From polynomial functors to functor calculi

Brenda Johnson
Union College

March 15th, 2022

Plan

1. Perspective
2. Examples
2.1 Calculus of homotopy functors
2.2 Abelian functor calculus
2.3 Discrete functor calculus
3. A general framework for calculus

Perspective - Polynomial Functors via Calculus

Taylor polynomials
Given a nice function $f: \mathbb{R} \rightarrow \mathbb{R}$, its nth Taylor polynomial

- is a polynomial of degree $\leq n$, and, hence, may be easier to work with than f,
- provides an approximation of f in a prescribed way (at least within the radius of convergence), and
- becomes a better approximation to f as n increases.

Perspective - Polynomial Functors via Calculus

Goal:
Define new ways to associate a sequence of functors $\left\{P_{n} F\right\}_{n \geq 0}$ to a functor F so that

- $P_{n} F$ is "nice" in the sense of some property indexed by n ($P_{n} F$ is degree n),
- there is a natural transformation $\eta_{n}: F \Rightarrow P_{n} F$ such that $P_{n} F$ is universal among degree n functors with natural transformations from $F\left(P_{n} F\right.$ is related to $\left.F\right)$,
- the induced natural transformations $P_{m} \eta_{n}: P_{m} F \Rightarrow P_{m} P_{n} F$ and $\eta_{n}: P_{m} F \rightarrow P_{n} P_{m} F$ are equivalences when $m \leq n\left(P_{n} F\right.$ preserves degree m part of F).

Perspective - Equivalence

Coming from a topological point of view, we work in settings with a weaker notion of equivalence, which we'll denote \simeq :

- Topological spaces: $f: X \xrightarrow{\simeq} Y$ iff f is a weak homotopy equivalence, that is, $f_{j}: \pi_{j}(X) \rightarrow \pi_{j}(Y)$ is an isomorphism for all $j \geq 0$.
- Chain complexes: $f: A_{*} \xrightarrow{\simeq} B_{*}$ iff f is a chain homotopy equivalence or, alternatively, a f is a quasi-isomorphism.
- (Simplicial) model categories: $f: C \xrightarrow{\simeq} D$ iff f is a weak equivalence.

Theorem [Goodwillie, 2003]

For a functor F of spaces or spectra that preserves weak homotopy equivalences, there is a Taylor tower of functors and natural transformations

such that

- for all $n \geq 0, P_{n} F$ is an n-excisive functor,
- if F is "nice," the tower converges to F on sufficiently "nice" objects $\left(F(x) \rightarrow P_{n} F(x)\right.$ is roughly $(n+1) k$-connected when x is k-connected), and
- $P_{n} F$ is universal (up to a zig-zag of weak equivalences) among n-excisive functors with natural transformations from F.

n-excisive functors - n-cubical diagrams

$\mathcal{P}(n)$ is the poset of subsets of $\mathrm{n}=\{1,2, \ldots, n\}$.
E.g., $\mathcal{P}(2)$ is

An n-cube in a category \mathcal{C} is a functor from $\mathcal{P}(n)$ to \mathcal{C}. E.g., a 2-cube is a commuting square

a 3-cube diagram is a commuting cube in \mathcal{C}, etc.

n-excisive functors

- A n-cubical diagram of spaces (spectra) is strongly cocartesian if every 2 -face is a homotopy pushout square.
- A functor of spaces (spectra) is n-excisive if it takes strongly cocartesian ($n+1$)-cubical diagrams to homotopy cartesian (homotopy pullback) diagrams.

Examples

- The identity functor of spaces Id is not n-excisive for any n. (Homotopy pullback n-cubes are not the same as homotopy pushout n-cubes in spaces.)
- (Snaith splitting) For the functor from spaces to spectra, $F: X \mapsto \Sigma^{\infty} \Omega \Sigma X$,

$$
P_{m} F(X) \simeq \prod_{1 \leq n \leq m} \Sigma^{\infty}\left(X^{\wedge n}\right)
$$

- For the identity functor Id of spaces, $P_{1} \operatorname{Id} \simeq \Omega^{\infty} \Sigma^{\infty}=Q$, the stable homotopy functor.

Applications

- Homotopy Theory: The Taylor tower of the identity functor of spaces interpolates between stable homotopy theory and unstable homotopy theory, and has contributed to new perspectives on homotopy theory.
- Algebraic K-theory: Under mild hypotheses, two functors F and G agree "up to a constant" if there is a natural transformation $F \Rightarrow G$ such that the induced map

$$
\text { hofiber }\left(P_{1} F(X) \rightarrow F(*)\right) \rightarrow \text { hofiber }\left(P_{1} G(X) \rightarrow G(*)\right)
$$

is a weak equivalence for "nice" X. Used to compare algebraic K-theory to topological Hochschild and cyclic homology.

Abelian Functor Calculus - Context

- \mathcal{A} and \mathcal{B} are abelian categories and $F: \mathcal{B} \rightarrow \mathcal{A}$ is a functor.
- Eilenberg and Mac Lane (1954) defined "polynomial degree $n "$ functors in this context in terms of cross effects.
- Eilenberg and Mac Lane (1951); and Dold and Puppe (1961) constructed new functors QF (for stable homology of R-modules with coefficients in S) and $D F$ (for derived functors of non-additive functors) that are degree 1 polynomial approximations to F.

Cross Effects

Definition:

For $F: \mathcal{B} \rightarrow \mathcal{A}$ where \mathcal{B} and \mathcal{A} are abelian categories, the nth cross effect functor $c_{n} F: \mathcal{B}^{n} \rightarrow \mathcal{A}$ is defined recursively by

$$
\begin{gathered}
c r_{0} F=F(0) \\
F(X) \cong F(0) \oplus c r_{1} F(X), \\
c r_{1} F\left(X_{1} \oplus X_{2}\right) \cong c r_{1} F\left(X_{1}\right) \oplus c r_{1} F\left(X_{2}\right) \oplus c r_{2} F\left(X_{1}, X_{2}\right),
\end{gathered}
$$

and, in general,

$$
\begin{aligned}
c r_{n-1} F\left(X_{1}, \ldots, X_{n-2}, X_{n-1} \oplus X_{n}\right) & \cong c r_{n-1} F\left(X_{1}, \ldots, X_{n-2}, X_{n-1}\right) \\
& \oplus c r_{n-1} F\left(X_{1}, \ldots, X_{n-2}, X_{n}\right) \\
& \oplus c r_{n} F\left(X_{1}, \ldots, X_{n-1}, X_{n}\right)
\end{aligned}
$$

Degree n functors

Definition:
$F: \mathcal{B} \rightarrow \mathcal{A}$ is degree n if and only if $c r_{n+1} F \simeq 0$.

Example

A is an object in an abelian category $\mathcal{A}, F: \mathcal{A} \rightarrow \mathcal{A}$ with $F(X)=A \oplus X$. Then

$$
A \oplus X=F(X) \cong F(0) \oplus c r_{1} F(X)
$$

Thus,

$$
\begin{aligned}
c r_{1} F(X) & \cong X \\
c r_{1} F & \cong \mathrm{id}
\end{aligned}
$$

And,

$$
\begin{gathered}
X \oplus Y \cong c r_{1} F(X \oplus Y) \cong c r_{1} F(X) \oplus c r_{1} F(Y) \oplus c r_{2} F(X, Y), \\
c r_{2} F \cong 0 .
\end{gathered}
$$

Abelian Functor Calculus

Theorem (J-McCarthy, 2004)
Given a functor $F: \mathcal{B} \rightarrow \mathcal{A}$ between abelian categories \mathcal{B} and \mathcal{A}, there exists a Taylor tower of functors and natural transformations

such that
\rightarrow for all $n \geq 0, P_{n} F$ is a degree n functor,

- if F is "nice," the tower converges to F on "nice" objects, and
- $P_{n} F$ is universal (in an appropriate homotopy category) among degree n functors with natural transformations from F.

Abelian functor calculus and cartesian differential categories

Bauer, J, Osborne, Riehl, Tebbe, 2018
There is a notion of directional derivative coming out of abelian functor calculus that endows a category $\mathrm{HoAbCat}_{\mathrm{Ch}}$ with the structure of a Cartesian differential category.

Constructing $P_{n} F$ in the abelian functor calculus

Lemma:
There is an adjunction

where $\operatorname{Fun}(\mathcal{B}, \mathcal{A})$ is the category of functors from \mathcal{B} to \mathcal{A} and $\operatorname{Fun}_{*}\left(\mathcal{B}^{n}, \mathcal{A}\right)$ is the category of functors of n variables from \mathcal{B} to \mathcal{A} that are reduced in each variable, and Δ is the diagonal functor.

Consequence:
$C_{n}:=\Delta^{*} c r_{n}$ is a comonad on $\operatorname{Fun}(\mathcal{B}, \mathcal{A})$. For $F: \mathcal{B} \rightarrow \mathcal{A}, X \in \mathcal{A}$,

$$
C_{n} F(X):=\operatorname{cr}_{n} F(X, X, \ldots, X) .
$$

Constructing $P_{n} F$ in the abelian functor calculus

Definition:
For $F: \mathcal{B} \rightarrow \mathcal{A}, P_{n} F: \mathcal{B} \rightarrow C h_{\geq 0} \mathcal{A}$ is the chain complex
$\ldots \longrightarrow C_{n+1}^{\times 3} F \xrightarrow{\epsilon-C_{n+1} \epsilon+C_{n+1}^{\times 2} \epsilon} C_{n+1}^{\times 2} F \xrightarrow{\epsilon-C_{n+1} \epsilon} C_{n+1} F \xrightarrow{\epsilon} F$
where $\epsilon: C_{n+1}=\Delta^{*} c r_{n+1} \Rightarrow \mathrm{id}$ is the counit of the adjunction ($\left.\Delta^{*}, c r_{n+1}\right)$.

Constructing $P_{n} F$ in the abelian functor calculus

Proposition:

For $F: \mathcal{B} \rightarrow \mathcal{A}, P_{n} F: \mathcal{B} \rightarrow C h_{\geq 0} \mathcal{A}$ is a degree n functor.
Proof:
There is a natural contracting homotopy on $c r_{n+1} P_{n} F$:
$\cdots \underset{s_{1}}{\longrightarrow} c r_{n+1} C_{n+1}^{\times 2} F \underset{s_{0}}{\stackrel{c r_{n+1}\left(\epsilon-C_{n+1} \epsilon\right)}{\longrightarrow}} c r_{n+1} C_{n+1} F \underset{\sim}{c r_{n+1} \epsilon} c r_{n+1} F$
given by $s_{k}=\eta c r_{n+1}\left(C_{n+1}\right)^{\times k}$ where $\eta: \mathrm{id} \Rightarrow c r_{n+1} \Delta^{*}$ is the unit of the adjunction $\left(\Delta^{*}, c r_{n+1}\right)$.

Questions

- Can we do something like this in a more topological (or homotopy-theoretical) context?
- How would it compare with Goodwillie's calculus?
- Can we make other calculi this way?

Discrete Functor Calculus

Theorem (Bauer, J, McCarthy, 2015; Mauer-Oats, 2006)
Given a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ between a simplicial model category \mathcal{C} and a pointed stable simplicial model category \mathcal{D}, there exists a Taylor tower of functors and natural transformations

such that

- for all $n \geq 0, P_{n} F$ is a degree n functor,
- $P_{n} F$ is universal (in an appropriate homotopy category) among degree n functors with natural transformations from F.

Degree n functors

Definition:
F is degree n iff $c r_{n+1} F \simeq *$.
Definition:
For an n-tuple $\mathrm{X}=\left(X_{1}, \ldots, X_{n}\right)$ of objects in \mathcal{C},

$$
c r_{n} F(\mathrm{X}):=\operatorname{ihofiber}\left(U \in \mathcal{P}(n) \mapsto F\left(\mathrm{X}_{1}(U) \sqcup \cdots \sqcup \mathrm{X}_{n}(U)\right)\right)
$$

where

$$
X_{i}(U)= \begin{cases}X_{i} & i \notin U \\ * & i \in U\end{cases}
$$

Example

$\operatorname{cr}_{2} F\left(X_{1}, X_{2}\right)$ is the iterated homotopy fiber of the diagram

$$
\begin{gathered}
F\left(X_{1} \sqcup X_{2}\right) \longrightarrow F\left(* \sqcup X_{2}\right) \\
\downarrow \\
\downarrow\left(X_{1} \sqcup *\right) \longrightarrow F(* \sqcup *) .
\end{gathered}
$$

Construction of $P_{n} F$ for the discrete calculus

Lemma
$\perp_{n+1}=\Delta^{*} c r_{n+1}$ defines a comonad on $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$.
Definition
For a functor $F: \mathcal{C} \rightarrow \mathcal{D}$,

- $k \mapsto \operatorname{Bar}_{k}^{n+1} F:=\perp_{n+1}^{k+1} F$ defines a simplicial object in Fun $(\mathcal{C}, \mathcal{D})$.
- The counit $\epsilon: \perp_{n+1} \Rightarrow \operatorname{id}_{\text {Fun }(\mathcal{C}, \mathcal{D})}$ makes this an augmented simplicial object:

$$
\mathrm{Bar}_{\bullet}^{n+1} F \xrightarrow{\epsilon} F .
$$

- $P_{n} F:=$ hocofiber $\left(\left\|\operatorname{Bar}_{\bullet}^{n+1} F\right\| \rightarrow F\right)$.

Construction of $P_{n} F$ for the discrete calculus

Proposition
$P_{n} F$ is degree n.
Proof:
The comonad \perp_{n+1} arises from a composite of adjunctions

with $c r_{n+1}=U \circ t^{+} \circ \sqcup^{*}$.

$P_{n} F$ is degree n, cont.

The unit for the adjunction provides a contracting homotopy for $c r_{n+1} \mathrm{Bar}_{\bullet}^{n+1} F$ via an extra degeneracy, so that

$$
\begin{aligned}
c r_{n+1} P_{n} F & =\text { hocofiber }\left(\left\|c r_{n+1} \operatorname{Bar}_{\bullet}^{n+1} F\right\| \rightarrow c r_{n+1} F\right) \\
& \simeq \operatorname{hocofiber}\left(c r_{n+1} F \rightarrow c r_{n+1} F\right)
\end{aligned}
$$

$$
\simeq * .
$$

Theorem

- For a functor F that commutes with realization $(|F(-)| \xrightarrow{\simeq} F \circ|-|)$, the discrete $P_{n} F$ is weakly equivalent to the n-excisive $P_{n} F$.
- In general, the discrete $P_{n} F$ and the n-excisive $P_{n} F$ agree on the initial object of \mathcal{C}.

Calculus from Comonads (Hess-J, 20??)

Questions

For a comonad K acting on a (simplicial) model category \mathcal{C} and an object x in \mathcal{C}, we can always construct a new object

$$
\Gamma_{K}(x):=\text { hocofiber }\left(\left\|\operatorname{Bar}_{\bullet}^{K}(x)\right\| \rightarrow x\right) .
$$

- If we define degree n in terms of a comonad K (e.g., x is degree n iff $K x \simeq *)$, what conditions on K guarantee that $\Gamma_{K}(x)$ will be degree n for all x ?

Questions

- What conditions on a tower of comonads and comonad maps

$$
\ldots K_{n} \rightarrow K_{n-1} \rightarrow \cdots \rightarrow K_{2} \rightarrow K_{1}
$$

will guarantee that

$$
\cdots \Gamma_{K_{n}}(x) \rightarrow \Gamma_{K_{n-1}}(x) \rightarrow \cdots \rightarrow \Gamma_{K_{2}}(x) \rightarrow \Gamma_{K_{1}}(x)
$$

is a Taylor tower for x ?

- What are the essential properties of a Taylor tower (what makes a tower a calculus)?
- Can the process that produced the comonads for the discrete calculus tower be generalized?
- What kinds of new examples are produced?

What is a calculus?

Definition

Let \mathcal{M} be a model category, and let \mathcal{M}^{\prime} be a subcategory of \mathcal{M}. Let Γ be a functor that assigns to an object x in \mathcal{M}^{\prime}, a coaugmented tower of objects in \mathcal{M} :

If the following conditions hold, then Γ is a calculus on \mathcal{M}^{\prime} with values in \mathcal{M}.

What is a calculus?

1. For all $m \leq n$ and all objects x in \mathcal{M}^{\prime}, the natural transformation

$$
\Gamma_{m} \eta_{n}(x): \Gamma_{m} x \rightarrow \Gamma_{m} \Gamma_{n} x
$$

is a weak equivalence.
2. For all $m \geq n$ and all objects x in \mathcal{M}^{\prime}, the natural transformation

$$
\eta_{m}\left(\Gamma_{n} x\right): \Gamma_{n} x \rightarrow \Gamma_{m} \Gamma_{n} x
$$

is a weak equivalence.
3. If $f: x \rightarrow x^{\prime}$ is a weak equivalence in \mathcal{M}^{\prime}, then $\Gamma_{n} f: \Gamma_{n} x \rightarrow \Gamma_{n} x^{\prime}$ is a weak equivalence in \mathcal{M} for all n.

Example of a calculus

Let Ch be the category of unbounded chain complexes over a commutative ring R (with the projective model structure).
For $n \geq 0$, define $\Gamma_{n}: C h \rightarrow C h$ by

$$
\Gamma_{n}(X, d)_{k}= \begin{cases}X_{k} & : k \leq n \\ X_{n+1} / \operatorname{ker} d_{n+1} & : k=n+1 \\ 0 & : k>n+1\end{cases}
$$

Then

$$
H_{k}\left(\Gamma_{n}(X, d)\right)= \begin{cases}H_{k}(X, d) & : k \leq n \\ 0 & : k>n\end{cases}
$$

The natural transformations $\eta_{n}: \operatorname{Id}_{C h} \rightarrow \Gamma_{n}$ and $\gamma_{n}: \Gamma_{n} \rightarrow \Gamma_{n-1}$ are given by taking appropriate quotients.
The chain complexes that are of degree at most n with respect to Γ are those with homology concentrated in degree at most n

Conditions on comonads

Definition, current version
Let \mathcal{M} be a pointed simplicial model category, and let \mathcal{M}^{\prime} be a subcategory of \mathcal{M}. A comonad $\mathbb{K}=(K, \Delta, \varepsilon)$ on \mathcal{M} is compliant with respect to \mathcal{M}^{\prime} if

1. $\operatorname{Bar}_{\bullet}^{K}(x)$ is levelwise cofibrant for all objects x in \mathcal{M}^{\prime},
2. K^{s} sends weak equivalences in \mathcal{M}^{\prime} to weak equivalences, and
3. K admits natural transformations $\left|K^{s}(-)\right| \rightarrow K^{s} \circ|-|$ that are componentwise weak equivalences (plus a little more).
Two comonads K and L on \mathcal{M} that are compliant with respect to \mathcal{M}^{\prime} are jointly compliant if all of the simplicial objects
$\operatorname{Bar}_{\bullet}^{\llbracket}\left(\left|\operatorname{Bar}_{\bullet}^{\mathbb{K}}(x)\right|\right), \quad \operatorname{Bar}_{\bullet}^{\mathbb{K}}\left(\left|\operatorname{Bar}_{\bullet}^{\complement}(x)\right|\right), \quad\left|\operatorname{Bar}_{\bullet}^{\llbracket} \operatorname{Bar}_{\bullet}^{\mathbb{K}}(x)\right|_{h}, \quad\left|\operatorname{Bar}_{\bullet}^{\complement} \operatorname{Bar}_{\bullet}^{\mathbb{K}}(x)\right|_{\iota}$
are levelwise cofibrant for all objects x in \mathcal{M}^{\prime}.

Calculi from comonads

Ingredients

- \mathcal{M} is a pointed simplicial model category.
- \mathcal{M}^{\prime} is a subcategory of \mathcal{M}.
- $\mathcal{K}=\left(\mathbb{K}_{n+1} \xrightarrow{\sigma_{n}} \mathbb{K}_{n}\right)_{n \geq 1}$ is a tower of comonads.

Theorem
If each comonad \mathbb{K}_{n} is compliant with respect to \mathcal{M}^{\prime}, and each pair of comonads $\left(\mathbb{K}_{m}, \mathbb{K}_{n}\right)$ is jointly compliant with respect to \mathcal{M}^{\prime}, then the coaugmented tower obtained from \mathcal{K} is a calculus.

A．Mauer－Oats，Algebraic Goodwillie calculus and a cotriple model for the remainder，Trans．Amer．Math．Soc．，358，2006， 1869－1895．

毒 K．Bauer，B．Johnson，C．Osborne，E．Riehl，and A．Tebbe， Directional derivatives and higher order chain rules for abelian functor calculus，Topology Appl．，235，2018，375－427．

㐭 K．Bauer，B．Johnson，R．McCarthy，Cross effects and calculus in an unbased setting，Trans．Amer．Math．Soc．， 367 （9）， 2015，pp 6671－6718．

A．Dold and D．Puppe，Homologie nicht－additiver Funktoren． Anwendungen，Ann．Inst．Fourier（Grenoble），11，1961， 201－312．

嗇 S．Eilenberg and S．Mac Lane，Homology theories for multiplicative systems，Trans．Amer．Math．Soc．，71，1951， 294－330．

圊 S．Eilenberg and S．Mac Lane，On the groups $H(\Pi, n)$ ．II． Methods of computation，Ann．of Math．（2），60，1954， 49－139．

囯 T．Goodwillie，Calculus III．Geom．Topol．，7，2003，645－711．
圊 B．Johnson and R．McCarthy，Deriving calculus with cotriples， Trans．Amer．Math．Soc．， 356 （2），2004，pp 757－803．

Abelian Functor Calculus - Cross effects

An analogy:
For $f: \mathbb{R} \rightarrow \mathbb{R}, f$ is degree $1 \Rightarrow f(x)=a x+b$ for some a and b. Then

$$
c r_{1} f(x):=f(x)-f(0)=a x
$$

is linear, and

$$
c r_{2} f(x, y)=c r_{1} f(x+y)-c r_{1} f(x)-c r_{1} f(y)=0
$$

For $f: \mathbb{R} \rightarrow \mathbb{R}$:
f is degree $2 \Rightarrow f(x)=a x^{2}+b x+c$ for some a, b, and c. Then

$$
\begin{aligned}
c r_{2} f(x, y) & =c r_{1} f(x+y)-c r_{1} f(x)-c r_{1} f(y) \\
& =a(x+y)^{2}+b(x+y)-a x^{2}-b x-a y^{2}-b y \\
& =2 a x y
\end{aligned}
$$

is linear in both x and y and

$$
\begin{aligned}
c r_{3} f(x, y, z) & =c r_{2} f(x, y+z)-c r_{2} f(x, y)-c r_{2} f(x, z) \\
& =2 a x(y+z)-2 a x y-2 a x z=0 .
\end{aligned}
$$

In fact, f is degree n iff $c r_{n+1} f\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)=0$.

