Polynomials as spans

Ross Street CoACT Macquarie Univ.

Workshop on Polynomial Functors Topos Institute

Initial idea

- A polynomial from X to Y in a category \mathscr{C} is a diagram of the shape $X \xleftarrow{m_2} E \xrightarrow{m_1} S \xrightarrow{p} Y$ with m_1 a powerful (= exponentiable) morphism in \mathscr{C} .
- Such diagrams can be thought of as generalizing spans: a span $X \xrightarrow{(m_2, S, p)} Y$ amounts to the case where E = S and m_1 is the identity.
- Our simple idea was to make the diagram more complicated by including an identity thus:

$$X \xleftarrow{m_2} E \xrightarrow{m_1} S \xleftarrow{1_S} S \xrightarrow{p} Y ,$$

resulting in a span

$$X \xleftarrow{(m_1, E, m_2)} S \xrightarrow{(1_S, S, p)} Y$$

of spans from X to Y.

Initial idea, continued

- ▶ Of course, the bicategory Spn 𝒞 of spans in 𝒞 does not have all bicategorical pullbacks.
- Fortunately, polynomials are not general spans and sufficient pullbacks can be constructed.
- Indeed, that is what Weber's distributivity pullbacks around a pair of composable morphisms in *C* construct.
- \blacktriangleright That construction requires the use of powerful morphisms in $\mathscr{C}.$
- \blacktriangleright So what is it about the bicategory ${\rm Spn} \mathscr C$ that allows these restricted spans to form the bicategory of polynomials in $\mathscr C.$

Eine kleine Kategorientheorie: Cartesian morphisms

• Let $p: E \to B$ be a functor. A morphism $\chi: e' \to e$ in E is called *cartesian*¹ for p when the square (1) is a pullback for all $k \in E$.

$$\begin{array}{c}
E(k,e') \xrightarrow{E(k,\chi)} E(k,e) \\
\downarrow^{p} & \downarrow^{p} \\
B(pk,pe') \xrightarrow{B(pk,p\chi)} B(pk,pe)
\end{array}$$

- ▶ Note that all invertible morphisms in *E* are cartesian.
- If p is fully faithful then all morphisms of E are cartesian.

Ross Street CoACT Macquarie Univ.

(1)

¹Classically called "strongly cartesian"

Eine kleine Kategorientheorie: Groupoid fibrations

We call the functor $p: E \rightarrow B$ a groupoid fibration when

- (i) for all objects e ∈ E and morphisms β : b → pe in B, there exist a morphism χ : e' → e in E and isomorphism b ≃ pe' whose composite with pχ is β, and
- (ii) every morphism of E is cartesian for p.

From the pullback (1), it follows that groupoid fibrations are conservative (that is, reflect invertibility).

Proposition

The Grothendieck fibration construction (wreath-product-like) 2-functor

$$\wr : \operatorname{Hom}(B^{\operatorname{op}}, \operatorname{Gpd}) \longrightarrow \operatorname{GFib}B$$
(2)

is a biequivalence.

Eine kleine Kategorientheorie: Fundamental groupoid

The 2-adjunction

$$\operatorname{Cat} \xrightarrow[\operatorname{incl}]{\pi_1} \operatorname{Gpd}$$

induces a biadjunction

Eine kleine Kategorientheorie: Ultimate functors

A functor j : A → E is called *ultimate* when, for all objects e ∈ E, the fundamental groupoid π₁(e/j) of the comma category e/j (called e ↓ j by Mac Lane) is equivalent to the terminal groupoid:

$$\pi_1(e/j)\simeq \mathbf{1}$$
 .

- Every right adjoint functor is ultimate.
- Every coinverter (localization) is ultimate.

Proposition

The ultimate functors and groupoid fibrations form a bicategorical factorization system on Cat. In particular, every functor $f : A \rightarrow B$ factors uniquely up to equivalence as $f \cong (A \xrightarrow{j} E \xrightarrow{p} B)$ where j is ultimate and p is a groupoid fibration.

Eine kleine Kategorientheorie: Abstract polynomial functors

• A functor $f : A \rightarrow B$ is an *abstract polynomial functor* when, in its factorization

$$f \cong (A \xrightarrow{j} E \xrightarrow{p} B)$$

as per the last Proposition, the functor j is a right adjoint.

I define the abstract polynomial inducing f simply to be the span

$$A \stackrel{j_*}{\leftarrow} E \stackrel{p}{\rightarrow} B$$

where $j_* \dashv j$.

Proposition

Polynomial functors compose up to isomorphism.

Proof.

Take $A \xrightarrow{j} E \xrightarrow{p} B \xrightarrow{k} F \xrightarrow{q} C$ with $j_* \to j$, $k_* \to k$ and with p, q groupoid fibrations. Form the pseudopullback

$$\begin{array}{cccc}
P & \xrightarrow{p'} & F \\
& & & \downarrow \\
k'_{*} \downarrow & & & \downarrow \\
E & \xrightarrow{p} & B
\end{array}$$
(3)

to obtain the required "distributive law". One easily verifies there exists $k'_* \rightarrow k'$, p' is a groupoid fibration and the Chevalley-Beck condition

$$p' \circ k' \cong k \circ p$$

holds. So $q \circ k \circ p \circ j \cong q \circ p' \circ k' \circ j$ where $q \circ p'$ is a groupoid fibration and $k' \circ j$ is a right adjoint.

Groupoid fibrations and lifters in bicategories

• Groupoid fibrations in a bicategory \mathscr{M} are defined representably: a morphism $p: E \to B$ is a groupoid fibration when, for all $K \in \mathscr{M}$, the functor $\mathscr{M}(K,p) : \mathscr{M}(K,E) \to \mathscr{M}(K,B)$ is a groupoid fibration.

The defining property of a right lifting rif(n, u) of u through n is that pasting a 2-cell $v \implies rif(n, u)$ onto the triangle to give a 2-cell $nv \implies u$ defines a bijection.

• A morphism $n: Y \to Z$ is called a *right lifter* when rif(n, u) exists for all $u: K \to Z$.

Examples of lifters

Example

Left adjoint morphisms in any \mathscr{M} are right lifters (since the lifting is the composite with the right adjoint). In Cat all lifters are left adjoints.

Example

Composites of right lifters are right lifters.

Example

Suppose $\mathscr{M} = \operatorname{Spn}\mathscr{C}$ with \mathscr{C} a finitely complete category. If $f : A \to B$ is powerful (= exponentiable, meaning that the functor $\mathscr{C}/B \to \mathscr{C}/A$, which pulls back along f, has a right adjoint Π_f) in \mathscr{C} then $f^* : B \to A$ is a right lifter. The formula is $\operatorname{rif}(f^*, (v, T, q)) = (w, U, r)$ where

$$(U \xrightarrow{(w,r)} K \times B) = \prod_{1_K \times f} (T \xrightarrow{(v,q)} K \times A) .$$

More examples

Example

Suppose $m = (m_1, E, m_2)$ is a morphism in $\mathcal{M} = \operatorname{Spn} \mathcal{C}$ with \mathcal{C} a finitely complete category. Then m is a right lifter if and only if m_1 is powerful. The previous Examples imply "if". Conversely, apply Dubuc's Adjoint Triangle Theorem.

Example

Let \mathscr{E} be a regular category and let $\operatorname{Rel}\mathscr{E}$ be the locally ordered bicategory of relations in \mathscr{E} . The objects are those of \mathscr{E} and the morphisms $(r_1, R, r_2) : X \to Y$ are jointly monomorphic spans $X \xleftarrow{r_1} R \xrightarrow{r_2} Y$ in \mathscr{E} . Put $\operatorname{Sub} X = \operatorname{Rel}\mathscr{E}(1, X)$. For $f : Y \to X$, pulling back subobjects of Xalong f defines an order-preserving function $f^{-1} : \operatorname{Sub} X \to \operatorname{Sub} Y$ whose right adjoint, if it exists, is denoted by $\forall_f : \operatorname{Sub} Y \to \operatorname{Sub} X$. We can see that $(r_1, R, r_2) : X \to Y$ is a right lifter in $\operatorname{Rel}\mathscr{E}$ if and only if \forall_{r_1} exists.

Bipullbacks of spans and Weber's distributivity pullbacks

Proposition

Suppose \mathscr{C} is a category with pullbacks. Then the pseudofunctor $(-)_* : \mathscr{C} \to \operatorname{Spn}\mathscr{C}$ takes pullbacks to bipullbacks.

Proposition

Take $Z \xrightarrow{g} A \xrightarrow{f} B$ in a category \mathscr{C} with pullbacks. The left diagram in (4) is a pullback around (f,g) in the category \mathscr{C} iff a square as on the right of (4) exists in the bicategory Spn \mathscr{C} . The left diagram is a distributivity pullback around (f,g) in \mathscr{C} iff the right diagram is a bipullback in Spn \mathscr{C} .

Calibrations of bicategories

Definition (Modelled on Jean Bénabou's notion for categories)

A class \mathscr{P} of "neat" morphisms is a *calibration of the bicategory* \mathscr{M} when:

- P0. all equivalences are neat and, if p is neat and there exists an invertible 2-cell $p \cong q$, then q is neat;
- P1. for all neat p, the composite $p \circ q$ is neat if and only if q is neat;
- P2. every neat morphism is a groupoid fibration;
- P3. every cospan of the form $S \xrightarrow{p} Y \xleftarrow{n} T$, with *n* a right lifter and *p* neat, has a bipullback (5) in \mathscr{M} with \tilde{p} neat.

Calibrated bicategories

- A bicategory equipped with a calibration is called *calibrated*.
- Notice that the class GF of all groupoid fibrations in any bicategory \mathcal{M} satisfies all the conditions for a calibration except perhaps the bipullback existence part of P3 (automatically \tilde{p} will be a groupoid fibration).
- A bicategory \mathcal{M} is called *polynomic* when GF is a calibration of \mathcal{M} .
- Cat is polynomic.
- If \mathscr{C} is a finitely complete category then the bicategory $\mathrm{Spn}\mathscr{C}$ is polynomic. The groupoid fibrations are those spans with left leg invertible.
- If *E* is a regular category then the bicategory Rel*E* is calibrated where neat means those relations with left leg invertible and right leg a monomorphism.

Polynomials in calibrated bicategories

Definition

A polynomial (m, S, p) from X to Y in $\mathcal{M} = (\mathcal{M}, \mathcal{P})$ is a span

$$X\xleftarrow{m} S\xrightarrow{p} Y$$

in \mathcal{M} with m a right lifter and p neat.

Morphisms of polynomials in a calibrated bicategory

Definition

A polynomial morphism $(\lambda, h, \rho) : (m, S, p) \rightarrow (m', S', p')$ is a diagram

in which ρ is invertible. We call (λ, h, ρ) strong when λ is invertible. A 2-cell $\sigma : h \Rightarrow k : (m, S, p) \rightarrow (m', S', p')$ is a 2-cell $\sigma : h \Rightarrow k : S \rightarrow S'$ in \mathscr{M} compatible with λ and ρ . Actually, σ must be invertible. Write $\operatorname{Poly}\mathscr{M}(X, Y)$ for the Poincaré category of the bicategory of polynomials from X to Y so obtained.

The bicategory of polynomials in a calibrated bicategory

This usual composition of spans is the effect on objects of functors

$$\Rightarrow: \operatorname{Poly} \mathscr{M}(Y, Z) \times \operatorname{Poly} \mathscr{M}(X, Y) \longrightarrow \operatorname{Poly} \mathscr{M}(X, Z) .$$
(8)

Proposition

There is a bicategory $\operatorname{Poly} \mathscr{M}$ of polynomials in a calibrated bicategory \mathscr{M} . The objects are those of \mathcal{M} , the homcategories are the $\operatorname{Poly} \mathcal{M}(X, Y)$. Composition is given by the functors (8). The vertical and horizontal stacking properties of bipullbacks provide the associativity isomorphisms. 18 / 27

Ross Street CoACT Macquarie Univ.

Polynomials as spans

2021 March 15-19

Some interpretations

Example

If $\mathscr C$ is a finitely complete category then the bicategory $\mathrm{Poly}\mathrm{Spn}\mathscr C$ is biequivalent to the bicategory denoted by $\mathrm{Poly}_{\mathscr C}$ by Gambino-Kock and by $\mathrm{Poly}(\mathscr C)$ by Charles Walker. Moreover, $\mathrm{Poly}_{\mathrm{strong}}\mathrm{Spn}\mathscr C$ is biequivalent to Walker's bicategory $\mathrm{Poly}_c(\mathscr C).$

Example

If \mathscr{E} is a regular category then the bicategory $\operatorname{PolyRel}\mathscr{E}$ is biequivalent to the subbicategory of the usual $\operatorname{Poly}_{\mathscr{E}}$ consisting of those polynomials $X \xleftarrow{m_2} E \xrightarrow{m_1} S \xrightarrow{p} Y$ for which $(m_1, m_2) : E \to S \times X$ and $p : S \to Y$ are monomorphisms.

Profunctors = distributors = bimodules = directed modules

Objects of the bicategory Mod are categories.

The homcategories are the functor categories $Mod(A, B) = [B^{op} \times A, Set]$ whose objects $m : B^{op} \times A \rightarrow Set$ are called modules directed from A to B. Composition is defined by the coends $(n \circ m)(c, a) = \int^b m(b, a) \times n(c, b)$. Each functor $f : A \rightarrow B$ gives a module $f_* : A \rightarrow B$ defined by $f_*(b, a) = B(b, fa)$.

Example

The bicategory Mod is calibrated by taking as neat modules those equivalent to p_* for p a discrete fibration. The bicategory PolyMod is biequivalent to the subbicategory of the Weber polynomial bicategory of the category Cat consisting of those polynomials $X \xleftarrow{m_2} E \xrightarrow{m_1} S \xrightarrow{p} Y$ for which $S \xleftarrow{m_1} E \xrightarrow{m_2} X$ is a two-sided discrete fibration from S to X and pis a discrete fibrations. Such polynomials are equivalent to parametric right adjoint functors $[X^{\text{op}}, \text{Set}] \longrightarrow [Y^{\text{op}}, \text{Set}].$

Opposites of Kleisli categories of composite monads

There is another viewpoint on PolyRel& and PolyMod described in my Cahiers paper with the same title as this talk. It seems in the spirit of André Joyal's talk of yesterday. The Kleisli category of a monad is the Linton theory corresponding to the monad.

Example

An elementary topos \mathscr{E} admits two basic constructions, the power object $\mathcal{P}X$ and the partial map classifier \widetilde{X} . Both define object assignments for monads on \mathscr{E} . There is a distributive law $d_X : \mathcal{P}\widetilde{X} \to \widetilde{\mathcal{P}X}$ between the two monads. The classifying category of PolyRel \mathscr{E} is equivalent to the opposite of the Kleisli category $\mathscr{E}_{\widetilde{\mathcal{P}(-)}}$ for the composite monad $X \mapsto \widetilde{\mathcal{P}X}$.

Opposites of Kleisli categories of composite monads, continued

Example

The bicategory $\operatorname{PolyMod}$ is biequivalent to the opposite of the Kleisli bicategory for the composite $X \mapsto \operatorname{Fam}^{\operatorname{op}}[X^{\operatorname{op}}, \operatorname{Set}]$ of the colimit-completion pseudomonad and the product-completion pseudomonad (modulo obvious size issues).

Some pseudofunctors

Remark

- i. If the bicategory \mathscr{M} is calibrated then each $\mathscr{M}(K,-): \mathscr{M} \to \operatorname{Cat}$ is a calibrated bicategory pseudofunctor.
- ii. Recall from an earlier Proposition that polynomial functors compose. That provides a pseudofunctor

$$\operatorname{PolyCat} \longrightarrow \operatorname{Cat}, \qquad (X \xleftarrow{m} S \xrightarrow{p} Y) \mapsto (X \xrightarrow{pm^*} Y) \ .$$

From polynomials in bicategories to polynomial functors

Proposition

If the bicategory \mathscr{M} is calibrated then, for each $K \in \mathscr{M}$, there is a pseudofunctor \mathbb{H}_{K} : $\operatorname{Poly} \mathscr{M} \longrightarrow \operatorname{Cat}$ taking the polynomial $X \xleftarrow{m} S \xrightarrow{p} Y$ to the abstract polynomial functor which is the composite

$$\mathscr{M}(K,X) \xrightarrow{\mathrm{rif}(m,-)} \mathscr{M}(K,S) \xrightarrow{\mathscr{M}(K,p)} \mathscr{M}(K,Y)$$

in Cat.

For $\mathcal{M} = \operatorname{SpnSet}$ and K = 1, the displayed composite is the usual polynomial functor $\operatorname{Set}/X \longrightarrow \operatorname{Set}/Y$ associated to a polynomial from X to Y.

From polynomials in $\operatorname{Rel} {\mathscr E}$ to polynomial functors

Example

For topos \mathscr{E} and $\mathscr{M} = \operatorname{Rel}\mathscr{E}$, the pseudofunctor $\mathbb{H}_{\mathcal{K}} : \operatorname{PolyRel}\mathscr{E} \longrightarrow \operatorname{Ord}$ takes $C \xleftarrow{p} Z \xrightarrow{a} \mathcal{P}X$ to the order-preserving function

$$\operatorname{Rel} \mathscr{E}(K, X) \xrightarrow{\operatorname{rif}(a, -)} \operatorname{Rel} \mathscr{E}(K, Z) \xrightarrow{p^{\circ} -} \operatorname{Rel} \mathscr{E}(K, C)$$

whose value at a relation $(s_1, S, s_2) : K \to X$ is the relation $(c, a/s, p \circ d) : K \to C$ as in the diagram below in which the square has the comma property and s classifies the relation (s_1, S, s_2) .

From polynomials in Mod to polynomial functors

Example

For $\mathcal{M} = \mathrm{Mod}$, the pseudofunctor

 $\mathbb{H}_{\mathcal{K}}:\operatorname{PolyMod}\longrightarrow\operatorname{Cat}$

takes the morphism $Y \xleftarrow{p}{\leftarrow} S \xrightarrow{m} Psh$ to the functor

$$[K, \operatorname{Psh} X] \longrightarrow [K, \operatorname{Psh} Y] \ , \ \ell \mapsto \bar{\ell}$$

where

$$(\bar{\ell}k)y = \sum_{s \in S_y} \operatorname{Psh}X(ms,\ell k)$$

for $k \in K$, for $y \in Y$ and for S_y the fibre of $p : S \to Y$ over y.

Thank You

 \odot

Ross Street CoACT Macquarie Univ.