
Tutorial on
Polynomial Functors and Type Theory

Part I

Steve Awodey

Workshop on Polynomial Functors
Topos Institute

March 2022

Outline

Part I

1 Polynomials
2 Type theory
3 Natural models of type theory

Part II

4 Universes in presheaves
5 A polynomial monad
6 Propositions and types

1. Polynomials

Let E be a locally cartesian closed category.
Thus for every map f : B → A we have adjoint functors on the
slice categories,

B

f
��

E/B

Σf

Πf

~~
A E/A

f ∗

OO

When A = 1 we write

ΣB a B∗ a ΠB

for the corresponding functors determined by B → 1.

1. Polynomials

Definition
The polynomial endofunctor Pf : E −→ E determined by a map

f : B −→ A

is the composite

E

B∗ !!

Pf // E

E/B
Πf

// E/A
ΣA

>>

which we may write in the internal language of E as

Pf X = Σx :AΠf B
∗X = Σx :AΠf f

∗A∗X

= Σx :AΠf f
∗A∗X = Σx :A(A∗X)f = Σx :AX

B(x).

1. Polynomials

E

B∗ !!

Pf // E

E/B
Πf

// E/A
ΣA

>>

The construction of Pf X can be visualized as follows:

X X × Boo

��

Pf X

��
B

f
// A

1. Polynomials

Lemma (UMP of PfX)

Maps p : Z → Pf X correspond naturally to pairs (a, b) where

A : Z → A b : a∗B → X .

Proof.

a∗B
b

uu zz

//

��

Z
p

}}

a

��

X X × Boo

��

Pf X

��
B

f
// A

1. Polynomials

Now suppose we have a pullback square

D

g
��

// B

f
��

C
t
// A.

1. Polynomials

Then for each X we get a map tX : PgX → Pf X as follows:

D × X

##

// B × X

{{
D

g
��

// B

f
��

C
t
// A

PgX

<<

tX
// Pf X ,

bb

because the lower square is a pullback by Beck-Chavalley,

PgX ∼= t∗Pf X .

1. Polynomials
Then for each X we get map tX : PgX → Pf X as follows:

D × X

##

// B × X

{{
D

t∗f =g
��

// B

f
��

C
t
// A

Pt∗f X

;;

tX
// Pf X ,

bb

because the lower square is a pullback by Beck-Chavalley,

PgX ∼= t∗Pf X .

Indeed, since g = t∗f , we have

Pt∗f X ∼= PgX ∼= t∗Pf X .

1. Polynomials
Then for each h : Y → X we have the pullback square below.

D × Y

D×h
��

t×Y // B × Y

B×h
��

D × X

##

t×X
// B × X

{{
D

g
��

// B

f
��

C
t
// A

PgX

<<

tX // Pf X

bb

PgY

Pgh

OO

tY
// Pf Y

Pf h

OO

1. Polynomials

Proposition

Taking the polynomial functor Pf : E → E of a map f : B → A
determines a functor

P : E→cart −→ End(E).

The cartesian squares in E→ are taken to cartesian natural
transformations between endofunctors on E . Moreover, the
polynomials are closed under composition.

Proof.
It remains only to show that polynomial functors compose: given
any f : B → A and g : D → C , there is a map h : F → E such that

Pg ◦ Pf = Ph : E −→ E .

See Spivak (2022) for the definition of h = g / f .

2. Dependent type theory
Types:

A,B, . . .

Terms:
x :A, b :B, . . .

Dependent Types (“indexed families of types”)

x :A ` B(x)

x :A, y :B(x) ` C (x , y)

. . .

Type Forming Operations:∑
x :A

B(x),
∏
x :A

B(x), . . .

Term Forming Operations:

〈a, b〉, λx .b(x), . . .

Equations:
s = t : A

2. Dependent type theory: Rules

Contexts:
x :A ` B(x)

x :A, y :B(x) `

Writing Γ for any context, we have:

Γ ` C

Γ, z :C `

2. Dependent type theory: Rules

Sums:

Γ, x :A ` B(x)

Γ `
∑

x :A B(x)

Γ ` a :A, Γ ` b :B(a)

Γ ` 〈a, b〉 :
∑

x :A B(x)

Γ ` c :
∑

x :A B(x)

Γ ` fst c : A

Γ ` c :
∑

x :A B(x)

Γ ` snd c : B(fst c)

Γ ` fst〈a, b〉 = a : A Γ ` snd〈a, b〉 = b : B

Γ ` 〈fst c , snd c〉 = c :
∑
x :A

B(x)

2. Dependent type theory: Rules

Sums:

Γ, x :A ` B(x)

Γ `
∑

x :A B(x)

Γ ` a :A, Γ ` b :B(a)

Γ ` 〈a, b〉 :
∑

x :A B(x)

Γ ` c :
∑

x :A B(x)

Γ ` fst c : A

Γ ` c :
∑

x :A B(x)

Γ ` snd c : B(fst c)

Γ ` fst〈a, b〉 = a : A Γ ` snd〈a, b〉 = b : B

Γ ` 〈fst c , snd c〉 = c :
∑
x :A

B(x)

2. Dependent type theory: Rules

Sums:

x :A ` B(x)∑
x :A B(x)

a :A b :B(a)

〈a, b〉 :
∑

x :A B(x)

c :
∑

x :A B(x)

fst c : A

c :
∑

x :A B(x)

snd c : B(fst c)

fst〈a, b〉 = a : A snd〈a, b〉 = b : B

〈fst c , snd c〉 = c :
∑
x :A

B(x)

2. Dependent type theory: Rules

Products:

x :A ` B(x)∏
x :A B(x)

x :A ` b(x) :B(x)

λx .b(x) :
∏

x :A B(x)

a :A f :
∏

x :A B(x)

fa : B(a)

x : A ` (λx .b)x = b : B(x)

λx .fx = f :
∏
x :A

B(x)

2. Dependent type theory: Substitution

A tuple of terms in context σ : ∆→ Γ induces an operation

σ : ∆→ Γ Γ ` a : A

∆ ` a[σ] : A[σ]

which preserves everything.

For example given y : Y ` s : Z and z :Z , x :A(z) ` B(z , x) we can
do

y : Y ` s : Z z:Z , x :A(z)`B(z,x)
z:Z `

∏
x :A(z) B(z,x)

y : Y ` (
∏

x :A(z) B(z , x))[s/z]
or

y :Y`s:Z z:Z , x :A(z)`B(z,x)
y :Y , x :A(s)`B(s,x)

y :Y `
∏

x :A(s) B(s, x)

and syntactically the results are the same,(∏
x :A(z) B(z , x)

)
[s/z] =

∏
x :A(s) B(s, x) .

This suggests a reformulation as an indexed algebraic structure.

3. Natural models

Definition
A natural transformation f : Y → X of presheaves on a category C
is called representable if its pullback along any yC → X is
representable:

yD

��

// Y

f
��

yC // X

Proposition (A, Fiore)

A representable natural transformation is the same thing as a
Category with Families in the sense of Dybjer.

3. Natural models

Definition
A natural transformation f : Y → X of presheaves on a category C
is called representable if its pullback along any yC → X is
representable: for all C ∈ C and x ∈ X (C) there is given
p : D → C and y ∈ Y (D) such that the following is a pullback:

yD

yp

��

y // Y

f
��

yC x
// X

Proposition (A, Fiore)

A representable natural transformation equipped with a choice of
such pullbacks is the same thing as a Category with Families in
the sense of Dybjer.

3. Natural models

Write the objects and arrows of C as σ : ∆→ Γ, thinking of a
category of contexts and substitutions.

Let p : U̇→ U be a representable map of presheaves on C.

Think of U as the presheaf of types, U̇ as the presheaf of terms,
and then p gives the type of a term.

Γ ` A ≈ A ∈ U(Γ)

Γ ` a : A ≈ a ∈ U̇(Γ)

where A = p ◦ a.

U̇

p

��
Γ

a

88

A
// U

3. Natural models

Naturality of p : U̇→ U means that for any substitution
σ : ∆→ Γ, we have the required action on types and terms:

Γ ` A ⇒ ∆ ` A[σ]

Γ ` a : A ⇒ ∆ ` a[σ] : A[σ]

U̇

p

��
∆ σ

//

A[σ]

<<

a[σ] ,,

Γ

a

88

A
// U

3. Natural models

Given any further τ : ∆′ → ∆ we clearly have

A[σ][τ] = A[σ ◦ τ] a[σ][τ] = a[σ ◦ τ]

and for the identity substitution 1 : Γ→ Γ

A[1] = A a[1] = a.

This is the basic structure of a CwF.

2. Natural models, context extension

The remaining operation of context extension

Γ ` A

Γ, x :A `

is modeled by the representability of p : U̇→ U as follows.

3. Natural models, context extension

Given Γ ` A we need a new context Γ.A together with a
substitution pA : Γ.A→ A and a term

Γ.A ` qA : A[pA] .

Let pA : Γ.A→ Γ be the pullback of p along A.

Γ.A

pA
��

qA // U̇

p

��
Γ

A
// U

The map qA : Γ.A→ U̇ gives the required term Γ.A ` qA : A[pA].
Syntactically, this is just the term

Γ, x :A ` x :A .

3. Natural models, context extension

∆

σ

''

(σ,a)

a

��
Γ.A

pA
��

qA
// U̇

p

��
Γ

A
// U

The pullback means that given any substitution σ : ∆→ Γ and
term ∆ ` a : A[σ] there is a map

(σ, a) : ∆→ Γ.A

satisfying

pA(σ, a) = σ

qA[σ, a] = a.

3. Natural models, context extension

∆

σ

##

(σ,a)

a

��
Γ.A

pA
��

qA
// U̇

p

��
Γ

A
// U

By the uniqueness of (σ, a), we also have

(σ, a) ◦ τ = (σ ◦ τ, a[τ]) for any τ : ∆′ → ∆

and
(pA, qA) = 1.

These are all the laws for a CwF.

3. Natural models, algebraic formulation

Natural models can be presented as an essentially algebraic theory,
with several sorts, partial operations, and equations between terms.

We have four basic sorts:

C0, C1, A, B

and the following operations and equations:

category: the usual domain, codomain, identity and
composition operations for the index category C:

C1 ×C0 C1
◦ // C1

dom
//

cod //
C0 ,idoo

together with the familiar equations for a category.

3. Natural models, algebraic formulation

presheaf: the indexing and action operations for the presheaves
A,B : Cop → Set:

C1 ×C0 A
α // A

pA
��

C0

C1 ×C0 B
β // B

pB
��

C0

together with the equations making α an action:

pA(α(u, a)) = dom(u),

α(u ◦ v , a) = α(v , α(u, a)),

α(1pA(a), a) = a,

and similarly for β.

3. Natural models, algebraic formulation

natural transformation: an operation

f : A→ B

satisfying the naturality equations:

pB ◦ f = pA, f ◦ α = β ◦ (C1 ×C0 f).

representable: a natural transformation f : A→ B is representable
just if the associated functor,∫

C f :
∫
C A→

∫
C B

on the categories of elements has a right adjoint

f ∗ :
∫
C B →

∫
C A

(an algebraic condition, see Newstead (2018)).

3. Natural models and initiality

• The notion of a natural model is thus essentially algebraic.

• The algebraic homomorphisms correspond exactly to syntactic
translations.

• There is an initial algebra as well as a free algebra over any
signature of basic types and terms.

• The rules of dependent type theory specify a procedure for
generating a free algebra.

3. Natural models and tribes

Let p : U̇→ U be a natural model.

The fibration ∫
C U→ C

of all display maps pA : Γ.A→ Γ, for all A : Γ→ U, determines a
clan in the sense of Joyal (2017).

Conversely, given a clan D ↪→ C→, there is a natural model in Ĉ,∐
f ∈D yf :

∐
f ∈D ydom(f) −→

∐
f ∈D ycod(f).

This natural model pD : U̇D → UD determines a splitting of the
associated fibration D → C.

3. Natural models and tribes

Theorem (ish)

There is an adjunction between the categories of clans and of
natural models, which specializes to a biequivalence between
(certain) tribes and natural models with (certain) type-forming
operations.

See A. (2017) for details.

References for Part I

1. Awodey, S. (2017) Natural models of homotopy type theory,
MSCS 28(2). arXiv:1406.3219

2. Dybjer, P. (1995) Internal Type Theory. Types 1995.

3. Joyal, A. (2017) Notes on clans and tribes. arXiv:1710.10238

4. Spivak, D. (2022) A summary of categorical structures in
Poly. arXiv:2202.00534

