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Introduction

Computer scientists like initial algebras and category theory:

I Inductive types are ubiquitous in computer science: natural
numbers, lists, trees...

I Initial algebras for polynomial endofunctors give semantics to
inductive types

Mathematicians like inductive types and type theory:

I They know initial algebras exist in general (under some
conditions)

I Inductive types provide an explicit description of these

I Type theory gives a way to reason syntactically about
categorical constructs (internal languages)
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Introduction

Two standard ways to describe inductive types:

I By using a schema as in e.g. Coq - strict positivity
requirement

I By a single general construction: (Martin-Löf) type of
well-founded trees (W-types)

Initial algebras and inductive types:

I Coincide in extensional type theory (Dybjer ’96)

I Do not coincide in intensional type theory

I Coincide in homotopy type theory after replacing initiality by
homotopy-initiality (Awodey, Gambino, S. ’12)
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Extensional Type Theory

Dependent type theory (Martin-Löf) has:

I Types (sets/objects) A and terms (elements/arrows 1 // A)
a : A

I Dependent types (families of sets/indexed sets/arrows
B // A) B(a) and terms (sections A // B) b(a) : B(a)

I Equality judgements: A = B and a =A b for a, b : A

I Identity reflection: equal types and terms are treated as
identical

Intended as a foundation for constructive mathematics.
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I Types (sets/objects) A and terms (elements/arrows 1 // A)
a : A

I Dependent types (families of sets/indexed sets/arrows
B // A) B(a) and terms (sections A // B) b(a) : B(a)

I Equality judgements: A = B and a =A b for a, b : A

I Identity reflection: equal types and terms are treated as
identical

Intended as a foundation for constructive mathematics.



Extensional Type Theory

Dependent type theory (Martin-Löf) has:
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I Types (sets/objects) A and terms (elements/arrows 1 // A)
a : A

I Dependent types (families of sets/indexed sets/arrows
B // A) B(a) and terms (sections A // B) b(a) : B(a)

I Equality judgements: A = B and a =A b for a, b : A

I Identity reflection: equal types and terms are treated as
identical

Intended as a foundation for constructive mathematics.



The traditional set interpretation
Suppose we have terms of ascending identity types:

a, b : A

p, q : a =A b

α, β : p =(a=b) q

. . . : . . .

We have the following interpretation into sets:

Types  Sets

Terms  Elements

a : A  Element a ∈ A

p : a =A b  Element of a singleton set

α : p =(a=Ab) q  Element of a singleton set

...



The traditional set interpretation
Suppose we have terms of ascending identity types:

a, b : A

p, q : a =A b

α, β : p =(a=b) q

. . . : . . .

We have the following interpretation into sets:

Types  Sets

Terms  Elements

a : A  Element a ∈ A

p : a =A b  Element of a singleton set

α : p =(a=Ab) q  Element of a singleton set

...



Outline

1. Introduction

2. Extensional type theory

3. Well-founded trees

4. Initial algebras are well-founded trees (and vice versa)

5. Homotopy type theory

6. Homotopy-initial algebras

7. Homotopy-initial algebras = well-founded trees

8. Conclusion



Well-founded trees

Inductive types: “structures freely generated by a collection of
operators”.

The W-type W(A,B) is generated by

sup : (a : A) //
(
B(a)→W(A,B)

)
→W(A,B)

where

I A is the type of constructors

I B(a) gives the arity of constructor a : A

Examples:

I For natural numbers N, A := 2 and B is given by B(>) := 0
and B(⊥) := 1.

I For lists List[C ], A := 1 + C and B is given by B(inl(−)) := 0
and B(inr(−)) := 1.
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Well-founded trees

Principle of induction: To prove that a property P(w) holds for
each well-founded tree w : W, it suffices to prove that P(sup(a, f ))
holds whenever P(f b) holds for each branch f (b) : W.

Type-theoretically: given a function

I e : (a : A) //
(
f : B(a) //W

)
//(

(b : B(a)) // P(f b)
)

// P(sup(a, f ))

we have a function

I F : (w : W) // P(w)

such that

I F(sup(a, f )) = e
(
a, b 7→ F(f b))

)

Example: Defining P(w) := W and e(a,−, g) := sup(a, b 7→ g(b))
is an inductive way of defining the identity map on W.
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Initial algebras are well-founded trees (and vice versa)

Let W be an initial algebra for the polynomial endofunctor

X 7→ Σ(a : A)(B(a) // X )

The “algebra” arrow is precisely the sup constructor.

It “remains” to prove the induction principle. Let P and e be
given.

I To use the initiality of W, we must first turn P into an
algebra: we use the total space

Σ(w : W)P(w)

as the carrier set.
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We recall the endofunctor is X 7→ Σ(a : A)(B(a) // X ).

I To endow Σ(w : W)P(w) with an algebra structure, we map
a : A and fΣ : B(a) // Σ(w : W)P(w) to eΣ(a, fΣ) :=(

sup
(
a, b 7→ π1(fΣ b)

)
, e
(
a, b 7→ π1(fΣ b), b 7→ π2(fΣ b)

))
I The initiality of W gives us a map FΣ : W // Σ(w : W)P(w)

I Our map (w : W) // P(w) is thus F(w) := π2(FΣ(w))

I But: only if we can show π1(FΣ(w)) = w for each w : W.
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Initial algebras are well-founded trees (and vice versa)

We use the uniqueness part of initiality:

I The map w 7→ w is clearly an algebra morphisms from
W //W.

I So is the map w 7→ π1(FΣ(w)) since we have

π1

(
FΣ(sup(a, f ))

)
= π1

(
eΣ(a, b 7→ FΣ(f b))

)
= sup

(
a, b 7→ π1(FΣ(f b))

)
I The above two maps are thus equal and we are done.
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Homotopy Type Theory

An extension of intensional type theory with concepts motivated by
abstract homotopy theory.

I Consistent: we have interpretations into Quillen model
categories (Awodey, Warren ’09), groupoids (Hofmann,
Streicher ’96), simplicial sets (Voevodsky et al. ’12), cubical
sets (Bezem, Coquand, et al. ’14).

I Fully formal: we use proof assistants (Coq, Agda, Lean) to
formalize results from homotopy theory, algebraic topology.

I Type-theoretic reasoning can lead to a novel proof of a known
result, e.g., the fundamental group of the circle π1(S1)
(Licata, Shulman ’12).

I We can use geometric intuition to motivate further
type-theoretic constructs.
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p, q : a =A b

α, β : p =(a=Ab) q
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We have the following interpretation into topological spaces:

Types  Spaces

Terms  Points
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p : a =A b  Path from a to b in A

α : p =(a=Ab) q  Homotopy from p to q in A
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Homotopy-initial algebras

Consider the endofunctor X 7→ 1 + X .

I We recall that an algebra for this functor is a triple
(X , 0X , sX ), where 0X : X and sX : X // X .

I A morphism (X , 0X , sX ) // (Y , 0Y , sY ) is a triple (f , θ0, θs),
where f : X //Y and θ0, θs witness the commutativity of the
following two diagrams:

θ0

1 1

X Y

0X 0Y

f

θs

X X

X Y

f

sX sY

f

I An algebra (N, 0, suc) is homotopy-initial if the type of
morphisms to any other algebra is contractible, i.e., having a
unique inhabitant up to equality.
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Homotopy-initial algebras = well-founded trees

In homotopy type theory, we have a correspondence (Awodey,
Gambino, S., ’12) between

I Inductive types 0, 1, 2, A + B, N, List[A], W(A,B) (with
propositional computation rules)

I Homotopy-initial algebras for the appropriate endofunctors

So e.g., (N, 0, suc) is homotopy-initial among algebras of the form
(X , 0X , sX ).



Homotopy-initial algebras = well-founded trees

Let W be a homotopy-initial algebra for the polynomial endofunctor

X 7→ Σ(a : A)(B(a) // X )

The “algebra” arrow is precisely the sup constructor.

To prove the induction principle, let P and e be given.

I To use the homotopy-initiality of W, we must first turn P into
an algebra: we use the total space

Σ(w : W)P(w)

as the carrier set.
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To construct α we use the uniqueness part of homotopy-initiality:

I The map w 7→ w is clearly an algebra morphisms from
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I So is the map w 7→ π1(FΣ(w)) since we have
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and the second is reflexivity.

I The above two maps are thus equal but we are not done.
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It remains to show that the homotopy α(w) : π1(FΣ(w)) = w
induced by the equality of the two morphisms w 7→ w and
w 7→ π1(F(w)) is coherent:

I For any a : A and f : B(a) //W, the following diagram
commutes:

=

π1

(
F(sup(a, f ))
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sup
(
a, b 7→ π1(FΣ(f b))

)
sup(a, f )

sup(a, b 7→ f b)

α(sup(a, f ))

via funext(b 7→ α(f b))
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Conclusion

There is a similar (but much more complicated) correspondence
between:

I W-quotients, a higher-inductive version of W-types

I homotopy-initial algebras of an appropriate form

Moreover, we know that:

I even more complicated higher inductive types such as set and
groupoid quotients are special cases of W-quotients

I hence set and groupoid quotients inherit the characterization
as homotopy-initial algebras
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