# Polynomials as spans 

Ross Street<br>CoACT<br>Macquarie Univ.

Workshop on Polynomial Functors<br>Topos Institute

## Initial idea

- A polynomial from $X$ to $Y$ in a category $\mathscr{C}$ is a diagram of the shape $X \stackrel{m_{2}}{\longleftrightarrow} E \xrightarrow{m_{1}} S \xrightarrow{p} Y$ with $m_{1}$ a powerful (= exponentiable) morphism in $\mathscr{C}$.
- Such diagrams can be thought of as generalizing spans: a span $X \xrightarrow{\left(m_{2}, S, p\right)} Y$ amounts to the case where $E=S$ and $m_{1}$ is the identity.
- Our simple idea was to make the diagram more complicated by including an identity thus:

$$
X \stackrel{m_{2}}{\leftrightarrows} E \xrightarrow{m_{1}} S \stackrel{1_{S}}{\leftrightarrows} S \xrightarrow{p} Y,
$$

resulting in a span

$$
X \stackrel{\left(m_{1}, E, m_{2}\right)}{\leftrightarrows} S \xrightarrow{\left(1_{S}, S, p\right)} Y
$$

of spans from $X$ to $Y$.

## Initial idea, continued

- Of course, the bicategory $\operatorname{Spn} \mathscr{C}$ of spans in $\mathscr{C}$ does not have all bicategorical pullbacks.
- Fortunately, polynomials are not general spans and sufficient pullbacks can be constructed.
- Indeed, that is what Weber's distributivity pullbacks around a pair of composable morphisms in $\mathscr{C}$ construct.
- That construction requires the use of powerful morphisms in $\mathscr{C}$.
- So what is it about the bicategory $\operatorname{Spn} \mathscr{C}$ that allows these restricted spans to form the bicategory of polynomials in $\mathscr{C}$.


## Eine kleine Kategorientheorie: Cartesian morphisms

- Let $p: E \rightarrow B$ be a functor. A morphism $\chi: e^{\prime} \rightarrow e$ in $E$ is called cartesian ${ }^{1}$ for $p$ when the square (1) is a pullback for all $k \in E$.

$$
\underset{p\left(k, e^{\prime}\right) \xrightarrow{E(k, \chi)} E(k, e)}{B\left(p k, p e^{\prime}\right) \xrightarrow[B(p k, p \chi)]{ } B(p k, p e)}
$$

- Note that all invertible morphisms in $E$ are cartesian.
- If $p$ is fully faithful then all morphisms of $E$ are cartesian.

[^0]
## Eine kleine Kategorientheorie: Groupoid fibrations

We call the functor $p: E \rightarrow B$ a groupoid fibration when
(i) for all objects $e \in E$ and morphisms $\beta: b \rightarrow p e$ in $B$, there exist a morphism $\chi: e^{\prime} \rightarrow e$ in $E$ and isomorphism $b \cong p e^{\prime}$ whose composite with $p \chi$ is $\beta$, and
(ii) every morphism of $E$ is cartesian for $p$.

From the pullback (1), it follows that groupoid fibrations are conservative (that is, reflect invertibility).

## Proposition

The Grothendieck fibration construction (wreath-product-like) 2-functor

$$
\begin{equation*}
\imath: \operatorname{Hom}\left(B^{\mathrm{op}}, \mathrm{Gpd}\right) \longrightarrow \mathrm{GFib} B \tag{2}
\end{equation*}
$$

is a biequivalence.

## Eine kleine Kategorientheorie: Fundamental groupoid

- The 2-adjunction

$$
\text { Cat } \underset{\text { incl }}{\stackrel{\pi_{1}}{\rightleftarrows}} \text { Gpd }
$$

induces a biadjunction
$\operatorname{Fib} B \underset{\text { incl }}{\stackrel{\pi_{1}}{\rightleftarrows}} \mathrm{GFib} B$

## Eine kleine Kategorientheorie: Ultimate functors

- A functor $j: A \rightarrow E$ is called ultimate when, for all objects $e \in E$, the fundamental groupoid $\pi_{1}(e / j)$ of the comma category $e / j$ (called $e \downarrow j$ by Mac Lane) is equivalent to the terminal groupoid:

$$
\pi_{1}(e / j) \simeq 1
$$

- Every right adjoint functor is ultimate.
- Every coinverter (localization) is ultimate.


## Proposition

The ultimate functors and groupoid fibrations form a bicategorical factorization system on Cat. In particular, every functor $f: A \rightarrow B$ factors uniquely up to equivalence as $f \cong(A \xrightarrow{j} E \xrightarrow{p} B)$ where $j$ is ultimate and $p$ is a groupoid fibration.

## Eine kleine Kategorientheorie: Abstract polynomial functors

- A functor $f: A \rightarrow B$ is an abstract polynomial functor when, in its factorization

$$
f \cong(A \xrightarrow{j} E \xrightarrow{p} B)
$$

as per the last Proposition, the functor $j$ is a right adjoint.

- I define the abstract polynomial inducing $f$ simply to be the span

$$
A \stackrel{j *}{\leftarrow} E \xrightarrow{p} B
$$

where $j_{*} \dashv j$.

## Proposition

Polynomial functors compose up to isomorphism.

## Proof.

Take $A \xrightarrow{j} E \xrightarrow{p} B \xrightarrow{k} F \xrightarrow{q} C$ with $j_{*} \dashv j, k_{*} \dashv k$ and with $p, q$ groupoid fibrations. Form the pseudopullback
to obtain the required "distributive law". One easily verifies there exists $k_{*}^{\prime} \dashv k^{\prime}, p^{\prime}$ is a groupoid fibration and the Chevalley-Beck condition

$$
p^{\prime} \circ k^{\prime} \cong k \circ p
$$

holds. So $q \circ k \circ p \circ j \cong q \circ p^{\prime} \circ k^{\prime} \circ j$ where $q \circ p^{\prime}$ is a groupoid fibration and $k^{\prime} \circ j$ is a right adjoint.

## Groupoid fibrations and lifters in bicategories

- Groupoid fibrations in a bicategory $\mathscr{M}$ are defined representably: a morphism $p: E \rightarrow B$ is a groupoid fibration when, for all $K \in \mathscr{M}$, the functor $\mathscr{M}(K, p): \mathscr{M}(K, E) \rightarrow \mathscr{M}(K, B)$ is a groupoid fibration.


The defining property of a right lifting $\operatorname{rif}(n, u)$ of $u$ through $n$ is that pasting a 2-cell $v \Longrightarrow \operatorname{rif}(n, u)$ onto the triangle to give a 2-cell $n v \Longrightarrow u$ defines a bijection.

- A morphism $n: Y \rightarrow Z$ is called a right lifter when $\operatorname{rif}(n, u)$ exists for all $u: K \rightarrow Z$.


## Examples of lifters

## Example

Left adjoint morphisms in any $\mathscr{M}$ are right lifters (since the lifting is the composite with the right adjoint). In Cat all lifters are left adjoints.

## Example

Composites of right lifters are right lifters.

## Example

Suppose $\mathscr{M}=\operatorname{Spn} \mathscr{C}$ with $\mathscr{C}$ a finitely complete category. If $f: A \rightarrow B$ is powerful (= exponentiable, meaning that the functor $\mathscr{C} / B \rightarrow \mathscr{C} / A$, which pulls back along $f$, has a right adjoint $\Pi_{f}$ ) in $\mathscr{C}$ then $f^{*}: B \rightarrow A$ is a right lifter. The formula is $\operatorname{rif}\left(f^{*},(v, T, q)\right)=(w, U, r)$ where

$$
(U \xrightarrow{(w, r)} K \times B)=\Pi_{1_{K} \times f}(T \xrightarrow{(v, q)} K \times A) .
$$

## More examples

## Example

Suppose $m=\left(m_{1}, E, m_{2}\right)$ is a morphism in $\mathscr{M}=\operatorname{Spn} \mathscr{C}$ with $\mathscr{C}$ a finitely complete category. Then $m$ is a right lifter if and only if $m_{1}$ is powerful. The previous Examples imply "if". Conversely, apply Dubuc's Adjoint Triangle Theorem.

## Example

Let $\mathscr{E}$ be a regular category and let Rel $\mathscr{E}$ be the locally ordered bicategory of relations in $\mathscr{E}$. The objects are those of $\mathscr{E}$ and the morphisms $\left(r_{1}, R, r_{2}\right): X \rightarrow Y$ are jointly monomorphic spans $X \stackrel{r_{1}}{\longleftrightarrow} R \xrightarrow{r_{2}} Y$ in $\mathscr{E}$. Put $\operatorname{Sub} X=\operatorname{Rel} \mathscr{E}(1, X)$. For $f: Y \rightarrow X$, pulling back subobjects of $X$ along $f$ defines an order-preserving function $f^{-1}: \operatorname{Sub} X \rightarrow \operatorname{Sub} Y$ whose right adjoint, if it exists, is denoted by $\forall_{f}: \operatorname{Sub} Y \rightarrow \operatorname{Sub} X$. We can see that $\left(r_{1}, R, r_{2}\right): X \rightarrow Y$ is a right lifter in Rel $\mathscr{E}$ if and only if $\forall_{r_{1}}$ exists.

## Bipullbacks of spans and Weber's distributivity pullbacks

## Proposition

Suppose $\mathscr{C}$ is a category with pullbacks. Then the pseudofunctor $(-)_{*}: \mathscr{C} \rightarrow \operatorname{Spn} \mathscr{C}$ takes pullbacks to bipullbacks.


## Proposition

Take $Z \xrightarrow{g} A \xrightarrow{f} B$ in a category $\mathscr{C}$ with pullbacks. The left diagram in (4) is a pullback around $(f, g)$ in the category $\mathscr{C}$ iff a square as on the right of (4) exists in the bicategory $\operatorname{Spn} \mathscr{C}$. The left diagram is a distributivity pullback around $(f, g)$ in $\mathscr{C}$ iff the right diagram is a bipullback in $\operatorname{Spn} \mathscr{C}$.

## Calibrations of bicategories

Definition (Modelled on Jean Bénabou's notion for categories)
A class $\mathscr{P}$ of "neat" morphisms is a calibration of the bicategory $\mathscr{M}$ when: P0. all equivalences are neat and, if $p$ is neat and there exists an invertible 2-cell $p \cong q$, then $q$ is neat;
P1. for all neat $p$, the composite $p \circ q$ is neat if and only if $q$ is neat;
P2. every neat morphism is a groupoid fibration;
P3. every cospan of the form $S \xrightarrow{p} Y \stackrel{n}{\leftarrow} T$, with $n$ a right lifter and $p$ neat, has a bipullback (5) in $\mathscr{M}$ with $\tilde{p}$ neat.


## Calibrated bicategories

- A bicategory equipped with a calibration is called calibrated.
- Notice that the class GF of all groupoid fibrations in any bicategory $\mathscr{M}$ satisfies all the conditions for a calibration except perhaps the bipullback existence part of P3 (automatically $\tilde{p}$ will be a groupoid fibration).
- A bicategory $\mathscr{M}$ is called polynomic when GF is a calibration of $\mathscr{M}$.
- Cat is polynomic.
- If $\mathscr{C}$ is a finitely complete category then the bicategory $\operatorname{Spn} \mathscr{C}$ is polynomic. The groupoid fibrations are those spans with left leg invertible.
- If $\mathscr{E}$ is a regular category then the bicategory Rel $\mathscr{E}$ is calibrated where neat means those relations with left leg invertible and right leg a monomorphism.


## Polynomials in calibrated bicategories

## Definition

A polynomial $(m, S, p)$ from $X$ to $Y$ in $\mathscr{M}=(\mathscr{M}, \mathscr{P})$ is a span

$$
X \stackrel{m}{\stackrel{m}{p}} S \xrightarrow{p} Y
$$

in $\mathscr{M}$ with $m$ a right lifter and $p$ neat.

## Morphisms of polynomials in a calibrated bicategory

## Definition

A polynomial morphism $(\lambda, h, \rho):(m, S, p) \rightarrow\left(m^{\prime}, S^{\prime}, p^{\prime}\right)$ is a diagram

in which $\rho$ is invertible. We call $(\lambda, h, \rho)$ strong when $\lambda$ is invertible. A 2-cell $\sigma: h \Rightarrow k:(m, S, p) \rightarrow\left(m^{\prime}, S^{\prime}, p^{\prime}\right)$ is a 2-cell $\sigma: h \Rightarrow k: S \rightarrow S^{\prime}$ in $\mathscr{M}$ compatible with $\lambda$ and $\rho$. Actually, $\sigma$ must be invertible. Write Poly $\mathscr{M}(X, Y)$ for the Poincaré category of the bicategory of polynomials from $X$ to $Y$ so obtained.

## The bicategory of polynomials in a calibrated bicategory



This usual composition of spans is the effect on objects of functors

$$
\begin{equation*}
\circ: \operatorname{Poly} \mathscr{M}(Y, Z) \times \operatorname{Poly} \mathscr{M}(X, Y) \longrightarrow \operatorname{Poly} \mathscr{M}(X, Z) . \tag{8}
\end{equation*}
$$

## Proposition

There is a bicategory Poly $\mathscr{M}$ of polynomials in a calibrated bicategory $\mathscr{M}$. The objects are those of $\mathscr{M}$, the homcategories are the Poly $\mathscr{M}(X, Y)$. Composition is given by the functors (8). The vertical and horizontal stacking properties of bipullbacks provide the associativity isomorphisms.

## Some interpretations

## Example

If $\mathscr{C}$ is a finitely complete category then the bicategory PolySpn $\mathscr{C}$ is biequivalent to the bicategory denoted by Poly $\mathscr{C}_{\mathscr{C}}$ by Gambino-Kock and by $\operatorname{Poly}(\mathscr{C})$ by Charles Walker. Moreover, Poly strong $^{\operatorname{Spn} \mathscr{C}}$ is biequivalent to Walker's bicategory $\operatorname{Poly}_{\mathrm{c}}(\mathscr{C})$.

## Example

If $\mathscr{E}$ is a regular category then the bicategory PolyRel $\mathscr{E}$ is biequivalent to the subbicategory of the usual Poly $\mathscr{E}_{\mathscr{E}}$ consisting of those polynomials $X \stackrel{m_{2}}{\longleftrightarrow} E \xrightarrow{m_{1}} S \xrightarrow{p} Y$ for which $\left(m_{1}, m_{2}\right): E \rightarrow S \times X$ and $p: S \rightarrow Y$ are monomorphisms.

## Profunctors $=$ distributors $=$ bimodules $=$ directed modules

Objects of the bicategory Mod are categories.
The homcategories are the functor categories $\operatorname{Mod}(A, B)=\left[B^{\mathrm{op}} \times A\right.$, Set $]$ whose objects $m: B^{\mathrm{op}} \times A \rightarrow$ Set are called modules directed from $A$ to $B$. Composition is defined by the coends $(n \circ m)(c, a)=\int^{b} m(b, a) \times n(c, b)$. Each functor $f: A \rightarrow B$ gives a module $f_{*}: A \rightarrow B$ defined by $f_{*}(b, a)=B(b, f a)$.

## Example

The bicategory Mod is calibrated by taking as neat modules those equivalent to $p_{*}$ for $p$ a discrete fibration. The bicategory PolyMod is biequivalent to the subbicategory of the Weber polynomial bicategory of the category Cat consisting of those polynomials $X \stackrel{m_{2}}{\longleftrightarrow} E \xrightarrow{m_{1}} S \xrightarrow{p} Y$ for which $S \stackrel{m_{1}}{\longleftrightarrow} E \xrightarrow{m_{2}} X$ is a two-sided discrete fibration from $S$ to $X$ and $p$ is a discrete fibrations. Such polynomials are equivalent to parametric right adjoint functors $\left[X^{\mathrm{op}}, \mathrm{Set}\right] \longrightarrow\left[Y^{\mathrm{op}}, \mathrm{Set}\right]$.

## Opposites of Kleisli categories of composite monads

There is another viewpoint on PolyRel $\mathscr{E}$ and PolyMod described in my Cahiers paper with the same title as this talk. It seems in the spirit of André Joyal's talk of yesterday. The Kleisli category of a monad is the Linton theory corresponding to the monad.

## Example

An elementary topos $\mathscr{E}$ admits two basic constructions, the power object $\mathcal{P} X$ and the partial map classifier $\tilde{X}$. Both define object assignments for monads on $\mathscr{E}$. There is a distributive law $d_{X}: \mathcal{P} \widetilde{X} \rightarrow \widetilde{\mathcal{P} X}$ between the two monads. The classifying category of PolyRel $\mathscr{E}$ is equivalent to the opposite of the Kleisli category $\mathscr{\mathscr { E } _ { \mathcal { P } ( - ) }}$ for the composite monad $X \mapsto \widetilde{\mathcal{P} X}$.

## Opposites of Kleisli categories of composite monads, continued

## Example

The bicategory PolyMod is biequivalent to the opposite of the Kleisli bicategory for the composite $X \mapsto \operatorname{Fam}^{\mathrm{op}}\left[X^{\mathrm{op}}\right.$, Set] of the colimit-completion pseudomonad and the product-completion pseudomonad (modulo obvious size issues).

## Some pseudofunctors

## Remark

i. If the bicategory $\mathscr{M}$ is calibrated then each $\mathscr{M}(K,-): \mathscr{M} \rightarrow$ Cat is a calibrated bicategory pseudofunctor.
ii. Recall from an earlier Proposition that polynomial functors compose. That provides a pseudofunctor

$$
\text { PolyCat } \longrightarrow \text { Cat, } \quad(X \stackrel{m}{\longleftrightarrow} S \xrightarrow{p} Y) \mapsto\left(X \xrightarrow{p m^{*}} Y\right) .
$$

## From polynomials in bicategories to polynomial functors

## Proposition

If the bicategory $\mathscr{M}$ is calibrated then, for each $K \in \mathscr{M}$, there is a pseudofunctor $\mathbb{H}_{K}:$ Poly $\mathscr{M} \longrightarrow$ Cat taking the polynomial $X \stackrel{m}{\leftarrow} S \xrightarrow{p} Y$ to the abstract polynomial functor which is the composite

$$
\mathscr{M}(K, X) \xrightarrow{\operatorname{rif}(m,-)} \mathscr{M}(K, S) \xrightarrow{\mathscr{M}(K, p)} \mathscr{M}(K, Y)
$$

in Cat.

For $\mathscr{M}=$ SpnSet and $K=1$, the displayed composite is the usual polynomial functor Set $/ X \longrightarrow$ Set $/ Y$ associated to a polynomial from $X$ to $Y$.

## From polynomials in Rel $\mathscr{E}$ to polynomial functors

## Example

For topos $\mathscr{E}$ and $\mathscr{M}=$ Rel $\mathscr{E}$, the pseudofunctor $\mathbb{H}_{K}:$ PolyRel $\mathscr{E} \longrightarrow$ Ord takes $C \stackrel{p}{\leftarrow} Z \xrightarrow{a} \mathcal{P} X$ to the order-preserving function

$$
\operatorname{Rel} \mathscr{E}(K, X) \xrightarrow{\operatorname{rif}(a,-)} \operatorname{Rel} \mathscr{E}(K, Z) \xrightarrow{p \circ-} \operatorname{Rel} \mathscr{E}(K, C)
$$

whose value at a relation $\left(s_{1}, S, s_{2}\right): K \rightarrow X$ is the relation $(c, a / s, p \circ d): K \rightarrow C$ as in the diagram below in which the square has the comma property and $s$ classifies the relation $\left(s_{1}, S, s_{2}\right)$.


## From polynomials in Mod to polynomial functors

## Example

For $\mathscr{M}=$ Mod, the pseudofunctor

$$
\mathbb{H}_{K}: \text { PolyMod } \longrightarrow \text { Cat }
$$

takes the morphism $Y \stackrel{p}{\longleftarrow} S \xrightarrow{m}$ Psh to the functor

$$
[K, \operatorname{Psh} X] \longrightarrow[K, \operatorname{Psh} Y], \ell \mapsto \bar{\ell}
$$

where

$$
(\bar{\ell} k) y=\sum_{s \in S_{y}} \operatorname{Psh} X(m s, \ell k)
$$

for $k \in K$, for $y \in Y$ and for $S_{y}$ the fibre of $p: S \rightarrow Y$ over $y$.

## Thank You




[^0]:    ${ }^{1}$ Classically called "strongly cartesian"

