The Polynomial Abacus

David I. Spivak

Workshop on Polynomial Functors 2021 March 15 – 19

Outline

1 Introduction

- The abacus
- Plan

2 Theory

B Applications

4 Conclusion

Abacus for the Glass Bead Game

There is a story by Herman Hesse, called *The Glass Bead Game*.

- It depicts a monastic community of thinkers, led by a "game master".
- The game is played on an instrument involving strings of glass beads.

Like a rap battle or poetry slam, the game is played to express deep ideas.

- Players represent connections between math, music, philosophy, etc.
- The moving glass beads weave these subjects together in harmony.
- To play well is to contemplate and communicate profound insights.

Abacus for the Glass Bead Game

There is a story by Herman Hesse, called *The Glass Bead Game*.

- It depicts a monastic community of thinkers, led by a "game master".
- The game is played on an instrument involving strings of glass beads.

Like a rap battle or poetry slam, the game is played to express deep ideas.

- Players represent connections between math, music, philosophy, etc.
- The moving glass beads weave these subjects together in harmony.
- To play well is to contemplate and communicate profound insights.

I loved the idea of the book, but something was missing.

- Hesse only roughly describes the instrument—the abacus—itself.
- What sort of combinatorial object is capable of this grand scope?

To my lights, **Poly** can serve as an abacus; I hope to justify that to you.

Approximate plan for tutorial

Today:

- Introduce **Poly** and its combinatorics (how the abacus works);
- Discuss its pleasing properties and monoidal structures;
- Present the framed bicategory P.

Wednesday:

- Recall \mathbb{P} and discuss some properties of it:
- Consider applications: dynamical systems, data, and deep learning;
- Conclude with a summary.

Outline

1 Introduction

2 Theory

- Poly as a category
- A quick tour of **Poly**
- Comonoids in **Poly**
- \blacksquare The framed bicategory $\mathbb P$
- \blacksquare Monads in $\mathbb P$

3 Applications

4 Conclusion

Poly for experts

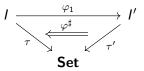
What I'll call the category Poly has many names.

- The free completely distributive category on one object;
- The free coproduct completion of Set^{op};
- The full subcategory of [Set, Set] spanned by functors that preserve connected limits;
- The full subcategory of [Set, Set] spanned by coproducts of repr'bles;

Poly for experts

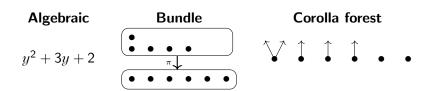
What I'll call the category **Poly** has many names.

- The free completely distributive category on one object;
- The free coproduct completion of Set^{op};
- The full subcategory of [Set, Set] spanned by functors that preserve connected limits;
- The full subcategory of [Set, Set] spanned by coproducts of repr'bles;
- The category of typed sets and colax maps between them.
 - Objects: pairs (I, τ) , where $I \in \mathbf{Set}$ and $\tau \colon I \to \mathbf{Set}$.
 - Morphisms $(I, \tau) \xrightarrow{\varphi} (I', \tau')$: pairs $(\varphi_1, \varphi^{\sharp})$, where

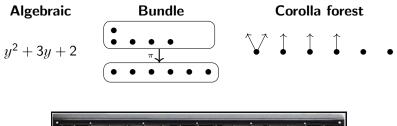


But let's make this easier.

What is a polynomial?



What is a polynomial?



One could repurpose this machine to represent $15y^{5\times 2} \in \mathbf{Poly}$.

Terminology woes

Issue: prior terminology from computer science doesn't fit my conception.

$$p \coloneqq y^3 + y^2 + y^2 + 1$$

Container terminology from Abbott: "shapes and positions".

- data p Y = Foo Y Y Y | Bar Y Y | Baz Y Y | Qux
- Container *p* has four "shapes", e.g. Foo has three "positions".

Terminology woes

Issue: prior terminology from computer science doesn't fit my conception.

$$p \coloneqq y^3 + y^2 + y^2 + 1$$

Container terminology from Abbott: "shapes and positions".

- data p Y = Foo Y Y Y | Bar Y Y | Baz Y Y | Qux
- Container *p* has four "shapes", e.g. Foo has three "positions".
- We prefer to think of these "positions" as projection arrows. $\bigvee \bigvee \bigvee \bigvee$

Terminology woes

Issue: prior terminology from computer science doesn't fit my conception.

$$p \coloneqq y^3 + y^2 + y^2 + 1$$

Container terminology from Abbott: "shapes and positions".

- data p Y = Foo Y Y Y | Bar Y Y | Baz Y Y | Qux
- Container *p* has four "shapes", e.g. Foo has three "positions".
- We prefer to think of these "positions" as projection arrows. $\bigvee \bigvee \bigvee \bigvee$

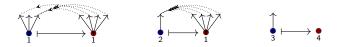
Hard decision but I'll say positions and directions. Reasons:

- Dynamical systems: position = point, direction = vector.
- Categories: position = object, direction = morphism.
- Terminal coalgebra trees: position = label, direction = arrow.

Combinatorics of polynomial morphisms

Let
$$p \coloneqq y^3 + 2y$$
 and $q \coloneqq y^4 + y^2 + 2$

A morphism $p \xrightarrow{\varphi} q$ delegates each *p*-position to a *q*-position, passing back directions:



Example: how to think of

•
$$y^2 + y^6 \rightarrow y^{52}$$
 ?
• $p \rightarrow y$ for arbitrary p ?

The category of polynomials

Easiest description: Poly = "sums of representables functors $Set \rightarrow Set$ ".

- For any set S, let $y^{S} := \mathbf{Set}(S, -)$, the functor *represented* by S.
- Def: a polynomial is a sum $p = \sum_{i \in I} y^{p[i]}$ of representable functors.
- Def: a morphism of polynomials is a natural transformation.

Notation

We said that a polynomial is a sum of representable functors

$$p\cong \sum_{i\in I}y^{p[i]}.$$

But note that $I \cong p(1)$. So we can write

$$p \cong \sum_{i \in p(1)} y^{p[i]}.$$

Notation

We said that a polynomial is a sum of representable functors

$$p\cong \sum_{i\in I}y^{p[i]}.$$

But note that $I \cong p(1)$. So we can write

$$p \cong \sum_{i \in p(1)} y^{p[i]}.$$

Here's a derivation of the combinatorial formula for morphisms:

$$\begin{aligned} \mathsf{Poly}(p,q) &= \mathsf{Poly}\left(\sum_{i \in p(1)} y^{p[i]}, \sum_{j \in q(1)} y^{q[j]}\right) \cong \prod_{i \in p(1)} \mathsf{Poly}\left(y^{p[i]}, \sum_{j \in q(1)} y^{q[j]}\right) \\ &\cong \prod_{i \in p(1)} \sum_{j \in q(1)} \mathsf{Set}(q[j], p[i]) \end{aligned}$$

"For each $i \in p(1)$, a choice of $j \in q(1)$ and a function q[j] o p[i]."

For any polynomial $p \in \mathbf{Poly}$, I'll use the following sort of notation

For any polynomial $p \in \mathbf{Poly}$, I'll use the following sort of notation

The bottom part is filled by indicating a position, say $i \in p(1)$.

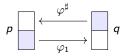
For any polynomial $p \in \mathbf{Poly}$, I'll use the following sort of notation

$$\begin{array}{c|c} p[-] & d \\ p(1) & i \end{array}$$

The bottom part is filled by indicating a position, say i ∈ p(1).
Only then can the top part be filled by a direction, say d ∈ p[i].

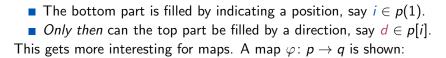
For any polynomial $p \in \mathbf{Poly}$, I'll use the following sort of notation

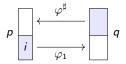
The bottom part is filled by indicating a position, say i ∈ p(1).
Only then can the top part be filled by a direction, say d ∈ p[i]. This gets more interesting for maps. A map φ: p → q is shown:



The map φ is a formula saying "however you fill blue's, I'll fill whites."

For any polynomial $p \in \mathbf{Poly}$, I'll use the following sort of notation

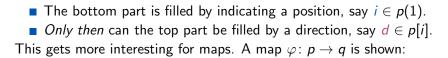


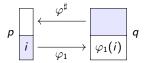


 $\begin{array}{c|c} p[-] & d \\ p(1) & ; \end{array}$

The map φ is a formula saying "however you fill blue's, I'll fill whites." For any $i \in p(1)$ you choose,

For any polynomial $p \in \mathbf{Poly}$, I'll use the following sort of notation

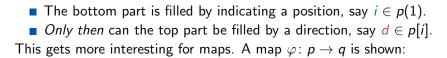


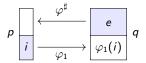


 $\begin{array}{c|c} p[-] & d \\ p(1) & i \end{array}$

The map φ is a formula saying "however you fill blue's, I'll fill whites." For any $i \in p(1)$ you choose, I'll return $\varphi_1(i) \in q(1)$, and

For any polynomial $p \in \mathbf{Poly}$, I'll use the following sort of notation





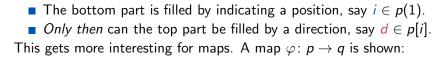
 $\begin{array}{c|c} p[-] & d \\ p(1) & i \end{array}$

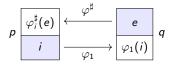
The map φ is a formula saying "however you fill blue's, I'll fill whites."

For any $i \in p(1)$ you choose, I'll return $\varphi_1(i) \in q(1)$, and

• for any
$$e \in q[\varphi_1(i)]$$
 you choose,

For any polynomial $p \in \mathbf{Poly}$, I'll use the following sort of notation





 $\begin{array}{c|c} p[-] & d \\ p(1) & i \end{array}$

The map φ is a formula saying "however you fill blue's, I'll fill whites."

- For any $i \in p(1)$ you choose, I'll return $\varphi_1(i) \in q(1)$, and
- for any $e \in q[\varphi_1(i)]$ you choose, I'll return $\varphi_i^{\sharp}(e) \in p[i]$.

For any polynomial $p \in \mathbf{Poly}$, I'll use the following sort of notation

The bottom part is filled by indicating a position, say i ∈ p(1).
 Only then can the top part be filled by a direction, say d ∈ p[i]. This gets more interesting for maps. A map φ: p → q is shown:

The map φ is a formula saying "however you fill blue's, I'll fill whites." For any $i \in p(1)$ you choose, I'll return $\varphi_1(i) \in q(1)$, and for any $e \in q[\varphi_1(i)]$ you choose, I'll return $\varphi_i^{\sharp}(e) \in p[i]$. But this notation will really come in handy later in handling composition.

9/49

Pleasing aspects of Poly

Here are some properties enjoyed by **Poly**:

- **Poly** contains two copies of **Set** and one copy of **Set**^{op}.
 - Sets A can be represented as a constant or linear: $A, Ay \in \mathbf{Poly}$.
 - Sets A can be op-represented as representables $y^A \in \mathbf{Poly}$.
 - Each of these inclusions is full and has at least one adjoint.

Pleasing aspects of Poly

Here are some properties enjoyed by **Poly**:

- **Poly** contains two copies of **Set** and one copy of **Set**^{op}.
 - Sets A can be represented as a constant or linear: $A, Ay \in \mathbf{Poly}$.
 - Sets A can be op-represented as representables $y^A \in \mathbf{Poly}$.
 - Each of these inclusions is full and has at least one adjoint.
- Poly has all coproducts and limits (extensive), and is Cartesian closed;
 - These agree with coproducts, limits, closure in " Set^{Set} ".
 - 0 is initial, 1 is terminal, + is coproduct, \times is product.
 - y^A is internal hom between $A, y \in \mathbf{Poly}$. For fun: $y^y \cong y + 1$.
- Poly has coequalizers, though these differ from coeq's in "Set^{Set}".

Pleasing aspects of Poly

Here are some properties enjoyed by **Poly**:

- **Poly** contains two copies of **Set** and one copy of **Set**^{op}.
 - Sets A can be represented as a constant or linear: $A, Ay \in \mathbf{Poly}$.
 - Sets A can be op-represented as representables $y^A \in \mathbf{Poly}$.
 - Each of these inclusions is full and has at least one adjoint.
- Poly has all coproducts and limits (extensive), and is Cartesian closed;
 - These agree with coproducts, limits, closure in " Set^{Set} ".
 - 0 is initial, 1 is terminal, + is coproduct, \times is product.
 - y^A is internal hom between $A, y \in \mathbf{Poly}$. For fun: $y^y \cong y + 1$.
- Poly has coequalizers, though these differ from coeq's in "Set^{Set}".
- **Poly** has two factorization systems: epi-mono, vertical-cartesian.

Monoidal structures on Poly

There are many monoidal structures on Poly.

- It has a coproduct (0, +) structure.
- Day convolution can be applied to any SMC structure (I, \cdot) on **Set**.
 - The result is a distributive monoidal structure (y^{I}, \odot) on **Poly**.
 - In the case of (0, +), the result is the product $(1, \times)$.
 - In the case of $(1, \times)$, the result is (y, \otimes) .

$$p imes q \cong \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p[i]+q[j]}$$
 and $p \otimes q \cong \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p[i] imes q[j]}$.

Monoidal structures on Poly

There are many monoidal structures on Poly.

- It has a coproduct (0, +) structure.
- Day convolution can be applied to any SMC structure (I, \cdot) on **Set**.
 - The result is a distributive monoidal structure (y^{I}, \odot) on **Poly**.
 - In the case of (0, +), the result is the product $(1, \times)$.

In the case of $(1, \times)$, the result is (y, \otimes) .

$$p imes q \cong \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p[i]+q[j]}$$
 and $p \otimes q \cong \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p[i] imes q[j]}$.

 \blacksquare The \otimes product has a closure (internal hom) [-,-] given by

$$[p,q] \coloneqq \sum_{arphi : p o q} y^{\sum_{i \in p(1)} q[arphi_1(i)]}$$

Monoidal structures on Poly

There are many monoidal structures on Poly.

- It has a coproduct (0, +) structure.
- Day convolution can be applied to any SMC structure (I, \cdot) on **Set**.
 - The result is a distributive monoidal structure (y^{I}, \odot) on **Poly**.
 - In the case of (0, +), the result is the product $(1, \times)$.

In the case of $(1, \times)$, the result is (y, \otimes) .

$$p imes q \cong \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p[i]+q[j]}$$
 and $p \otimes q \cong \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p[i] imes q[j]}$.

• The \otimes product has a closure (internal hom) [-, -] given by $[p, q] \coloneqq \sum_{\varphi: \ p \to q} y^{\sum_{i \in p(1)} q[\varphi_1(i)]}$

There's one more monoidal product, which will be of great interest.

Composition monoidal structure (Poly, y, \triangleleft)

The composite of two polynomial functors is again polynomial.

- Let's denote the composite of p and q by $p \triangleleft q$.
- Example: if $p := y^2$, q := y + 1, then $p \triangleleft q \cong y^2 + 2y + 1$.
- **This is a monoidal structure, but not symmetric.** $(q \triangleleft p \cong y^2 + 1)$
- The identity functor y is the unit: $p \triangleleft y \cong p \cong y \triangleleft p$.

Composition monoidal structure (Poly, y, \triangleleft)

The composite of two polynomial functors is again polynomial.

- Let's denote the composite of p and q by $p \triangleleft q$.
- Example: if $p := y^2$, q := y + 1, then $p \triangleleft q \cong y^2 + 2y + 1$.
- This is a monoidal structure, but not symmetric. $(q \triangleleft p \cong y^2 + 1)$
- The identity functor y is the unit: $p \triangleleft y \cong p \cong y \triangleleft p$.

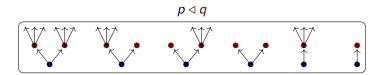
Why the we weird symbol \triangleleft rather than \circ ?

- We want to reserve \circ for morphism composition.
- The notation $p \triangleleft q$ represents trees with p under q.

Composition given by stacking trees

Suppose $p := y^2 + y$ and $q := y^3 + 1$.

Draw the composite $p \triangleleft q$ by stacking *q*-trees on top of *p*-trees:



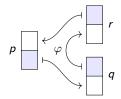
You can also read it as q feeding into p, which is how composition works.

Maps to composites

The abacus pictures are most useful for maps $p o q_1 \triangleleft \cdots \triangleleft q_k$.

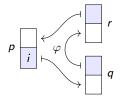
• A map
$$\varphi \colon p \to q \triangleleft r$$
 is an element of
 $\varphi \in \operatorname{Poly}(p, q \triangleleft r) \cong \prod_{i \in p(1)} \sum_{j \in q(1)} \prod_{e \in q[j]} \sum_{k \in r(1)} \prod_{f \in r[k]} \sum_{d \in p[i]} 1.$

We could write it with our abacus pictures:



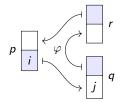
The abacus pictures are most useful for maps $p o q_1 \triangleleft \cdots \triangleleft q_k$.

• A map
$$\varphi \colon p \to q \triangleleft r$$
 is an element of
 $\varphi \in \operatorname{Poly}(p, q \triangleleft r) \cong \prod_{i \in p(1)} \sum_{j \in q(1)} \prod_{e \in q[j]} \sum_{k \in r(1)} \prod_{f \in r[k]} \sum_{d \in p[i]} 1.$



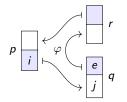
The abacus pictures are most useful for maps $p \to q_1 \triangleleft \cdots \triangleleft q_k$.

• A map
$$\varphi \colon p \to q \triangleleft r$$
 is an element of
 $\varphi \in \operatorname{Poly}(p, q \triangleleft r) \cong \prod_{i \in p(1)} \sum_{j \in q(1)} \prod_{e \in q[j]} \sum_{k \in r(1)} \prod_{f \in r[k]} \sum_{d \in p[i]} 1.$



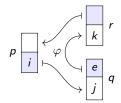
The abacus pictures are most useful for maps $p \to q_1 \triangleleft \cdots \triangleleft q_k$.

• A map
$$\varphi \colon p \to q \triangleleft r$$
 is an element of
 $\varphi \in \operatorname{Poly}(p, q \triangleleft r) \cong \prod_{i \in p(1)} \sum_{j \in q(1)} \prod_{e \in q[j]} \sum_{k \in r(1)} \prod_{f \in r[k]} \sum_{d \in p[i]} 1.$



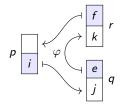
The abacus pictures are most useful for maps $p \to q_1 \triangleleft \cdots \triangleleft q_k$.

• A map
$$\varphi \colon p \to q \triangleleft r$$
 is an element of
 $\varphi \in \operatorname{Poly}(p, q \triangleleft r) \cong \prod_{i \in p(1)} \sum_{j \in q(1)} \prod_{e \in q[j]} \sum_{k \in r(1)} \prod_{f \in r[k]} \sum_{d \in p[i]} 1.$



The abacus pictures are most useful for maps $p \rightarrow q_1 \triangleleft \cdots \triangleleft q_k$.

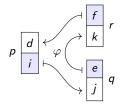
• A map
$$\varphi \colon p \to q \triangleleft r$$
 is an element of
 $\varphi \in \operatorname{Poly}(p, q \triangleleft r) \cong \prod_{i \in p(1)} \sum_{j \in q(1)} \prod_{e \in q[j]} \sum_{k \in r(1)} \prod_{f \in r[k]} \sum_{d \in p[i]} 1.$



The abacus pictures are most useful for maps $p \rightarrow q_1 \triangleleft \cdots \triangleleft q_k$.

• A map
$$\varphi \colon p \to q \triangleleft r$$
 is an element of
 $\varphi \in \mathsf{Poly}(p, q \triangleleft r) \cong \prod_{i \in p(1)} \sum_{j \in q(1)} \prod_{e \in q[j]} \sum_{k \in r(1)} \prod_{f \in r[k]} \sum_{d \in p[i]} 1.$

We could write it with our abacus pictures:



These will come in handy when asking if two such φ, ψ are equal.

Comonoids in (Poly, y, \triangleleft)

In any monoidal category $(\mathcal{M}, I, \otimes)$, one can consider comonoids.

- A comonoid is a triple (m, ϵ, δ) satisfying certain rules, where
 - $m \in \mathcal{M}$ is an object, the *carrier*,
 - $\epsilon: m \to I$ is a map, the *counit*, and
 - $\delta: m \to m \otimes m$ is a map, the *comultiplication*.

In (**Poly**, y, \triangleleft), comonoids are exactly categories!¹

¹Ahman-Uustalu. "Directed Containers as Categories". MSFP 2016.

Comonoids in (Poly, y, \triangleleft)

In any monoidal category $(\mathcal{M}, I, \otimes)$, one can consider comonoids.

A comonoid is a triple (m, ϵ, δ) satisfying certain rules, where

• $m \in \mathcal{M}$ is an object, the *carrier*,

- $\epsilon : m \rightarrow I$ is a map, the *counit*, and
- $\delta: m \to m \otimes m$ is a map, the *comultiplication*.

In (**Poly**, y, \triangleleft), comonoids are exactly categories!¹

 \blacksquare If $\mathcal C$ is a category, the corresponding comonoid has carrier

$$\mathfrak{c}\coloneqq \sum_{i\in\mathsf{Ob}(\mathcal{C})}y^{\mathcal{C}[i]}$$

where C[i] is the set of morphisms in C that emanate from i.

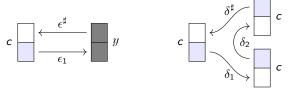
- The counit $\epsilon \colon \mathfrak{c} \to y$ assigns to each object an identity.
- The comult $\delta: \mathfrak{c} \to \mathfrak{c} \triangleleft \mathfrak{c}$ assigns codomains and composites.

¹Ahman-Uustalu. "Directed Containers as Categories". *MSFP 2016*.

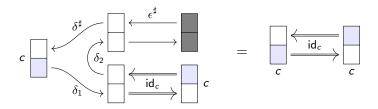
The abacus in action

We can understand the Ahman-Uustalu result combinatorially.

• Let (c, ϵ, δ) be a comonoid, where $\epsilon: c \to y$ and $\delta: c \to c \triangleleft c$.

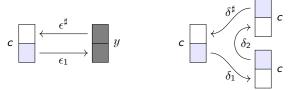


Here's the first unitality law, $(id_c \triangleleft \epsilon) \circ \delta = id_c$:

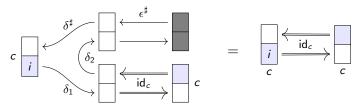


The abacus in action

We can understand the Ahman-Uustalu result combinatorially. • Let (c, ϵ, δ) be a comonoid, where $\epsilon : c \to y$ and $\delta : c \to c \triangleleft c$.



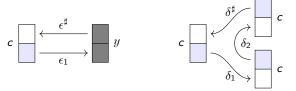
Here's the first unitality law, $(id_c \triangleleft \epsilon) \circ \delta = id_c$:



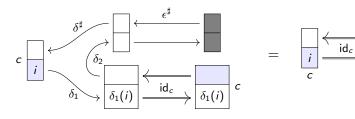
Equation: $\forall i \in c(1)....$

The abacus in action

We can understand the Ahman-Uustalu result combinatorially. • Let (c, ϵ, δ) be a comonoid, where $\epsilon : c \to y$ and $\delta : c \to c \triangleleft c$.



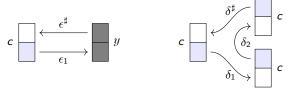
Here's the first unitality law, $(id_c \triangleleft \epsilon) \circ \delta = id_c$:



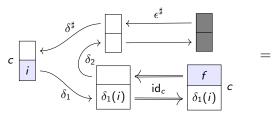
Equation: $\forall i \in c(1), \delta_1(i) = i \land \dots$

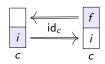
The abacus in action

We can understand the Ahman-Uustalu result combinatorially. • Let (c, ϵ, δ) be a comonoid, where $\epsilon : c \to y$ and $\delta : c \to c \triangleleft c$.



Here's the first unitality law, $(id_c \triangleleft \epsilon) \circ \delta = id_c$:

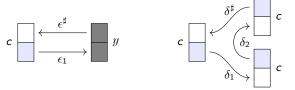




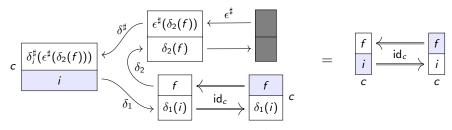
Equation: $\forall i \in c(1), \delta_1(i) = i \land \forall f \in c[i],$

The abacus in action

We can understand the Ahman-Uustalu result combinatorially. Let (c, ϵ, δ) be a comonoid, where $\epsilon : c \to y$ and $\delta : c \to c \triangleleft c$.



Here's the first unitality law, $(id_c \triangleleft \epsilon) \circ \delta = id_c$:

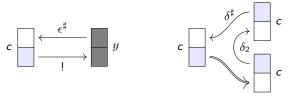


Equation: $\forall i \in c(1), \delta_1(i) = i \land \forall f \in c[i], \delta_i^{\sharp}(f, \epsilon^{\sharp}(\delta_2(f))) = f.$ 16/49

Making sense of the results

We want to make sense of the set-theoretic equations from the abacus.

For example, we found out that $\delta_1(i) = i$ for all $i \in c(1)$, so...

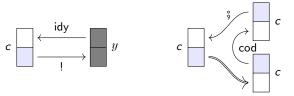


To make sense of the other equations, let's rename $\epsilon^{\sharp}, \delta_2$, and δ^{\sharp} .

Making sense of the results

We want to make sense of the set-theoretic equations from the abacus.

For example, we found out that $\delta_1(i) = i$ for all $i \in c(1)$, so...



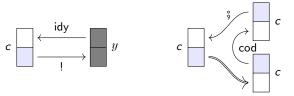
To make sense of the other equations, let's rename ε[‡], δ₂, and δ[‡].
 Namely, let's write idy := ε[‡], cod := δ₂, and [◦]₃ := δ[‡].

• Then the previous equation says: $f \circ idy(cod(f)) = f$.

Making sense of the results

We want to make sense of the set-theoretic equations from the abacus.

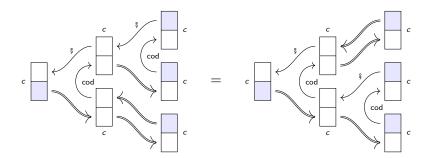
For example, we found out that $\delta_1(i) = i$ for all $i \in c(1)$, so...



To make sense of the other equations, let's rename ε[‡], δ₂, and δ[‡].
 Namely, let's write idy := ε[‡], cod := δ₂, and [◦]₃ := δ[‡].

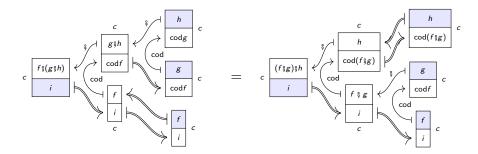
- Then the previous equation says: $f \circ idy(cod(f)) = f$.
- The other unitality eq'n gives: cod(idy(i)) = i and $idy(i) \stackrel{\circ}{,} f = f$.
- The associativity eq'n gives: cod(f \u03c3 g) = cod(g) and (f \u03c3 g) \u03c3 h = f \u03c3 (g \u03c3 h).

A brief glance at associativity



Let's fill it in and read off the abacus:

A brief glance at associativity



Let's fill it in and read off the abacus:

$$\begin{aligned} \forall i \in c(1), i &= i \land \\ \forall f \in c[i], \operatorname{cod} f &= \operatorname{cod} f \land \\ \forall g \in c[\operatorname{cod} f], \operatorname{cod} g &= \operatorname{cod} (f \operatorname{\r{g}} g) \land \\ \forall h \in c[\operatorname{cod} g], f \operatorname{\r{g}} (g \operatorname{\r{g}} h) &= (f \operatorname{\r{g}} g) \operatorname{\r{g}} h. \end{aligned}$$

Comonoid maps are "cofunctors"

In **Poly**, comonoids are categories, but their morphisms aren't functors.

- A comonoid morphism $\varphi \colon \mathcal{C} \nrightarrow \mathcal{D}$ is called a *cofunctor*.
- It includes a **Poly** map on carriers. For each object $i \in \mathfrak{c}(1)$, we get:

• an object $j\coloneqq arphi_1(i)\in \mathfrak{d}(1)$ and

- for each emanating $f \in \mathfrak{d}[j]$, an emanating $\varphi_i^{\sharp}(f) \in \mathfrak{c}[i]$.
- **Rules:** φ^{\sharp} preserves ids and comps, and φ_1 preserves cods.
- Denote this by $Cat^{\sharp} := Comon(Poly) = (cat'ys and cofunctors).$

Comonoid maps are "cofunctors"

In Poly, comonoids are categories, but their morphisms aren't functors.

- A comonoid morphism $\varphi \colon \mathcal{C} \nrightarrow \mathcal{D}$ is called a *cofunctor*.
- It includes a **Poly** map on carriers. For each object $i \in \mathfrak{c}(1)$, we get:

$$lacksymbol{\bullet}$$
 an object $j\coloneqq arphi_1(i)\in \mathfrak{d}(1)$ and

- for each emanating $f \in \mathfrak{d}[j]$, an emanating $\varphi_i^{\sharp}(f) \in \mathfrak{c}[i]$.
- Rules: φ^{\sharp} preserves ids and comps, and φ_1 preserves cods.
- Denote this by **Cat[‡]** := **Comon**(**Poly**) = (cat'ys and cofunctors).

Example: what is a cofunctor $C \xrightarrow{\varphi} y^{\mathbb{Q}}$?

It is trivial on objects i ∈ Ob(C). Passing back morphisms gives:
... a map φ[‡]_i(q): i → i_{+q} emanating from i for each q ∈ Q, s.t...
... φ[‡]_i(0) = id_i, so i₊₀ = i, and φ[‡]_i(q) ∘ φ[‡]_{i+q}(q') = φ[‡]_i(q + q').

Comonoid maps are "cofunctors"

In **Poly**, comonoids are categories, but their morphisms aren't functors.

- A comonoid morphism $\varphi \colon \mathcal{C} \nrightarrow \mathcal{D}$ is called a *cofunctor*.
- It includes a **Poly** map on carriers. For each object $i \in \mathfrak{c}(1)$, we get:

• an object
$$j\coloneqq arphi_1(i)\in \mathfrak{d}(1)$$
 and

- for each emanating $f \in \mathfrak{d}[j]$, an emanating $\varphi_i^{\sharp}(f) \in \mathfrak{c}[i]$.
- Rules: φ^{\sharp} preserves ids and comps, and φ_1 preserves cods.
- Denote this by **Cat[‡]** := **Comon**(**Poly**) = (cat'ys and cofunctors).

Example: what is a cofunctor $C \xrightarrow{\varphi} y^{\mathbb{Q}}$?

It is trivial on objects $i \in Ob(\mathcal{C})$. Passing back morphisms gives:

• ... a map $\varphi_i^{\sharp}(q) \colon i \to i_{+q}$ emanating from i for each $q \in \mathbb{Q}$, s.t...

• ...
$$\varphi_i^{\sharp}(0) = \operatorname{id}_i$$
, so $i_{+0} = i$, and $\varphi_i^{\sharp}(q) \circ \varphi_{i_{+q}}^{\sharp}(q') = \varphi_i^{\sharp}(q+q')$.

"That's a strange sort of structure to put on a category!"

- Cofunctors offer a whole new world to explore. Think "vector fields".
- The natural co-transformations between them are even wilder.

Cat[‡]: examples and facts

Here are some examples of the polynomial ${\mathfrak c}$ carrying a category ${\mathcal C}.$

- c never has constant part: every object needs an outgoing arrow.
- The following are equivalent:
 - **\blacksquare** the comonoid structure maps ϵ, δ are cartesian;
 - $\mathfrak{c} = Oy$ is a linear polynomial;
 - C is a discrete category, with Ob(C) = O.

• $\mathfrak{c} = y^M$ is representable iff $M \in \mathbf{Set}$ carries a monoid.

If
$$C = \begin{bmatrix} 1 & 2 \\ \bullet & \bullet \\ \bullet & \bullet \\ \end{bmatrix}$$
 then $\mathfrak{c} = y^{N} + y^{N-1} + \dots + y$.

Cat[‡]: examples and facts

Here are some examples of the polynomial ${\mathfrak c}$ carrying a category ${\mathcal C}.$

- c never has constant part: every object needs an outgoing arrow.
- The following are equivalent:
 - \blacksquare the comonoid structure maps ϵ, δ are cartesian;
 - $\mathfrak{c} = Oy$ is a linear polynomial;
 - C is a discrete category, with Ob(C) = O.

• $\mathfrak{c} = y^M$ is representable iff $M \in \mathbf{Set}$ carries a monoid. • If $\mathcal{C} = \begin{bmatrix} 1 \\ \bullet \\ \bullet \\ \end{bmatrix} \xrightarrow{2} \to \cdots \to \overset{N}{\bullet}$ then $\mathfrak{c} = y^N + y^{N-1} + \cdots + y$.

Other facts about Cat^{\sharp} :

- Coproducts in **Cat**^{\sharp} and in **Cat** agree; carrier is $\mathfrak{c} + \mathfrak{d}$.
- **Cat[#]** has finite products (Niu), and they're very interesting.
- **Cat**^{\sharp} inherits \otimes from **Poly**, and $\mathfrak{c} \otimes \mathfrak{d}$ is the usual categorical product.

Cofree comonoids

To any polynomial p, we can associate the *cofree comonoid* on p.

- **•** That is, the forgetful functor $\mathbf{Cat}^{\sharp} \to \mathbf{Poly}$ has a right adjoint.
- I'll give an explicit description on the next slide.
- There's a standard construction for this type of thing.

We need a polynomial \mathfrak{c}_p and maps $\mathfrak{c}_p \to y$ and $\mathfrak{c}_p \to \mathfrak{c}_p \triangleleft \mathfrak{c}_p$.

Cofree comonoids

To any polynomial p, we can associate the *cofree comonoid* on p.

- **•** That is, the forgetful functor $\mathbf{Cat}^{\sharp} \to \mathbf{Poly}$ has a right adjoint.
- I'll give an explicit description on the next slide.
- There's a standard construction for this type of thing.

We need a polynomial \mathfrak{c}_p and maps $\mathfrak{c}_p \to y$ and $\mathfrak{c}_p \to \mathfrak{c}_p \triangleleft \mathfrak{c}_p$.

- Starting with $p \in \mathbf{Poly}$, we first copoint it by multiplying by y.
- That is, *py* is the universal thing mapping to *p* and *y*.
- We get c_p by taking the limit of the following diagram in **Poly**:

Cofree comonoids

To any polynomial p, we can associate the *cofree comonoid* on p.

- **•** That is, the forgetful functor $Cat^{\sharp} \rightarrow Poly$ has a right adjoint.
- I'll give an explicit description on the next slide.
- There's a standard construction for this type of thing.

We need a polynomial \mathfrak{c}_p and maps $\mathfrak{c}_p \to y$ and $\mathfrak{c}_p \to \mathfrak{c}_p \triangleleft \mathfrak{c}_p$.

- Starting with $p \in \mathbf{Poly}$, we first copoint it by multiplying by y.
- That is, py is the universal thing mapping to p and y.
- We get \mathfrak{c}_p by taking the limit of the following diagram in **Poly**:

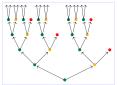
For us, a main use of \mathfrak{c}_p is an equivalence \mathfrak{c}_p -Set $\cong p$ -Coalg.

- A coalgebra $S \to p(S)$ corresponds to $\mathfrak{c}_p \to \mathbf{Set}$ with elements S.
- For example, the object set $c_p(1)$ is the terminal *p*-coalgebra.

The cofree comonoid c_p via *p*-trees

Comonoids in **Poly** are categories, so c_p is a category; which one?

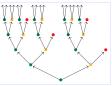
- It's actually free on a graph, but the graph is very interesting.
- The vertex-set $c_p(1)$ of the graph is the set of *p*-trees.
 - A *p*-tree is a possibly infinite tree *t*, where each node...
 - ... is labeled by a position $i \in p(1)$ and has p[i]-many branches.
 - Example object $t \in \mathfrak{c}_p(1)$, where $p = \{\bullet, \bullet\}y^2 + \{\bullet\} \cong 2y^2 + 1$:



The cofree comonoid c_p via *p*-trees

Comonoids in **Poly** are categories, so c_p is a category; which one?

- It's actually free on a graph, but the graph is very interesting.
- The vertex-set $c_p(1)$ of the graph is the set of *p*-trees.
 - A *p*-tree is a possibly infinite tree *t*, where each node...
 - ... is labeled by a position $i \in p(1)$ and has p[i]-many branches.
 - Example object $t \in \mathfrak{c}_p(1)$, where $p = \{\bullet, \bullet\}y^2 + \{\bullet\} \cong 2y^2 + 1$:



- For any vertex $t \in \mathfrak{c}_p(1)$, an arrow $a \in \mathfrak{c}_p[t]$ emanating from t is...
- ...a finite path from the root of t to another node in t.
- Its codomain is the *p*-tree sitting at the target node (its root).
- Identity arrow = length-0 path; composition = path concatenation. Imagine the whole graph c_p : every possible "destiny" is included.

Bicomodules in (Poly, y, \triangleleft)

Given comonoids \mathcal{C}, \mathcal{D} , a $(\mathcal{C}, \mathcal{D})$ -bicomodule is another kind of map. It's a polynomial m, equipped with two morphisms in **Poly**

$$\mathfrak{c} \triangleleft m \xleftarrow{\lambda} m \xrightarrow{\rho} m \triangleleft \mathfrak{d}$$

each cohering naturally with the comonoid structure ϵ, δ for $\mathfrak{c}, \mathfrak{d}$.

Bicomodules in (Poly, y, \triangleleft)

Given comonoids \mathcal{C}, \mathcal{D} , a $(\mathcal{C}, \mathcal{D})$ -bicomodule is another kind of map.

It's a polynomial m, equipped with two morphisms in Poly

 $\mathfrak{c} \triangleleft m \xleftarrow{\lambda} m \xrightarrow{\rho} m \triangleleft \mathfrak{d}$

each cohering naturally with the comonoid structure ϵ, δ for $\mathfrak{c}, \mathfrak{d}$. I denote this $(\mathcal{C}, \mathcal{D})$ -bicomodule *m* like so:

$$\mathfrak{c} \triangleleft \overset{m}{\longrightarrow} \mathfrak{d}$$
 or $\mathcal{C} \triangleleft \overset{m}{\longrightarrow} \mathcal{D}$

The ⊲'s at the ends help me remember the how the maps go.
Maybe it looks like it's going the wrong way, but hold on.

Bicomodules are parametric right adjoints

Garner explained² that bicomodules $m \in {}_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$, which we've denoted

$$\mathcal{C} \triangleleft \overset{m}{\longrightarrow} \mathcal{D}$$
 or $\mathfrak{c} \triangleleft \overset{m}{\longrightarrow} \mathfrak{d}$

can be identified with parametric right adjoint functors (prafunctors)

$$\mathcal{D}$$
-Set $\xrightarrow{M} C$ -Set.

²Garner's HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6eI

Bicomodules are parametric right adjoints

Garner explained² that bicomodules $m \in {}_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$, which we've denoted

$$\mathcal{C} \triangleleft \overset{m}{\longrightarrow} \mathcal{D}$$
 or $\mathfrak{c} \triangleleft \overset{m}{\longrightarrow} \mathfrak{d}$

can be identified with parametric right adjoint functors (prafunctors)

$$\mathcal{D}$$
-Set $\xrightarrow{M} C$ -Set.

From this perspective the arrow points in the expected direction.
 Assuming Garner's result, check: _CMod₀ ≃ C-Set.

²Garner's HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6eI

Bicomodules are parametric right adjoints

Garner explained² that bicomodules $m \in {}_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$, which we've denoted

$$\mathcal{C} \triangleleft \overset{m}{\longrightarrow} \mathcal{D}$$
 or $\mathfrak{c} \triangleleft \overset{m}{\longrightarrow} \mathfrak{d}$

can be identified with parametric right adjoint functors (prafunctors)

$$\mathcal{D}$$
-Set $\xrightarrow{M} \mathcal{C}$ -Set.

From this perspective the arrow points in the expected direction.

• Assuming Garner's result, check: ${}_{\mathcal{C}}\mathbf{Mod}_0 \cong \mathcal{C}\text{-}\mathbf{Set}$.

Prafunctors $\mathcal{C} \triangleleft \mathcal{D}$ generalize profunctors $\mathcal{C} \rightarrow \mathcal{D}$:

• A profunctor $\mathcal{C} \to \mathcal{D}$ is a functor $\mathcal{C} \to (\mathcal{D}\text{-}\mathbf{Set})^{\mathsf{op}}$

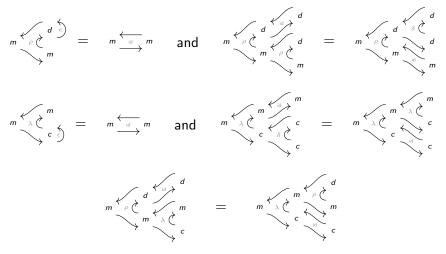
• A prafunctor $\mathcal{C} \triangleleft \mathcal{D}$ is a functor $\mathcal{C} \rightarrow \mathbf{Coco}((\mathcal{D}\operatorname{-}\mathbf{Set})^{\mathsf{op}})...$

• ...where **Coco** is the free coproduct completion.

²Garner's HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6eI

Let's ask the abacus

To prove that bicomodules $\mathfrak{c} \triangleleft \stackrel{m}{\longrightarrow} \mathfrak{d}$ are prafunctors $\mathfrak{d} \operatorname{Mod}_0 \to \mathfrak{c} \operatorname{Mod}_0$: Write out the bicomodule equations and run the abacus.



Interpreting the abacus

By running the abacus and interpreting the results, we find the following.

• A left comodule $\mathfrak{c} \triangleleft m \xleftarrow{\lambda} m$ can be identified with a functor $\mathfrak{c} \rightarrow \mathbf{Poly}$.

$$m \cong \sum_{i \in \mathfrak{c}(1)} \sum_{x \in m_i} y^{m[x]}$$

The right comodule conditions on m → m < d say that each m[x] ...
 ... is not just a set, it's the set of elements for a copresheaf on ∂!

Interpreting the abacus

By running the abacus and interpreting the results, we find the following.

• A left comodule $\mathfrak{c} \triangleleft m \xleftarrow{\lambda} m$ can be identified with a functor $\mathfrak{c} \rightarrow \mathbf{Poly}$.

$$m \cong \sum_{i \in \mathfrak{c}(1)} \sum_{x \in m_i} y^{m[x]}$$

The right comodule conditions on m → m < d say that each m[x] ...
 ... is not just a set, it's the set of elements for a copresheaf on ∂!
 When we add the coherence condition, it all falls into place.

- The idea is that each $i \in \mathfrak{c}(1)$ functorially gets a set m_i and...
- ... each $x \in m_i$ gets a ϑ -set with elements m[x].
- The prafunctor \mathfrak{d} -Set $\rightarrow \mathfrak{c}$ -Set associated to *m* takes any \mathfrak{d} -set *N*, ...
- ... hom's in the m[x]'s, and adds them up to get a *c*-set.

We'll understand this better semantically when we get to applications.

Getting acquainted with bicomodules

Here are some facts, just to get you acquainted with $\mathfrak{c} \triangleleft \mathfrak{d}$.

- If $\mathfrak{d} = 0$ then carrier $m \in \mathbf{Poly}$ is constant, i.e. m = M for $M \in \mathbf{Set}$.
- If carrier m = M is constant, then m factors as $\mathfrak{c} \triangleleft M \triangleleft \mathfrak{d} \triangleleft \mathfrak{d}$.

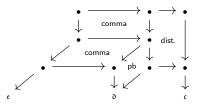
Getting acquainted with bicomodules

Here are some facts, just to get you acquainted with $\mathfrak{c} \triangleleft \overset{m}{\longrightarrow} \mathfrak{d}$.

- If $\mathfrak{d} = 0$ then carrier $m \in \mathbf{Poly}$ is constant, i.e. m = M for $M \in \mathbf{Set}$.
- If carrier m = M is constant, then m factors as $\mathfrak{c} \triangleleft M \triangleleft \mathfrak{d} \triangleleft \mathfrak{d}$.
- The following cat'ies are isomorphic and all are equivalent to c-Set:
 - Cartesian cofunctors over $\mathfrak{c} = \mathsf{Discrete}$ opfibrations over \mathfrak{c} .
 - The constant left c-comodules, i.e. with constant carrier m = M.
 - The linear left c-comodules, i.e. with linear carrier m = My.
 - The representable right \mathfrak{c} -comodules, i.e. with carrier y^M .

Bicomodule composition

If you've ever tried to compose prafunctors; this might look familiar.



But in **Poly**, it's just given by the usual bicomodule composition.

- The composite of $\mathfrak{c} \triangleleft \overset{m}{\longrightarrow} \mathfrak{d} \triangleleft \overset{n}{\longrightarrow} \mathfrak{e}$, is carried by the equalizer: $m \triangleleft_{\mathfrak{d}} n \xrightarrow{eq} m \triangleleft n \rightrightarrows m \triangleleft \mathfrak{d} \triangleleft n$
- This has a natural (c, c)-structure, because ⊲ preserves conn. limits.
 It's amazing to see the combinatorics handle all this complexity.

The framed bicategory $\mathbb P$

Poly comonoids, cofunctors, and bicomodules form a framed bicategory \mathbb{P} .

It's got a ton of structure, e.g. two monoidal structures, $+, \otimes$.

It's actually not too hard to describe.

Here are some facts about ${}_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$ for categories \mathcal{C}, \mathcal{D} .

- $_{\mathcal{C}}$ **Mod**₀ \cong \mathcal{C} -**Set**, copresheaves on \mathcal{C} .
- $_1$ Mod_D \cong Coco((\mathcal{D} -Set)^{op}).
- $\blacksquare \ _{\mathcal{C}}\mathsf{Mod}_{\mathcal{D}}\cong\mathsf{Cat}(\mathcal{C},{}_{1}\mathsf{Mod}_{\mathcal{D}}).$

The framed bicategory $\mathbb P$

Poly comonoids, cofunctors, and bicomodules form a framed bicategory $\mathbb{P}.$

It's got a ton of structure, e.g. two monoidal structures, $+, \otimes$.

It's actually not too hard to describe.

Here are some facts about ${}_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$ for categories \mathcal{C}, \mathcal{D} .

•
$${}_{\mathcal{C}}\mathbf{Mod}_{\mathbf{0}}\cong \mathcal{C}$$
-Set, copresheaves on \mathcal{C} .

$$\blacksquare \ _{1}\mathsf{Mod}_{\mathcal{D}} \cong \mathsf{Coco}((\mathcal{D}\operatorname{-}\mathsf{Set})^{\mathsf{op}}).$$

$$\blacksquare \ _{\mathcal{C}}\mathsf{Mod}_{\mathcal{D}}\cong \mathsf{Cat}(\mathcal{C},{}_{1}\mathsf{Mod}_{\mathcal{D}}).$$

There's a factorization system on \mathbb{P} :

• Every
$$m \in {}_{\mathfrak{c}}\mathbf{Mod}_{\mathfrak{d}}$$
 can be factored as $m \cong f \circ p$,

$$\mathfrak{c} \triangleleft \stackrel{f}{\longleftarrow} \mathfrak{c}' \triangleleft \stackrel{p}{\longleftarrow} \mathfrak{d}$$

where f "is" a discrete opfibration and p "is" a profunctor.

Gambino-Kock's framed bicategory Poly

In Gambino-Kock, the authors construct a framed bicategory $\mathbb{P}oly_{Set}$.

- Its vertical category is **Set**.
- A horizontal map $I \rightarrow J$ is *J*-many polynomials in *I*-many variables.
- 2-cells are natural transformations between polynomial functors.

Gambino-Kock's framed bicategory Poly

In Gambino-Kock, the authors construct a framed bicategory $\mathbb{P}oly_{Set}$.

- Its vertical category is Set.
- A horizontal map $I \rightarrow J$ is *J*-many polynomials in *I*-many variables.
- 2-cells are natural transformations between polynomial functors.

This is a full subcategory \mathbb{P} **oly** $\subseteq \mathbb{P}$.

- Objects in \mathbb{P} are categories; those in \mathbb{P} oly are the discrete categories.
- Verticals in \mathbb{P} are cofunctors; $\mathbf{Set}(I, I') \cong \mathbf{Cat}^{\sharp}(Iy, I'y)$.
- Horizontals in \mathbb{P} are prafunctors; between discretes, these are poly's.
- In both, 2-cells are the natural transformations.

The comonoid theory \mathbb{P} of (one-variable) **Poly** includes all of \mathbb{P} **oly**.

Adjunctions in \mathbb{P}

The map $_Mod_0 \colon \mathbb{P}^{op} \to \mathbb{C}at$ is locally fully faithful; i.e....

- ...for categories \mathcal{C}, \mathcal{D} , only some functors $m: \mathcal{D}$ -Set $\rightarrow \mathcal{C}$ -Set count...
- ... as bimodules $C \triangleleft \stackrel{m}{\longrightarrow} \mathcal{D}$, but for those m, n that do...

• ... the bimodule maps $m \Rightarrow n$ are exactly the natural transformations.

Thus it is easy to say when $C \triangleleft \stackrel{m}{\longrightarrow} \mathcal{D}$ has an adjoint in \mathbb{P} , namely if...

- ...the induced \mathcal{D} -Set $\xrightarrow{m} C$ -Set has an adjoint C-Set $\xrightarrow{m'} \mathcal{D}$ -Set and...
- ... m' is in $\mathbb{P}!$ (i.e. the adjoint m' needs to preserve connected limits).

Adjunctions in \mathbb{P}

The map $_Mod_0 \colon \mathbb{P}^{op} \to \mathbb{C}at$ is locally fully faithful; i.e....

- ...for categories C, \mathcal{D} , only some functors $m: \mathcal{D}$ -Set $\rightarrow C$ -Set count...
- ... as bimodules $C \triangleleft \stackrel{m}{\longrightarrow} \mathcal{D}$, but for those m, n that do...

• ... the bimodule maps $m \Rightarrow n$ are exactly the natural transformations. Thus it is easy to say when $C \triangleleft \stackrel{m}{\longrightarrow} \mathscr{D}$ has an adjoint in \mathbb{P} , namely if...

• ...the induced \mathcal{D} -Set $\xrightarrow{m} C$ -Set has an adjoint C-Set $\xrightarrow{m'} \mathcal{D}$ -Set and...

• ... m' is in $\mathbb{P}!$ (i.e. the adjoint m' needs to preserve connected limits).

Both functors $C \xrightarrow{\mathcal{F}} \mathcal{D}$ and cofunctors $C \xrightarrow{\varphi} \mathcal{D}$ induce adjunctions in \mathbb{P}^{op} .

- The pullback and right Kan extension along F are adjoint $\Delta_F \dashv \Pi_F$.
- The companion and conjoint of φ are adjoint $\Sigma_{\varphi} \dashv \Delta_{\varphi}$.

• A dopf *F* is both a functor and a cofunctor, and the Δ 's coincide. Note that cofunctors $C \nrightarrow \mathcal{D}$ induce interesting maps between toposes:

- Whereas geometric morphisms C-Set $\leftrightarrows \mathcal{D}$ -Set preserve finite limits...
- ... cofunctors induce adjunctions that preserve connected limits.

Operads as monads in $\mathbb P$

In any framed bicategory, notation from $\mathbb P$, a monad $(\mathcal C, m, \eta, \mu)$ consists of

- An object *C*, the *type*
- **a** bicomodule $C \triangleleft \stackrel{m}{\longrightarrow} Q$, the *carrier*
- a 2-cell η : id_c \Rightarrow m, the unit
- a 2-cell μ : $m \circ m \Rightarrow m$, the multiplication
- satisfying the usual laws.

Operads as monads in $\ensuremath{\mathbb{P}}$

In any framed bicategory, notation from \mathbb{P} , a monad $(\mathcal{C}, m, \eta, \mu)$ consists of

- An object *C*, the *type*
- **a** bicomodule $C \triangleleft \stackrel{m}{\longrightarrow} Q$, the *carrier*
- a 2-cell η : id_c \Rightarrow *m*, the *unit*
- a 2-cell μ : $m \circ m \Rightarrow m$, the multiplication
- satisfying the usual laws.

In $\mathbb P,$ these generalize operads in a number of ways:

- When $C \cong I$ is discrete, η, μ are cartesian, you get colored operads.³
- Relaxing discreteness of *C*, the domain of a morphism can be...
- ... a diagram, rather than a mere set, of objects.
- Relaxing "iso" condition, composites and ids can have "weird" arities.

³Not quite the standard definition of operad, but no less elegant: the input to a morphism is a set, rather than a list of objects. You can also talk about standard (list-based) operads and their generalizations within the \mathbb{P} setting; see Gambino-Kock.

"Categories = monads in Span" in \mathbb{P}

It is well-known that "categories are monads in Span." Let O be a set.

- A prafunctor $Oy \rightarrow Oy$ acts as a span iff it's a left adjoint.
- If a monad *m* has a right adjoint $Oy \triangleleft \stackrel{c}{\frown} Oy$, then *c* is a comonad.
- Now, since the vertical part of \mathbb{P} is already **Comon**(**Poly**),
- ... c has a canonical comonoid structure \mathfrak{c} , equipped with $\mathfrak{c} \nrightarrow Oy$.
- This map $\mathfrak{c} \not\rightarrow Oy$ is identity on objects because c was right adjoint.
- Thus we see internally how m induces a category c with object-set O.

"Categories = monads in Span" in \mathbb{P}

It is well-known that "categories are monads in Span." Let O be a set.

- A prafunctor $Oy \rightarrow Oy$ acts as a span iff it's a left adjoint.
- If a monad *m* has a right adjoint $Oy \triangleleft \stackrel{c}{\frown} Oy$, then *c* is a comonad.
- Now, since the vertical part of \mathbb{P} is already **Comon**(**Poly**),
- ... c has a canonical comonoid structure \mathfrak{c} , equipped with $\mathfrak{c} \nrightarrow Oy$.
- This map $\mathfrak{c} \not\rightarrow Oy$ is identity on objects because c was right adjoint.
- Thus we see internally how m induces a category c with object-set O.

Here's how functors and cofunctors look in this perspective:

Grothendieck sites give \mathbb{P} -monads

Every Grothendieck site (\mathcal{C}^{op}, J) has an associated monad m_J in \mathbb{P} .

- A J-sheaf is an m_J -algebra, but not all m_J -algebras are J-sheaves.
- An m_J -algebra gives formula for gluing, but no uniqueness guarantee.

Grothendieck sites give $\mathbb P\text{-monads}$

Every Grothendieck site (\mathcal{C}^{op}, J) has an associated monad m_J in \mathbb{P} .

- A J-sheaf is an m_J -algebra, but not all m_J -algebras are J-sheaves.
- An *m_J*-algebra gives formula for gluing, but no uniqueness guarantee.

To each Grothendieck top'y *J*, we need (m, η, μ) where $C \triangleleft m \triangleleft C$.

- The topology J assigns to each $V \in C$ a set J_V , "covering families"...
- ... and each $F \in J_V$ is assigned a subfunctor $S_F \subseteq C[V]$.

From this data we define $m \in \mathbf{Poly}$:

$$m := \sum_{V \in \mathsf{Ob}(\mathcal{C})} \sum_{F \in J_V} y^{S_F}.$$

The Grothendieck top'y axioms endow the bimodule and monad structure.

Grothendieck sites give $\mathbb P\text{-monads}$

Every Grothendieck site (\mathcal{C}^{op}, J) has an associated monad m_J in \mathbb{P} .

- A J-sheaf is an m_J -algebra, but not all m_J -algebras are J-sheaves.
- An m_J -algebra gives formula for gluing, but no uniqueness guarantee.

To each Grothendieck top'y *J*, we need (m, η, μ) where $C \triangleleft m \triangleleft C$.

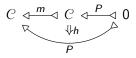
- The topology J assigns to each $V \in C$ a set J_V , "covering families"...
- ... and each $F \in J_V$ is assigned a subfunctor $S_F \subseteq C[V]$.

From this data we define $m \in \mathbf{Poly}$:

$$m := \sum_{V \in \mathsf{Ob}(\mathcal{C})} \sum_{F \in J_V} y^{S_F}.$$

The Grothendieck top'y axioms endow the bimodule and monad structure.

An algebra structure $m \circ P \xrightarrow{h} P$ assigns a section $h_V(F, s) \in P_V$ to each V-covering family F and matching family s of sections.



Outline

1 Introduction

2 Theory

3 Applications

- Interacting Moore machines
- Mode-dependence
- Databases
- Cellular automata
- Deep learning

4 Conclusion

Bringing the abacus out of the monastery

I hope it's now clear that we've got a well-oiled machine:

- **Poly** and \mathbb{P} have excellent formal properties, and
- we can see how they work using very concrete calculations.

Our next job is to take this shiny abacus out for a spin.

- How do I see Poly as appropriate for the Glass Bead Game?
- We can use this instrument to talk about many aspects of the world.

Moore machines

Definition

Given sets A, B, an (A, B)-Moore machine consists of:

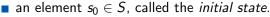
- a set *S*, elements of which are called *states*,
- a function $r: S \rightarrow B$, called *readout*, and
- a function $u: S \times A \rightarrow S$, called *update*.
- It is initialized if it is equipped also with
 - an element $s_0 \in S$, called the *initial state*.

We refer to A as the *input set*, B as the *output set* of the Moore machine.

Moore machines

Definition

Given sets A, B, an (A, B)-Moore machine consists of:
a set S, elements of which are called *states*,
a function r: S → B, called *readout*, and
a function u: S × A → S, called *update*.
It is *initialized* if it is equipped also with



Dynamics: an (A, B)-Moore machine (S, r, u, s_0) is a "stream transducer":

- Given a list/stream $[a_0, a_1, \ldots]$ of A's...
- let $s_{n+1} := u(s_n, a_n)$ and $b_n := r(s_n)$.
- We thus have obtained a list/stream $[b_0, b_1, \ldots]$ of *B*'s.

S

Moore machines as maps in Poly

We can understand Moore machines A^{+} in terms of polynomials.

- A Moore machine $r: S \rightarrow B$ and $u: S \times A \rightarrow S$ is:
 - A function $S \rightarrow B \times S^A$, i.e. a By^A -coalgebra.
 - (It can also be phrased as a polynomial map $Sy^S \rightarrow By^A$.)

Moore machines as maps in Poly

We can understand Moore machines A^{-} in terms of polynomials.

• A Moore machine $r: S \rightarrow B$ and $u: S \times A \rightarrow S$ is:

• A function $S \to B \times S^A$, i.e. a By^A -coalgebra.

• (It can also be phrased as a polynomial map $Sy^S \rightarrow By^A$.)

A *p*-coalgebra allows different input-sets at different positions.

For arbitrary $p \in \mathbf{Poly}$ we can interpret a map $\varphi \colon S \to p \triangleleft S$ as:

- a readout: every state $s \in S$ gets a position $i \coloneqq \varphi_1(s) \in p(1)$
- an update: for every direction $d \in p[i]$, a next state $\varphi_2(s, d) \in S$.

Moore machines as maps in Poly

We can understand Moore machines $A^{-1}S^{-B}$ in terms of polynomials.

• A Moore machine $r: S \rightarrow B$ and $u: S \times A \rightarrow S$ is:

• A function $S \rightarrow B \times S^A$, i.e. a By^A -coalgebra.

• (It can also be phrased as a polynomial map $Sy^S \rightarrow By^A$.)

A *p*-coalgebra allows different input-sets at different positions.

For arbitrary $p \in \mathbf{Poly}$ we can interpret a map $\varphi \colon S \to p \triangleleft S$ as:

• a readout: every state $s \in S$ gets a position $i \coloneqq \varphi_1(s) \in p(1)$

• an update: for every direction $d \in p[i]$, a next state $\varphi_2(s, d) \in S$.

Even more general: a functor $S \colon C \to \mathbf{Set}$ for any category C.

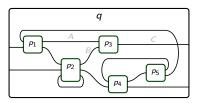
- This generalizes the above, because p-Coalg $\cong c_p$ -Set.
- Imagine its elements (c, s) as states; each reads out its object $c \in C$...

• ... and for any morphism $f: c \to c'$, it can be updated to (c', s.f).

We'll call any of these things dynamical systems.

Wiring diagrams

We can have a bunch of dynamical systems interacting in an open system.

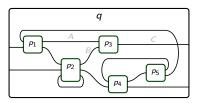


 (φ)

- Each box represents a monomial, e.g. $p_3 = Cy^{AB} \in \mathbf{Poly}$.
 - The whole interaction, p_1 sending outputs to p_2 and p_3 , etc....
 - ... is captured by a map of polynomials $\varphi: p_1 \otimes \cdots \otimes p_5 \rightarrow q$.
 - Given the positions (outputs) of each p_i , we get an output of q...
 - ... and when given an input of q, each p_i gets an input.

Wiring diagrams

We can have a bunch of dynamical systems interacting in an open system.



 (φ)

Each box represents a monomial, e.g. $p_3 = Cy^{AB} \in \mathbf{Poly}.$

The whole interaction, p_1 sending outputs to p_2 and p_3 , etc....

- ... is captured by a map of polynomials $\varphi \colon p_1 \otimes \cdots \otimes p_5 \to q$.
 - Given the positions (outputs) of each p_i , we get an output of q...
 - ... and when given an input of q, each p_i gets an input.
- Now each subsystem can be endowed with a coalgebra $S_i \rightarrow p_i \triangleleft S_i$.
- We tensor and compose to give $S \to q \triangleleft S$, where $S := S_1 \times \cdots \times S_5$. So φ applied to dynamics in p_1, \ldots, p_5 gives dynamics in q.

More general interaction

The whole picture above represents one morphism in **Poly**.

- Let's suppose the company chooses who it wires to; this is its mode.
- Then both suppliers have interface Wy for $W \in$ **Set**.
- Company interface is $2y^W$: two modes, each of which is W-input.
- The outer box is just *y*, i.e. a closed system.

So the picture represents a map $Wy \otimes Wy \otimes 2y^W \rightarrow y$.

- That's a map $2W^2y^W \rightarrow y$.
- Equivalently, it's a function $2W^2 \rightarrow W$. Take it to be evaluation.
- In other words, the company's choice determines which $w \in W$ it receives.

Other sorts of dynamical systems

Dynamical systems are usually defined as actions of a monoid T.

- Discrete: \mathbb{N} , reversible: \mathbb{Z} , real-time: \mathbb{R} .
- If *T* is a monoid and *S* is a set, a *T*-action on *S* is equivalently...
- ... a functor $S: T \rightarrow \mathbf{Set}$, as in our general definition above.

Other sorts of dynamical systems

Dynamical systems are usually defined as actions of a monoid T.

Discrete: \mathbb{N} , reversible: \mathbb{Z} , real-time: \mathbb{R} .

- If *T* is a monoid and *S* is a set, a *T*-action on *S* is equivalently...
- ... a functor $S: T \rightarrow \mathbf{Set}$, as in our general definition above.

Summary: Poly can encode dynamical systems and rewiring diagrams.

Databases

Categorical databases

One view on databases is that they're basically just copresheaves.

A functor $I: \mathcal{C} \to \mathbf{Set}$ (i.e. $\mathcal{C} \xleftarrow{I} \mathbf{0}$) can be represented as follows:

Employee	WorksIn	Mngr	Department	Admin
\odot	P9	\heartsuit	bLue	T****
T****	bLue	orca	P9	♡
orca	bLue	orca		11

Databases

Categorical databases

One view on databases is that they're basically just copresheaves.

A functor $I: \mathcal{C} \to \mathbf{Set}$ (i.e. $\mathcal{C} \xleftarrow{I} \mathbf{0}$) can be represented as follows:

Employee	WorksIn	Mngr	Department	Admin
3	P9	\odot	bLue	T****
T****	bLue	orca	P9	\heartsuit
orca	bLue	orca		

But where's the data? What are the employees names, etc.?

Databases

Categorical databases

One view on databases is that they're basically just copresheaves.

More realistically, data should include attributes and look like this:

Employee	FName	WorksIn	Mngr		Department	DName	Secr
\heartsuit	Alan	P9	\heartsuit	-	bLue	Sales	T****
T****	Dani	bLue	orca		P9	IT	\heartsuit
orca	Sara	bLue	orca				

Categorical databases

One view on databases is that they're basically just copresheaves.

More realistically, data should include attributes and look like this:

Employee	FName	WorksIn	Mngr	Department	DName	Secr
\heartsuit	Alan	P9	\heartsuit	 bLue	Sales	T****
T****	Dani	bLue	orca	P9	IT	\heartsuit
orca	Sara	bLue	orca			

Assign a copresheaf $T: Ob(C) \rightarrow Set$, e.g. T(Employee) = String.

Using the canonical cofunctor $\mathcal{C} \rightarrow \mathsf{Ob}(\mathcal{C})$, attributes are given by α :

Data migration

The framed bicategory structure of $\ensuremath{\mathbb{P}}$ is very useful in databases.

- We hinted at this in the last slide, adding attributes via a cofunctor.
- But so-called *data migration functors* are precisely prafunctors.

Data migration

The framed bicategory structure of $\ensuremath{\mathbb{P}}$ is very useful in databases.

- We hinted at this in the last slide, adding attributes via a cofunctor.
- But so-called *data migration functors* are precisely prafunctors.

A prafunctor $\mathcal{C} \triangleleft \stackrel{P}{\longrightarrow} \mathcal{D}$ in $_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$ can be understood as follows.

- First, it's a functor $\mathcal{C} \to {}_{1}\mathbf{Mod}_{\mathcal{D}}$, so what's an object in ${}_{1}\mathbf{Mod}_{\mathcal{D}}$?
- We said it's a formal coproduct of formal limits in D.
- A formal limit in *D* is called a *conjunctive query* on *D*.
- So a prafunctor $\mathbf{1} \triangleleft^{Q} \mathcal{D}$ is a disjoint union of conjunctive queries.
- Let's call Q a duc-query on \mathcal{D} .

Data migration

The framed bicategory structure of $\ensuremath{\mathbb{P}}$ is very useful in databases.

- We hinted at this in the last slide, adding attributes via a cofunctor.
- But so-called *data migration functors* are precisely prafunctors.

A prafunctor $\mathcal{C} \triangleleft \stackrel{P}{\longrightarrow} \mathcal{D}$ in \mathcal{C} **Mod** \mathcal{D} can be understood as follows.

- First, it's a functor $\mathcal{C} \to {}_{1}\mathbf{Mod}_{\mathcal{D}}$, so what's an object in ${}_{1}\mathbf{Mod}_{\mathcal{D}}$?
- We said it's a formal coproduct of formal limits in D.
- A formal limit in 𝔅 is called a *conjunctive query* on 𝔅.
- So a prafunctor $\mathbf{1} \triangleleft^{Q} \mathcal{D}$ is a disjoint union of conjunctive queries.
- Let's call *Q* a duc-query on *D*.

Example: if $\mathcal{D} = \begin{pmatrix} \mathsf{City} & \mathsf{in} \\ \bullet & \bullet & \bullet & \bullet \end{pmatrix}$, a duc-query might be...

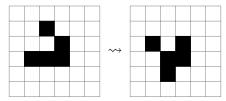
 $(\mathsf{City} \times_{\mathsf{State}} \mathsf{City}) + (\mathsf{City} \times_{\mathsf{State}} \mathsf{County}) + (\mathsf{County} \times_{\mathsf{State}} \mathsf{County})$

A general bimodule $P \in {}_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$ is a \mathcal{C} -indexed duc-query on \mathcal{D} .

Cellular automata

Cellular automata are like Moore machines, except with no internal state.

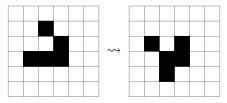
• Here's a picture of a *glider* from Conway's Game of Life:



Cellular automata

Cellular automata are like Moore machines, except with no internal state.

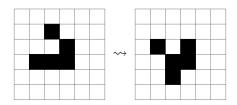
Here's a picture of a glider from Conway's Game of Life:



- GoL takes place on a grid, a set $V \coloneqq \mathbb{Z} \times \mathbb{Z}$ of "squares"
- Each square has neighbors; think of the grid as a graph $A \rightrightarrows V$.
- Each square can be in one of two states: white or black.

Cellular automata

Cellular automata are like Moore machines, except with no internal state. Here's a picture of a *glider* from Conway's Game of Life:



- GoL takes place on a grid, a set $V \coloneqq \mathbb{Z} \times \mathbb{Z}$ of "squares"
- Each square has neighbors; think of the grid as a graph $A \rightrightarrows V$.
- Each square can be in one of two states: white or black.
- The state at any square is updated according to a formula, e.g. If the square is and has 2 or 3 neighbors, it stays ■.
 If the square is □ and has 3 neighbors, it turns ■.
 Otherwise it turns / remains □.

Cellular automata as algebras in $\ensuremath{\mathbb{P}}$

How do we encode this in $\mathbb{P}?$

- We encode the graph $A \rightrightarrows V$ as a prafunctor $Vy \xleftarrow{g} Vy$
 - Each $v \in V$ queries its neighbors (and itself).
 - The carrier of the prafunctor for GoL is $g \coloneqq Vy^9$.
 - In fact, g's a profunctor: it preserves the terminal, $(g \circ V) \cong V$.

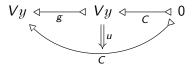
Cellular automata as algebras in $\ensuremath{\mathbb{P}}$

How do we encode this in \mathbb{P} ?

• We encode the graph $A \rightrightarrows V$ as a prafunctor $Vy \xleftarrow{g} Vy$

• Each $v \in V$ queries its neighbors (and itself).

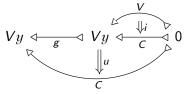
- The carrier of the prafunctor for GoL is $g \coloneqq V y^9$.
- In fact, g's a profunctor: it preserves the terminal, $(g \circ V) \cong V$.
- We encode the color-set for each node as a prafunctor $Vy \triangleleft \stackrel{C}{-} \triangleleft 0$
 - In GoL, each $v \in V$ gets the set 2; i.e. C := 2V.
- We encode the update formula as a map *u* of prafunctors



Cellular automata as algebras in $\ensuremath{\mathbb{P}}$

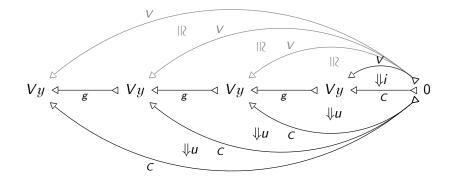
How do we encode this in \mathbb{P} ?

- We encode the graph $A \rightrightarrows V$ as a prafunctor $Vy \triangleleft^g \lor Vy$
 - Each $v \in V$ queries its neighbors (and itself).
 - The carrier of the prafunctor for GoL is $g := Vy^9$.
 - In fact, g's a profunctor: it preserves the terminal, $(g \circ V) \cong V$.
- We encode the color-set for each node as a prafunctor $Vy \triangleleft \stackrel{C}{\longrightarrow} \triangleleft 0$
 - In GoL, each $v \in V$ gets the set 2; i.e. $C \coloneqq 2V$.
- We encode the update formula as a map *u* of prafunctors
- And we encode the initial color setup as a point $V \xrightarrow{i} C$:



From here you can iteratively "run" the cellular automaton.

Running the cellular automaton



Use that $Vy \triangleleft \stackrel{V}{\longrightarrow} \triangleleft 0$ is terminal and $Vy \triangleleft \stackrel{g}{\longrightarrow} \triangleleft Vy$ preserves terminals.

What is deep learning?

In Backprop as functor⁴ "deep learning" is expressed in terms of SMCs.

- Objects are Euclidean spaces \mathbb{R}^n ; monoidal product is \times .
- A morphism $\mathbb{R}^m \rightsquigarrow \mathbb{R}^n$ consists of
 - Another Euclidean space \mathbb{R}^{p} , parameter space,
 - A function $I: \mathbb{R}^p \times \mathbb{R}^m \to \mathbb{R}^n$, implement
 - A function $U: \mathbb{R}^p \times \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^p \times \mathbb{R}^m$, update and backprop

Explanation:

- The update takes an (inp, outp) pair and updates the parameter.
- Without backprop, morphism composition cannot be defined.

⁴Fong, B; Spivak, DI; Tuyéras, R. "Backprop as functor". *LICS 2019*.

What is deep learning?

In Backprop as functor⁴ "deep learning" is expressed in terms of SMCs.

- Objects are Euclidean spaces \mathbb{R}^n ; monoidal product is \times .
- A morphism $\mathbb{R}^m \rightsquigarrow \mathbb{R}^n$ consists of
 - Another Euclidean space \mathbb{R}^{p} , parameter space,
 - A function $I: \mathbb{R}^p \times \mathbb{R}^m \to \mathbb{R}^n$, implement
 - A function $U: \mathbb{R}^p \times \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^p \times \mathbb{R}^m$, update and backprop
- Explanation:
 - The update takes an (inp, outp) pair and updates the parameter.
 - Without backprop, morphism composition cannot be defined.
- Typically, I and U have very particular forms.
 - *I* is usu. a composite of linear maps and logistic-like maps.
 - U is usu. gradient descent along a "loss covector" $\ell \in T^*(\mathbb{R}^n) \cong \mathbb{R}^n$.

⁴Fong, B; Spivak, DI; Tuyéras, R. "Backprop as functor". *LICS 2019*.

Deep learning

Deep learning in Poly

The best-known methods use calculus, but the structure is set-theoretic.

 $\mathsf{Learn}(A,B) \coloneqq \{(P,I,U) \mid P \in \mathsf{Set}, I \colon P \times A \to B, U \colon P \times A \times B \to P \times A\}$

We can see this inside of **Poly**:

Learn
$$(A, B) \cong [Ay^A, By^B]$$
-Coalg

That is, it's the cat'y of dynamical systems in $[Ay^A, By^B]$, where recall

$$[Ay^{A}, By^{B}] \cong \sum_{\varphi \colon Ay^{A} \to By^{B}} y^{AB}$$

An (A, B)-learner is thus a set P and a map $P \rightarrow [Ay^A, By^B] \triangleleft P$.

Learners' languages

For any polynomial p, the category p-**Coalg** forms a topos.

- Indeed, letting c_p be the cofree comonoid on p,...
- ...there is an equivalence p-Coalg $\cong c_p$ -Set.
- Since c_p is free on a graph, c_p -Set is about as easy as toposes get.

Learners' languages

For any polynomial p, the category p-**Coalg** forms a topos.

- Indeed, letting c_p be the cofree comonoid on p,...
- ...there is an equivalence p-Coalg $\cong c_p$ -Set.
- Since c_p is free on a graph, c_p -Set is about as easy as toposes get.

In particular, the topos *p*-Coalg has an internal type theory and logic.

- The logic describes constraints on dynamical systems.
- A proposition ϕ is any subobject of the terminal *p*-coalgebra:
- **a** set ϕ of *p*-trees where if $t \in \phi$ then so is the subtree at any node.

Learners' languages

For any polynomial p, the category p-**Coalg** forms a topos.

- Indeed, letting c_p be the cofree comonoid on p,...
- ...there is an equivalence p-Coalg $\cong c_p$ -Set.
- Since c_p is free on a graph, c_p -Set is about as easy as toposes get.

In particular, the topos *p*-Coalg has an internal type theory and logic.

- The logic describes constraints on dynamical systems.
- A proposition ϕ is any subobject of the terminal *p*-coalgebra:

a set ϕ of *p*-trees where if $t \in \phi$ then so is the subtree at any node.

Gradient descent-backprop is a proposition in $[\mathbb{R}^m y^{\mathbb{R}^n}, \mathbb{R}^n y^{\mathbb{R}^n}]$ -Coalg.

- That is, it is a constraint on $(\mathbb{R}^m, \mathbb{R}^n)$ -learners.
- It has a very particular flavor: it can be checked in one timestep. But the logic is much more expressive. We'll leave that for a later time.

Outline

1 Introduction

2 Theory

B Applications

4 ConclusionSummary

Summary

Poly is a category of remarkable abundance.

- It's completely combinatorial.
 - Calculations using "the abacus" are concrete.
 - Much is already familiar, e.g. $(y+1)^2 \cong y^2 + 2y + 1$.
- It's theoretically beautiful.
 - Comonoids are categories.
 - Coalgebras are copresheaves.
- It's got a wide scope of applications.
 - Databases and data migration.
 - Dynamical systems and cellular automata.
 - Deep learning and its generalizations.

Thank you for your time; questions and comments welcome.