Tutorial on Polynomial Functors and Type Theory Part II

Steve Awodey

Workshop on Polynomial Functors Topos Institute March 2022

Outline

Part I

- 1 Polynomials
- 2 Type theory
- 3 Natural models of type theory

Part II

- 4 Universes in presheaves
- 5 A polynomial monad
- 6 Propositions and types

Recall the notion of a Hofmann-Streicher universe

$$\dot{V} \rightarrow V$$

in a category of presheaves $\widehat{\mathbb{C}}=\mathsf{Set}^{\mathbb{C}^{\mathsf{op}}}.$

- 1. Let set \hookrightarrow Set be the full subcategory of *small* sets $s < \kappa$.
- 2. Let $\dot{set} = 1/set$ be the category of small *pointed* sets.
- 3. Then for $c \in \mathbb{C}$ let:

$$\begin{split} \mathsf{V}(c) &= \mathsf{Cat}\big(\mathbb{C}/_c{}^{\mathsf{op}},\,\mathsf{set}\big) \text{ the } \textit{set }\mathsf{of }\mathsf{small }\mathsf{presheaves }\mathsf{on }\,\mathbb{C}/_c,\\ \dot{\mathsf{V}}(c) &= \mathsf{Cat}\big(\mathbb{C}/_c{}^{\mathsf{op}},\,\mathsf{set}\big)\,\ldots\,\mathsf{small }\textit{pointed }\mathsf{presheaves }\mathsf{on }\,\mathbb{C}/_c. \end{split}$$

- 4. The action on $d \to c$ is given by *pre*composition with *post*composition $\mathbb{C}/_d \to \mathbb{C}/_c$.
- 5. There is a natural transformation $V\to V$ determined by composing with the forgetful functor set \to set

Definition

In a category $\widehat{\mathbb{C}}=\mathsf{Set}^{\mathbb{C}^{\mathsf{op}}}$ of presheaves,

- an object A is *small* if its values A(c) are small, for all $c \in \mathbb{C}$,
- a map $A \to X$ is *small* if its fibers $A_x = x^*A$ are small, for all $x : yc \to X$,

Note that small maps are stable under pullback. And that the map $\dot{V} \rightarrow V$ is small, since the fiber \dot{V}_S over $S: yc \rightarrow V$ has as elements pointed presheaves $\dot{S}: \mathbb{C}/_c \rightarrow \dot{set}$.

Proposition

For every small map $A \rightarrow X$ there is a canonical classifying map $\alpha : X \rightarrow V$ fitting into a pullback diagram of the form

Proof.

Do it first for the small maps $A_x \to yc$, for all $x : yc \to X$, for which there is a canonical choice of $\alpha_x : yc \to V$. Then use the presentation of X as a colimit over its category of elements $(c, x) \in \int_{\mathbb{C}} X$ to get $\alpha : X \to U$.

Remark

For large enough κ the small maps are closed under the adjoints $\Sigma_A \dashv A^* \dashv \Pi_A$ to pullback along small maps $A \to X$.

This fact gives rise to natural operations on the universe $\dot{V} \rightarrow V$ that can be used to (coherently!) model the corresponding type-forming operations, as follows:

- a universe $\dot{V} \to V$ is a natural model on the category of contexts $\widehat{\mathbb{C}},$
- a universe $\dot{V} \rightarrow V$ generates a polynomial endofunctor

$$P:\widehat{\mathbb{C}}\longrightarrow\widehat{\mathbb{C}}.$$

• The type forming operations in the natural model will be seen to correspond to an algebraic structure on the polynomial endofunctor.

5. Polynomial monad and type formers

Let $p: \dot{U} \to U$ be a natural model on an arbitrary category \mathbb{C} , and consider the associated *polynomial endofunctor*,

$$P = \mathsf{U}_! \circ \boldsymbol{p}_* \circ \dot{\mathsf{U}}^* : \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}},$$

which we can write as,

$$P(X) = \sum_{A:U} X^{[A]},$$

where $[A] = p^{-1}(A)$ is the fiber of $p : \dot{U} \to U$ at A : U.

Lemma

Maps $\Gamma \rightarrow P(X)$ correspond naturally to pairs (A, B) where

5. Polynomial monad and type formers

Applying P to U itself therefore gives the object

$$\mathsf{PU} = \sum_{A:U} \mathsf{U}^{[A]}$$

for which maps $\Gamma \rightarrow PU$ correspond naturally to pairs (A, B) of the form,

Since maps $\Gamma \to U$ correspond naturally to types in context $\Gamma \vdash A$, we see that maps $\Gamma \to PU$ correspond naturally to types in the extended context $\Gamma.A \vdash B$.

5. Polynomial monad and type formers

Proposition

For a natural model $\dot{U} \rightarrow U,$ the polynomial object

$$PU = \sum_{A:U} U^{[A]}$$

classifies types in context. Specifically, there is a natural isomorphism between maps $\Gamma \rightarrow PU$ and pairs (A, B) where

 $\Gamma.A \vdash B.$

Similarly, the object

$$P\dot{\mathsf{U}} = \sum_{A:\mathsf{U}} \dot{\mathsf{U}}^{[A]}$$

models *terms* in context: pairs (A, b : B) where $\Gamma .A \vdash b : B$, for (A, B) the composite with $P\dot{U} \rightarrow PU$.

5. Polynomial monad and type formers: $\boldsymbol{\Pi}$

Proposition

The natural model $p : \dot{U} \to U$ models the rules for products just if there are maps λ, Π making the following a pullback.

5. Polynomial monad and type formers: Π

Proposition

The map $p: U \to U$ models the rules for products just if there are maps λ, Π making the following a pullback.

Proof:

5. Polynomial monad and type formers: Π

Proposition

The map $p: \dot{U} \to U$ models the rules for products just if there are maps λ, Π making the following a pullback.

Proof:

5. Polynomial monad and type formers: $\boldsymbol{\Pi}$

Proposition

The map $p: \dot{U} \to U$ models the rules for products just if there are maps λ, Π making the following a pullback.

Proof:

$$A \vdash b : B$$
 $\lambda_A b$

5. Polynomial monad and type formers: Π

Proposition

The map $p: \hat{U} \to U$ models the rules for products just if there are maps λ, Π making the following a pullback. **Proof:**

f

5. Polynomial monad and type formers: $\boldsymbol{\Pi}$

Proposition

The map $p : \dot{U} \rightarrow U$ models the rules for products just if there are maps λ, Π making the following a pullback. **Proof:**

 $A \vdash fx : B \qquad \qquad \lambda_A fx = f$

 $A \vdash B$

 $\Pi_A B$

5. Polynomial monad and type formers: Σ

Proposition

The map $p: \dot{U} \to U$ models the rules for sums just if there are maps (pair, Σ) making the following a pullback

where $q = p \triangleleft p : Q \rightarrow P(U)$ is the generating map of the composite $P_q = P_{p \triangleleft p} = P_p \circ P_p$.

Explicitly:

$$Q = \sum_{A:U} \sum_{B:U^A} \sum_{x:A} B(x)$$

5. Polynomial monad and type formers: T

Rules for a terminal type T

$$\overline{+ T}$$
 $\overline{+ * : T}$ $\overline{x : T \vdash x = * : T}$

Proposition

The map $p: \dot{U} \rightarrow U$ models the rules for a terminal type just if there are maps (*, T) making the following a pullback.

Consider the pullback squares for T and Σ .

These determine cartesian natural transformations between the corresponding polynomial endofunctors.

$$\tau: 1 \Rightarrow P \qquad \qquad \sigma: P \circ P \Rightarrow P$$

Theorem (A-Newstead)

A natural model $p : \dot{U} \to U$ models the T and Σ type formers just if the associated polynomial endofunctor P has the structure maps of a cartesian monad.

$$\tau: 1 \Rightarrow P \qquad \qquad \sigma: P \circ P \Rightarrow P$$

What about the monad laws?

The monad laws correspond to the following type isomorphisms.

$\sigma \circ P\sigma = \sigma \circ \sigma_P$	$\sum_{a:A} \sum_{b:B(a)} C(a,b) \cong \sum_{\substack{(a,b):\sum_{a:A} B(a)}} C(a,b)$
$\sigma\circ P\tau=1$	$\sum_{a:A} 1 \cong A$
$\sigma\circ\tau_P=1$	$\sum_{x:1} A \cong A$

The pullback square for Π

determines a cartesian natural transformation

$$\pi: P^2 p \Rightarrow p$$

where $P^2 : \hat{\mathbb{C}}^2 \to \hat{\mathbb{C}}^2$ is the extension of P to the arrow category.

Theorem (A-Newstead)

A natural model $p: \dot{U} \rightarrow U$ models the Π type former just if it has an algebra structure for the extended endofunctor P^2 ,

$$\pi: P^2 p \Rightarrow p.$$

The algebra laws correspond to the following type isomorphisms.

$\pi \circ P\pi = \pi \circ \sigma$	$\prod_{a:A} \prod_{b:B(a)} C(a,b) \cong \prod_{(a,b):\sum_{a:A} B(a)} C(a,b)$
$\pi \circ au = 1$	$\prod_{x:1} A \cong A$

We can compare these operations on types

 $\Sigma,\Pi: PU \longrightarrow U$

with those on subobjects of objects A in the topos $\widehat{\mathbb{C}}$,

 $\exists_{\mathcal{A}}, \forall_{\mathcal{A}}: \Omega^{\mathcal{A}} \longrightarrow \Omega.$

Consider

$$P\Omega = \sum_{A:U} \Omega^A$$

for the polynomial endofunctor of $\dot{U} \rightarrow U.$ We then have the comparable maps

$$\exists,\forall: P\Omega \longrightarrow \Omega.$$

Proposition

There is a retraction $i : \Omega \rightarrow U$, $s : U \rightarrow \Omega$ such that the following squares commute.

For the proof, factor the natural model $p: U \to U$ as on the right below.

So $||\dot{U}|| \rightarrow U$ is a universal family of small propositions.

Let $s: U \to \Omega$ classify the mono $||\dot{U}|| \rightarrowtail U$.

Let $s: U \to \Omega$ classify the mono $||\dot{U}|| \mapsto U$.

Let $i: \Omega \to U$ classify the family of small propositions $1 \rightarrowtail \Omega$.

Let

$$||\cdot|| := i \circ s : \mathsf{U} \to \mathsf{U}.$$

We have

 $s \circ i = 1 : \Omega \to \Omega$.

So

 $\Omega = \mathsf{im}(||\cdot||).$

The following diagrams then commute, as required.

References

- Awodey, S. (2017) Natural models of homotopy type theory, MSCS 28(2). arXiv:1406.3219
- Awodey, S. and N. Gambino and S. Hazratpour (2022) Kripke-Joyal semantics for homotopy type theory. arXiv:2110.14576
- Awodey, S. and C. Newstead (2018) Polynomial pseudomonads and dependent type theory. arXiv:1802.00997
- 4. Spivak, D. (2022) A summary of categorical structures in Poly. arXiv:2202.00534
- Newstead, C. (2018) Algebraic Models of Dependent Type Theory, CMU PhD thesis. arXiv:2103.06155

Appendix: Natural models of HoTT

Theorem

A category \mathbb{C} with a terminal object 1 admits a natural model of Homotopy Type Theory if it has a class of maps \mathcal{D} satisfying the following conditions:

- total: every $C \rightarrow 1$ is in \mathcal{D} ,
- stable: \mathcal{D} is closed under pullbacks along all maps in \mathbb{C} ,
- closed: D is closed under composition and under dependent products along all maps in D,
- factorizing: every map f : A → B in C factors as f = d ∘ a with a ∈ ^hD and d ∈ D.

Proof.

Uses the main idea of the Lumsdaine-Warren coherence theorem: a left-adjoint splitting of the fibration of \mathcal{D} -maps.

Appendix: Natural models of HoTT

Examples of categories satisfying the conditions of the theorem:

- Kan complexes with the right wfs on sSets.
- Any right-proper Cisinski model category (restricted to the fibrant objects).
- Groupoids, *n*-Groupoids, ∞ -Groupoids.
- Joyal's π h-tribes.
- The syntactic category of contexts of type theory itself.