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4. Universes in presheaves

Recall the notion of a Hofmann-Streicher universe

V̇→ V

in a category of presheaves Ĉ = SetC
op

.

1. Let set ↪→ Set be the full subcategory of small sets s < κ.

2. Let ˙set = 1/set be the category of small pointed sets.

3. Then for c ∈ C let:

V(c) = Cat
(
C/cop, set

)
the set of small presheaves on C/c ,

V̇(c) = Cat
(
C/cop, ˙set

)
... small pointed presheaves on C/c .

4. The action on d → c is given by precomposition with
postcomposition C/d → C/c .

5. There is a natural transformation V̇→ V determined by
composing with the forgetful functor ˙set→ set



4. Universes in presheaves

Definition
In a category Ĉ = SetC

op
of presheaves,

• an object A is small if its values A(c) are small, for all c ∈ C,

• a map A→ X is small if its fibers Ax = x∗A are small,
for all x : yc → X ,

Ax

��

// A

��
yc x

// X .

Note that small maps are stable under pullback.
And that the map V̇→ V is small, since the fiber V̇S over
S : yc → V has as elements pointed presheaves Ṡ : C/c → ˙set.



4. Universes in presheaves

Proposition

For every small map A→ X there is a canonical classifying map
α : X → V fitting into a pullback diagram of the form

A

��

// V̇

��
X α

// V.

Proof.
Do it first for the small maps Ax → yc , for all x : yc → X , for
which there is a canonical choice of αx : yc → V. Then use the
presentation of X as a colimit over its category of elements
(c , x) ∈

∫
C X to get α : X → U.



4. Universes in presheaves

Remark
For large enough κ the small maps are closed under the adjoints
ΣA a A∗ a ΠA to pullback along small maps A→ X .

This fact gives rise to natural operations on the universe V̇→ V
that can be used to (coherently!) model the corresponding
type-forming operations, as follows:

• a universe V̇→ V is a natural model on the category of
contexts Ĉ,

• a universe V̇→ V generates a polynomial endofunctor

P : Ĉ −→ Ĉ.

• The type forming operations in the natural model will be seen
to correspond to an algebraic structure on the polynomial
endofunctor.



5. Polynomial monad and type formers
Let p : U̇→ U be a natural model on an arbitrary category C,
and consider the associated polynomial endofunctor,

P = U! ◦ p∗ ◦ U̇∗ : Ĉ −→ Ĉ ,

which we can write as,

P(X ) =
∑
A : U

X [A],

where [A] = p−1(A) is the fiber of p : U̇→ U at A : U.

Lemma
Maps Γ→ P(X ) correspond naturally to pairs (A,B) where

X Γ.A
Boo

��

// U̇

p

��
Γ

A
// U

.



5. Polynomial monad and type formers

Applying P to U itself therefore gives the object

PU =
∑
A:U

U[A]

for which maps Γ→ PU correspond naturally to pairs (A,B) of
the form,

U Γ.A
Boo

��

// U̇

p

��
Γ

A
// U

Since maps Γ→ U correspond naturally to types in context Γ ` A,
we see that maps Γ→ PU correspond naturally to types in the
extended context Γ.A ` B.



5. Polynomial monad and type formers

Proposition

For a natural model U̇→ U, the polynomial object

PU =
∑
A:U

U[A]

classifies types in context. Specifically, there is a natural
isomorphism between maps Γ→ PU and pairs (A,B) where

Γ.A ` B.

Similarly, the object

PU̇ =
∑
A:U

U̇[A]

models terms in context: pairs (A, b : B) where Γ.A ` b : B,
for (A,B) the composite with PU̇→ PU.



5. Polynomial monad and type formers: Π

Proposition

The natural model p : U̇→ U models the rules for products just if
there are maps λ,Π making the following a pullback.

PU̇

Pp
��

λ // U̇

p

��
PU

Π
// U



5. Polynomial monad and type formers: Π

Proposition

The map p : U̇→ U models the rules for products just if there are
maps λ,Π making the following a pullback.

Proof:

P(U̇)

��

λ // U̇

��∑
A:U

U[A] P(U)
Π

// U



5. Polynomial monad and type formers: Π

Proposition

The map p : U̇→ U models the rules for products just if there are
maps λ,Π making the following a pullback.

Proof:

P(U̇)

��

λ // U̇

��∑
A:U

U[A] P(U)
Π

// U

A ` B ΠAB



5. Polynomial monad and type formers: Π

Proposition

The map p : U̇→ U models the rules for products just if there are
maps λ,Π making the following a pullback.

Proof:
A ` b : B λAb

∑
A:U

U̇[A] P(U̇)

��

λ // U̇

��∑
A:U

U[A] P(U)
Π

// U

A ` B ΠAB



5. Polynomial monad and type formers: Π

Proposition

The map p : U̇→ U models the rules for products just if there are
maps λ,Π making the following a pullback.

Proof:
f

∑
A:U

U̇[A] P(U̇)

��

λ // U̇

��∑
A:U

U[A] P(U)
Π

// U

A ` B ΠAB



5. Polynomial monad and type formers: Π

Proposition

The map p : U̇→ U models the rules for products just if there are
maps λ,Π making the following a pullback.

Proof:

A ` fx : B λAfx = f

∑
A:U

U̇[A] P(U̇)

��

λ // U̇

��∑
A:U

U[A] P(U)
Π

// U

A ` B ΠAB



5. Polynomial monad and type formers: Σ

Proposition

The map p : U̇→ U models the rules for sums just if there are
maps (pair,Σ) making the following a pullback

Q

q

��

pair // U̇

p

��
P(U)

Σ
// U

where q = p / p : Q → P(U) is the generating map of the
composite Pq = Pp/p = Pp ◦ Pp.

Explicitly:

Q =
∑
A:U

∑
B:UA

∑
x :A

B(x)



5. Polynomial monad and type formers: T

Rules for a terminal type T

` T ` ∗ : T x : T ` x = ∗ : T

Proposition

The map p : U̇→ U models the rules for a terminal type just if
there are maps (∗,T) making the following a pullback.

1
∗ //

��

U̇

p

��
1

T
// U



5. Polynomial monad

Consider the pullback squares for T and Σ.

1
∗ //

��

U̇

p

��
1

T
// U

Q

p/p

��

pair // U̇

p

��
P(U)

Σ
// U

These determine cartesian natural transformations between the
corresponding polynomial endofunctors.

τ : 1⇒ P σ : P ◦ P ⇒ P



5. Polynomial monad

Theorem (A-Newstead)

A natural model p : U̇→ U models the T and Σ type formers just
if the associated polynomial endofunctor P has the structure maps
of a cartesian monad.

τ : 1⇒ P σ : P ◦ P ⇒ P

What about the monad laws?



5. Polynomial monad

The monad laws correspond to the following type isomorphisms.

σ ◦ Pσ = σ ◦ σP
∑
a:A

∑
b:B(a)

C (a, b) ∼=
∑

(a,b):
∑
a:A

B(a)

C (a, b)

σ ◦ Pτ = 1
∑
a:A

1 ∼= A

σ ◦ τP = 1
∑
x :1

A ∼= A



5. Polynomial monad

The pullback square for Π

PU̇

Pp
��

λ // U̇

p

��
PU

Π
// U

determines a cartesian natural transformation

π : P2p ⇒ p

where P2 : Ĉ2 → Ĉ2 is the extension of P to the arrow category.



5. Polynomial monad

Theorem (A-Newstead)

A natural model p : U̇→ U models the Π type former just if it has
an algebra structure for the extended endofunctor P2,

π : P2p ⇒ p.



5. Polynomial monad

The algebra laws correspond to the following type isomorphisms.

π ◦ Pπ = π ◦ σ
∏
a:A

∏
b:B(a)

C (a, b) ∼=
∏

(a,b):
∑
a:A

B(a)

C (a, b)

π ◦ τ = 1
∏
x :1

A ∼= A



6. Propositions and types

We can compare these operations on types

Σ,Π : PU −→ U

with those on subobjects of objects A in the topos Ĉ,

∃A,∀A : ΩA −→ Ω.

Consider
PΩ =

∑
A:U

ΩA

for the polynomial endofunctor of U̇→ U.
We then have the comparable maps

∃, ∀ : PΩ −→ Ω.



6. Propositions and types

Proposition

There is a retraction i : Ω� U , s : U� Ω such that the
following squares commute.

PΩ

Pi
��

∃ // Ω

PU
Σ

// U

s

OO PΩ

Pi
��

∀ // Ω

PU
Π

// U

s

OO



6. Propositions and types

For the proof, factor the natural model p : U̇→ U as on the right
below.

Γ.A

��

"" ""

// U̇

��

    
Γ.||A||
{{

{{

// ||U̇||
~~

~~
Γ

A
// U

So ||U̇||� U is a universal family of small propositions.



6. Propositions and types

Let s : U→ Ω classify the mono ||U̇||� U.

Γ.A

��

"" ""

// U̇

��

    
Γ.||A||
{{

{{

// ||U̇||
~~

~~

// 1��

��
Γ

A
// U s

// Ω



6. Propositions and types

Let s : U→ Ω classify the mono ||U̇||� U.

Γ.A

��

"" ""

// U̇

��

    
Γ.||A||
{{

{{

// ||U̇||
~~

~~

// 1��

��

// U̇

��
Γ

A
// U s

// Ω
i

// U

Let i : Ω→ U classify the family of small propositions 1� Ω.



6. Propositions and types

Γ.A

��

"" ""

// U̇

��

    
Γ.||A||
{{

{{

// ||U̇||
~~

~~

// 1��

��

// U̇

��
Γ

A
// U s

// //

||·||

88Ω //
i

// U

Let
||·|| := i ◦ s : U→ U.

We have
s ◦ i = 1 : Ω→ Ω.

So
Ω = im(||·||).



6. Propositions and types

The following diagrams then commute, as required.

∑
A:U

ΩA

Pi

��

∃ // Ω

∑
A:U

UA
Σ

// U

s

OO
∑
A:U

ΩA

Pi

��

∀ // Ω

∑
A:U

UA
Π

// U

s

OO
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Appendix: Natural models of HoTT

Theorem
A category C with a terminal object 1 admits a natural model of
Homotopy Type Theory if it has a class of maps D satisfying the
following conditions:

• total: every C → 1 is in D,

• stable: D is closed under pullbacks along all maps in C,

• closed: D is closed under composition and under dependent
products along all maps in D,

• factorizing: every map f : A→ B in C factors as f = d ◦ a
with a ∈ tD and d ∈ D.

Proof.
Uses the main idea of the Lumsdaine-Warren coherence theorem:
a left-adjoint splitting of the fibration of D-maps.



Appendix: Natural models of HoTT

Examples of categories satisfying the conditions of the theorem:

• Kan complexes with the right wfs on sSets.

• Any right-proper Cisinski model category (restricted to the
fibrant objects).

• Groupoids, n-Groupoids, ∞-Groupoids.

• Joyal’s πh-tribes.

• The syntactic category of contexts of type theory itself.


