | x ≤ s}
exihibits the sup-lattice freely generated by S .



Tensor product of sup-lattices

The category SLat is symmetric monoidal closed.

The tensor product of two sup-lattices X and Y is the target of a
map

X × Y → X ⊗̂ Y

which preserves suprema in each variables, and which is universal.

The unit object of the tensor product of sup-lattices is the poset 2.

The internal hom SLat(X ,Y ) is the poset of sup-lattice maps
X → Y .

If S and T are posets, then the canonical map

P≤(S) ⊗̂ P≤(T )→ P≤(S × T )

is an isomorphism.



Free commutative quantales

Let us denote the category of commutative quantales by CQuant.

The commutative quantale freely generated by a poset S can be
constructed in two steps:

Q[S ] = P≤(CM(S)).

CQuant
forget

// CMPoset

P≤(−)

||

forget
// Poset

CM

||

I CM is the free commutative monoid functor

I If M is a partially ordered monoid, then P≤(M) has the
structure of a quantale: it is the envelopping quantale of M.



Q-polynomials

An element p ∈ Q[S ] is a quantalic polynomial with variables in S .

For example, every Q-polynomial p ∈ Q[x ] is a supremum

p(x) =
∨
n∈E

xn

for some subset E ⊆ N.

If A is a commutative quantale, then CQuant(Q[S ],A) = AS .

If φ : Q[S ]→ Q[T ] is a homomorphism of quantales, then

Hom(φ,A) : AT → AS

is a polynomial map.



Co-exponentiable quantales

A sup-lattice L is said to be dualisable if the functor
L⊗S (−) : SLat → SLat has a left adjoint.

A sup-lattice L is dualisable if and only if it is a retract (by
sup-lattice maps) of a free sup-lattice P≤(S).

Theorem
[Ni] A commutative quantale A is co-exponentiable if and only if
its underlying sup-lattice is dualisable.

Corollary

The envelopping quantale of a commutative monoid M ∈ Poset is
co-exponentiable.

In particular, a free commutative quantale is co-exponentiable.



The category QPoly

Theorem
[Lam] If S and T are posets, then

Q[S ] . Q[T ] = Q[CM(S)op × T ]

Let us denote the category of free commutative quantales by
FreeCQuant.

The opposite category QPoly := FreeQantop is the category of
Q-polynomials.

Corollary

[Lam] The category QPoly is cartesian closed.



What about frames ?

A quantale R = (R,≤, ?, 1) is called a frame if
x ? y = x ∧ y := inf {x , y} for every x , y ∈ R.

The frame Fr [S ] freely generated by a poset S is constructed in
two steps: Fr [S ] = P≤(Infs(S)), where Infs(S) is the
inf-semi-lattice freely generated by S .

The frame Fr [x ] = {0, x , 1} is the lattice of open subsets of the
Sierpinski locale S.

A frame R is co-exponentiable if and only if it is a continuous
lattice [Sc][Hyl]. In particular, free frames are co-exponentiable.

We have
Fr [S ] . Fr [T ] = Fr [Infs(S)op × T ]

for any pair of posets S and T .



Section 4: R-quantales

Let R = (R,≤, ?, 1) be a commutative quantale.

A commutative R-quantale is defined to be a commutative
quantale A equipped with a morphism of quantales R → A.
Niefield’s theory [Ni] is devoted to the study of commutative
R-quantales, for an arbitrary quantale R.

The relative theory is more powerful than the ”absolute” theory.
We shall briefly sketch the main lines.



Section 4: Content

I R-posets

I Tensor product of R-posets

I R-monoids

I R-modules

I Free R-modules

I Tensor product of R-modules

I R-quantales

I Free commutative R-quantales

I R-polynomials

I Co-exponentiable R-quantales

I The category QPoly(R)



R-posets

Let R = (R,≤, ?, 1) be a commutative quantale.

An R-preorder is a set S equipped with a map [−,−] : S × S → R
satisfying

1. [x , y ] ? [y , z ] ≤ [x , z ]

2. 1 ≤ [x , x ]

The relation 1 ≤ [x , y ] is a preorder relation x ≤ y on S .

An R-preorder S is an R-poset if the preorder x ≤ y is a partial
order.

The quantale R is itself an R-poset.

A morphism of R-posets S → T is a map f : S → T such that
[x , y ] ≤ [fx , fy ] for all x , y ∈ S .

We shall denote the category of R-posets by Poset(R).



Tensor product of R-posets

Let R = (R,≤, ?, 1) be a commutative quantale.

The category of R-posets Poset(R) is symmetric monoidal closed.

The tensor product S ⊗R T of two R-posets S and T is their
cartesian product S × T , with

[(x , x ′), (y , y ′)] := [x , y ] ? [x ′, y ′]

The internal hom MapR(S ,T ) is the set of R-poset maps S → T
with

[f , g ] =
∧
x∈S

[f (x), g(x)]

for f , g : S → T .



R-monoids

Let R = (R,≤, ?, 1) be a commutative quantale.

An R-monoid is defined to be a monoid in the monoidal category
of R-posets Poset(R).

We shall denote the category of commutative R-monoids by
CMonoid(R).

Every R-poset S generates freely a commutative R-monoid
CMR(S).

CMonoid(R)
forget

// Poset(R)

CMR

zz



R-modules

Let R = (R,≤, ?, 1) be a commutative quantale.

The multiplication ? : R × R → R preserves suprema in each
variable.

A (commutative) quantale R is the same thing as a (commutative)
monoid ? : R ⊗̂ R → R in the symmetric monoidal category SLat.

An R-module is defined to be a sup-lattice E ∈ SLat equipped
with an associative action R ⊗̂ E → E of the monoid R.

A morphism of R-modules f : E → F is a morphism of sup-lattices
respecting the actions by R; we shall say that f is R-linear.

Every R-module has the structure of an R-poset.

We shall denote the category of R-modules and R-linear maps by
Mod(R).



Free R-modules

Let R = (R,≤, ?, 1) be a commutative quantale.

If S is an R-poset, then the R-poset

PR(S) := MapR(Sop,R)

has the structure of an R-module. Moreover, the Yoneda map
y : S → PR(S) exhibits the R-module freely generated by S .

Mod(R)
forget

// Poset(R)

PR

{{



Tensor product of R-modules

Let R = (R,≤, ?, 1) be a commutative quantale.

The category of R-modules Mod(R) is symmetric monoidal closed.

The tensor product of two R-modules E and F is the target of a
map

E ⊗R F → E ⊗̂R F

which is R-linear in each variable and universal.

The unit object of the tensor product of R-modules is the
R-module R.

If S and T are R-posets, then the canonical map

PR(S) ⊗̂R PR(T )→ PR(S ⊗R T )

is an isomorphism.



R-quantales

An R-quantale can be defined to be a monoid object in the
category of R-modules.

A commutative R-quantale is the same thing as a commutative
quantale A equipped with a morphism of quantales R → A.

We shall denote the category of commutative R-quantales by
CAlg(R).

If M is an R-monoid, then the R-module PR(M) has the structure
of an R-quantale: it is the envelopping R-quantale of M.

The quantale PR(M) is commutative if M is commutative.



Free commutative R-quantales

Let R = (R,≤, ?, 1) be a commutative quantale.

The commutative R-quantale freely generated by an R-poset S
can be constructed in two steps:

R[S ] = PR(CMR(S)).

CAlg(R)
forget

// CMonoid(R)

PR(−)

zz

forget
// Poset(R)

CMR

zz



R-polynomials

If R is a commutative quantale and S is an R-poset, then an
element p ∈ R[S ] is a polynomial with coefficients in R and
(commutative) variables in S .

For example, a polynomial p ∈ R[x ] is a supremum

p(x) =
∞∨
n=0

r [n] · xn

for a sequence of coefficients r [−] : N→ R

If A is a commutative R-quantale, then HomR(R[S ],A) = AS .

If φ : R[S ]→ R[T ] is a homomorphism of R-quantales, then

HomR(φ,A) : AT → AS

is a polynomial map.



Co-exponentiable quantales

Let R be a commutative quantale.

An R-module E is said to be dualisable if the functor
E ⊗̂R (−) : Mod(R)→ Mod(R) has a left adjoint.

An R-module E is dualisable if and only if it is a retract (by
R-module maps) of a free R-module PR(S).

Theorem
[Ni2] A commutative R-quantale A is co-exponentiable if and only
if the underlying R-module is dualisable.

Corollary

The envelopping R-quantale of a commutative R-monoid
M ∈ Poset(R) is co-exponentiable. A free commutative
R-quantale is co-exponentiable.



The category Poly(R)

Theorem
[Lam] If S and T are R-posets, then

R[S ] . R[T ] = R[CMR(S)op ⊗R T ]

Let us denote the category of free commutative R-quantales by
CAlg(R).

The opposite category Poly(R) := FreeCAlg(R)op is the category
of (quantalic) R-polynomials.

Corollary

[Lam] The category Poly(R) is cartesian closed.



Categorification

Sets, Posets Categories

functions functors

commutative monoids symmetric monoidal categories

sup-lattices presentable categories

commutative quantales cosmoi, logoi and CCC



Section 4: Cosmoi, V-cosmoi and V-polynomials

Sub-sections:

I Cosmoi

I V-category theory

I Free symmetric monoidal V-categories

I Day convolution product

I Presentable V-categories

I V-cosmos

I Free V-cosmos

I V-polynomials

I Co-exponentiable V-cosmoi

I The category Poly(V)



Cosmoi

Definition
[Be][St] We will say that a symmetric monoidal category
V = (V,⊗, I ) is a cosmos if the following conditions hold:

1. the category V is (locally) presentable;

2. the functor Z ⊗ (−) : V → V is cocontinuous for every object
Z ∈ V.

A cosmos is symmetric monoidal closed.

A homomorphism of cosmoi φ : R → A is a cocontinuous
symmetric monoidal functor.

Every commutative quantale is a cosmos.



V-category theory

Let V be a cosmos.

Category theory can be fully extended to V-categories
(Benabou[Ben], Borceux[Bor], Dubuc[Dub], Eilenberg-Kelly[EK],
Kelly[Kel], Lack[KL], Day[Day], Street[Str]).

The category of V-functors between a small V-category C and a
V-category E (possibly large) is itself a V-category FunV(C, E).

The category of V-categories (small or large) is symmetric
monoidal.

We shall denote the tensor product of two V-categories E and F
by E ⊗V F . The unit object is the V-category 1V with one object ?
and with hom(?, ?) := I , where I is the unit object of V.



Free symmetric monoidal V-categories

The symmetric monoidal V-category freely generated by a
V-category C has the following construction:

SymV(C) =
⊔
n≥0

C⊗n/Σn

where C⊗n/Σn denotes the wreath product Σn

∫
C⊗n for the

natural action of the symmetric group Σn on C⊗n.

SMCat(V)
forget

// Cat(V)

SymV

{{
(3)



Presentable V-categories

We say that a cocomplete V-category E is presentable if it is
presentable as an ordinary category.

Presentable V-category = V-module

We shall denote by Mod(V) the category of presentable
V-categories and cocontinuous V-functors.

The category Mod(V) is symmetric monoidal closed [Ke].

The tensor product of two presentable V-categories E and F is the
target of a V-functor

E ⊗V F → E ⊗̂V F

cocontinuous in each variable and universal.



Day convolution product

Recall that if A is a small monoidal V-category, then the
convolution product of two V-presheaves F ,G : Aop → V is the
V-presheaf F ? G : Aop → V defined by putting

(F ? G )(a) =

∫ a1∈A ∫ a2∈A
F (a1)⊗ F (a2)⊗ Hom(a, a1 ⊗ a2)

for every object a ∈ A.

By a theorem of Day, the convolution product defines a monoidal
structure on the V-category

PV(A) = FunV(Aop,V)

The monoidal structure is symmetric if the monoidal V-category A
is symmetric.



V-cosmos

A V-cosmos is defined to be a cosmos A equipped with a
homomorphism of cosmoi φ : V → A.

A V-cosmos A is a symmetric monoidal object in the symmetric
monoidal category of V-modules Mod(V).

We shall denote the category of V-cosmoi by CAlg(V).

If A is a small symmetric monoidal V-category, then Day’s
convolution product gives the V-category PV(A) the structure of a
V-cosmos. Moreover, the Yoneda functor Y : A→ PV(A) exhibits
the V-cosmos freely generated by A. We shall say that PV(A) is
the envelopping V-cosmos of A.



(1) Free V-cosmoi

The V-cosmos freely generated by a small V-category C can be
constructed in two steps [GJ]:

V[C] = PV(SymV(C)).

CAlg(V)
forget

// SMCat(V)

PV

{{

forget
// Cat(V)

SymV

{{
(4)

Remark: the first forgetful functor in the diagram above does not
really exist, since a V-cosmos can be large.



(2) Free V-cosmoi

The V-cosmos freely generated by an ordinary category C can also
be constructed in two steps:

V[C] = Fun(Sym(C)op,V)

where Sym(C) denotes the ordinary symmetric monoidal category
freely generated by C, and where Fun(Sym(C)op,V) is the
category of ordinary functors.

For example, the V-cosmos V[X ] freely generated by one object X
is the category of ordinary functors Bij → V, where Bij is the
ordinary groupoid of finite sets and bijections.



V-polynomials

An object of the category V[C] is a V-polynomial with objective
variables in the V-category C.

For example, a V-polynomial in one variable p(X ) ∈ V[X ] is
actually an exponential power series

p(X ) =
∞∑
n=0

p[n]⊗Σn X
⊗n

where p[−] is a functor Bij → V.



On co-exponentiable V-cosmoi

We say that a presentable V-category E is dualisable if the functor
E ⊗̂V (−) : Mod(V)→ Mod(V) has a left adjoint.

A presentable V-category E is dualisable if and only if it is a retract
(by V-cocontinuous functors) of a free V-category PV(C).

Conjecture: A V-cosmos A is co-exponentiable if and only if it is
dualisable in the category Mod(V).

Corollary

The envelopping V-cosmos PV(A) of a small symmetric monoidal
V-category A is co-exponentiable.

In particular, a free V-cosmos V[C] is co-exponentiable.



The category Poly(V)

Theorem
[GJ][FGHW] If C and D are small V-categories, then

V[C] . V[D] = V[SymV(C)op ⊗V D]

We shall denote the category of free V-cosmoi by FreeCAlg(V).

The category of V-polynomials (or of V-analytic functors) is
defined to be the opposite category:

Poly(V) := FreeCAlg(V)op

Corollary

The category of V-polynomials Poly(V) is cartesian closed.
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Topoi and logoi

Recall that a morphism of (Gothendieck) topoi E → F is a pair of
adjoint functor φ? a φ?, where the left adjoint φ? : F → E
preserves finite limits.

We shall denote by Logos the opposite of the category of
(Gothendieck) topoi. By definition, an object of the category
Logos is a topos, but a morphism E → F is a cocontinuous
functor φ : E → F preserving finite limits.

We may say that an object of the category Logos is a logos.

The notion of logos is to the notion of frame what the notion of
topos is to the notion of locale.

The category of topoi is the opposite of the category of logoi.



Lex categories

We shall say that a category C is lex if it has finite limits, and say
that a functor between lex categories φ : E → F is lex (= left
exact) if it preserves finite limits.

We shall denote by LexCat the category of small lex categories and
lex functors. The forgetful functor LexCat → Cat has a left adjoint
which associates to a small category C the lex category Lex(C)
freely generated by C.

LexCat
forget

// Cat

Lex

~~



Free logoi

If A is a lex category, then the Yoneda functor Y : A→ Psh(A)
exihibits the logos freely generated by the lex category A. We may
say that Psh(A) is the envelopping logos of the lex category A.

The logos freely generated by a small category C is constructed in
two steps, [SGA4] [Joh]:

LSet[C] := Psh(Lex(C)) = [Lex(C)op,Set]

Logos
forget

// LexCat

Psh

}}

forget
// Cat

Lex

~~



The category LPoly

A topos is exponentiable if and only if it is a continuous category
[JJ].

Theorem
[JJ][FJ] Free logoi are co-exponentiable. If C and D are small
categories, then

LSet[C] . LSet[D] = LSet[Lex(C)op × D]

We shall denote the category of free logoi by FreeLogos. The
category of L-polynomials is defined to be the opposite category,

LPoly := (FreeLogos)op

Corollary

The category LPoly is cartesian closed.
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Cartesian cosmoi

We say that a cosmos (R,⊗, I ) is cartesian if its tensor product is
the cartesian product: A⊗ B := A× B.

I A cartesian cosmos is cartesian closed.

I Every topos is a cartesian cosmos.

I Every frame is a cartesian cosmos.

A morphism of cartesian cosmoi φ : E → F is a cocontinuous
functor preserving finite cartesian products.

We shall denote the category of cartesian cosmoi by CCosmos.



Free cartesian categories

We shall say that a category C is cartesian if it has finite products.
And we shall say that a functor between cartesian categories is
cartesian if it preserves finite products.

We shall denote by CartCat the category of small cartesian
categories and cartesian functors. The forgetful functor
CartCat → Cat has a left adjoint which associates to a small
category C the cartesian category Cart(C) freely generated by C.

CartCat
forget

// Cat

Cart

~~



Free cartesian cosmoi

If A is a cartesian category, then the Yoneda functor
Y : A→ Psh(A) exihibits the cartesian cosmos freely generated by
the cartesian category A. We may say that Psh(A) is the
envelopping cartesian cosmos of the cartesian category A.

The cartesian cosmos freely generated by a small category K can
be constructed in two steps:

CSet[K] := Psh(Cart(K)) = [Cart(K)op, Set]

CCosmos
forget

// CartCat

Psh

{{

forget
// Cat

Cart

}}



The category CPoly

Theorem
[FJ][Gal][Ol] Free cartesian cosmoi are co-exponentiable. If K and
D are small categories, then

CSet[K] . CSet[D] = CSet[Cart(K)op × D]

Let us denote the category of free cartesian cosmoi by
FreeCCosmos. The category of C -polynomials is defined to be the
opposite category,

CPoly := (FreeCCosmos)op.

Corollary

[FJ][Gal][Ol] The category CPoly is cartesian closed.



Epilogue

The construction of a cartesian closed category from continuous
lattices is due to Scott [Sc]. Exponentiable locales where studied
by Hyland [Hyl] and by Niefield [Ni1].

The fact that the category of free commutative quantales is
co-cartesian closed was first observed by Lamarche [Lam].
Co-exponentiable quantales were characterized by Niefield [Ni2].

The tensor product of categories that are cocomplete for a class of
colimits was introduced by Kelly [Kel]. The tensor product of
Grothendieck abelian categories was introduced by Deligne [Del]
and studied by Di Liberti & Gonzales [DLG]. See also López
Franco [LF].

The theory of exponentiable topoi was extended to ∞-topoi by
Anel & Lejay [AL] and also by Lurie [HA]. The theory of V-cosmoi
was extended to ∞-categories by Lurie [HA].
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