From polynomial functors to functor calculi

Brenda Johnson

Union College

March 15th, 2022

Plan

- 1. Perspective
- 2. Examples
 - $2.1 \ \ \text{Calculus of homotopy functors}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- 2.2 Abelian functor calculus
- 2.3 Discrete functor calculus
- 3. A general framework for calculus

Perspective – Polynomial Functors via Calculus

Taylor polynomials

Given a nice function $f : \mathbb{R} \to \mathbb{R}$, its *n*th Taylor polynomial

- ▶ is a polynomial of degree ≤ n, and, hence, may be easier to work with than f,
- provides an approximation of f in a prescribed way (at least within the radius of convergence), and

becomes a better approximation to *f* as *n* increases.

Perspective – Polynomial Functors via Calculus

Goal:

Define new ways to associate a sequence of functors $\{P_nF\}_{n\geq 0}$ to a functor F so that

- *P_nF* is "nice" in the sense of some property indexed by *n* (*P_nF* is degree *n*),
- ► there is a natural transformation η_n : F ⇒ P_nF such that P_nF is universal among degree n functors with natural transformations from F (P_nF is related to F),
- ▶ the induced natural transformations $P_m\eta_n : P_mF \Rightarrow P_mP_nF$ and $\eta_n : P_mF \rightarrow P_nP_mF$ are equivalences when $m \le n$ (P_nF preserves degree *m* part of *F*).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

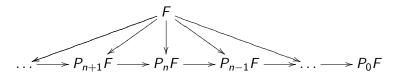
Perspective – Equivalence

Coming from a topological point of view, we work in settings with a weaker notion of equivalence, which we'll denote \simeq :

- ► Topological spaces: $f : X \xrightarrow{\simeq} Y$ iff f is a weak homotopy equivalence, that is, $f_j : \pi_j(X) \to \pi_j(Y)$ is an isomorphism for all $j \ge 0$.
- ▶ Chain complexes: $f : A_* \xrightarrow{\simeq} B_*$ iff f is a chain homotopy equivalence or, alternatively, a f is a quasi-isomorphism.
- (Simplicial) model categories: $f : C \xrightarrow{\simeq} D$ iff f is a weak equivalence.

Theorem [Goodwillie, 2003]

For a functor F of spaces or spectra that preserves weak homotopy equivalences, there is a Taylor tower of functors and natural transformations



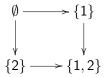
such that

- ▶ for all $n \ge 0$, $P_n F$ is an *n*-excisive functor,
- If F is "nice," the tower converges to F on sufficiently "nice" objects (F(x) → P_nF(x) is roughly (n+1)k-connected when x is k-connected), and
- *P_nF* is universal (up to a zig-zag of weak equivalences) among *n*-excisive functors with natural transformations from *F*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

n-excisive functors – *n*-cubical diagrams

 $\mathcal{P}(n)$ is the poset of subsets of $n = \{1, 2, \dots, n\}$. E.g., $\mathcal{P}(2)$ is



An *n*-cube in a category C is a functor from $\mathcal{P}(n)$ to C. E.g., a 2-cube is a commuting square

a 3-cube diagram is a commuting cube in \mathcal{C} , etc.

n-excisive functors

- A n-cubical diagram of spaces (spectra) is strongly cocartesian if every 2-face is a homotopy pushout square.
- A functor of spaces (spectra) is <u>n-excisive</u> if it takes strongly cocartesian (n+1)-cubical diagrams to homotopy cartesian (homotopy pullback) diagrams.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Examples

- The identity functor of spaces Id is not *n*-excisive for any *n*. (Homotopy pullback *n*-cubes are not the same as homotopy pushout *n*-cubes in spaces.)
- (Snaith splitting) For the functor from spaces to spectra, $F: X \mapsto \Sigma^{\infty} \Omega \Sigma X$,

$$P_m F(X) \simeq \prod_{1 \le n \le m} \Sigma^{\infty}(X^{\wedge n}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For the identity functor Id of spaces, P₁Id ≃ Ω[∞]Σ[∞] = Q, the stable homotopy functor.

Applications

- Homotopy Theory: The Taylor tower of the identity functor of spaces interpolates between stable homotopy theory and unstable homotopy theory, and has contributed to new perspectives on homotopy theory.
- ► Algebraic K-theory: Under mild hypotheses, two functors F and G agree "up to a constant" if there is a natural transformation F ⇒ G such that the induced map

hofiber
$$(P_1F(X) \rightarrow F(*)) \rightarrow$$
 hofiber $(P_1G(X) \rightarrow G(*))$

is a weak equivalence for "nice" X. Used to compare algebraic K-theory to topological Hochschild and cyclic homology.

Abelian Functor Calculus – Context

- \mathcal{A} and \mathcal{B} are abelian categories and $F : \mathcal{B} \to \mathcal{A}$ is a functor.
- Eilenberg and Mac Lane (1954) defined "polynomial degree n" functors in this context in terms of *cross effects*.
- Eilenberg and Mac Lane (1951); and Dold and Puppe (1961) constructed new functors QF (for stable homology of R-modules with coefficients in S) and DF (for derived functors of non-additive functors) that are degree 1 polynomial approximations to F.

Cross Effects

Definition:

For $F : \mathcal{B} \to \mathcal{A}$ where \mathcal{B} and \mathcal{A} are abelian categories, the *n*th cross effect functor $cr_nF : \mathcal{B}^n \to \mathcal{A}$ is defined recursively by

 $cr_0F=F(0)$

 $F(X) \cong F(0) \oplus cr_1 F(X),$ $cr_1 F(X_1 \oplus X_2) \cong cr_1 F(X_1) \oplus cr_1 F(X_2) \oplus cr_2 F(X_1, X_2),$ and, in general,

$$cr_{n-1}F(X_1,\ldots,X_{n-2},X_{n-1}\oplus X_n) \cong cr_{n-1}F(X_1,\ldots,X_{n-2},X_{n-1})$$
$$\oplus cr_{n-1}F(X_1,\ldots,X_{n-2},X_n)$$
$$\oplus cr_nF(X_1,\ldots,X_{n-1},X_n).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Degree *n* functors

Definition:

 $F: \mathcal{B} \to \mathcal{A}$ is degree *n* if and only if $cr_{n+1}F \simeq 0$.

Example

A is an object in an abelian category $\mathcal{A}, F : \mathcal{A} \to \mathcal{A}$ with $F(X) = A \oplus X$. Then

$$A \oplus X = F(X) \cong F(0) \oplus cr_1 F(X).$$

Thus,

$$cr_1F(X) \cong X,$$

 $cr_1F \cong \mathrm{id}.$

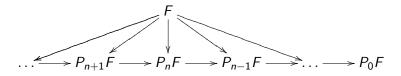
And,

 $X \oplus Y \cong cr_1F(X \oplus Y) \cong cr_1F(X) \oplus cr_1F(Y) \oplus cr_2F(X,Y),$

Abelian Functor Calculus

Theorem (J-McCarthy, 2004)

Given a functor $F : \mathcal{B} \to \mathcal{A}$ between abelian categories \mathcal{B} and \mathcal{A} , there exists a Taylor tower of functors and natural transformations



such that

- for all $n \ge 0$, $P_n F$ is a degree *n* functor,
- ▶ if F is "nice," the tower converges to F on "nice" objects, and
- *P_nF* is universal (in an appropriate homotopy category) among degree *n* functors with natural transformations from *F*.

Abelian functor calculus and cartesian differential categories

Bauer, J, Osborne, Riehl, Tebbe, 2018

There is a notion of directional derivative coming out of abelian functor calculus that endows a category $HoAbCat_{Ch}$ with the structure of a Cartesian differential category.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Constructing $P_n F$ in the abelian functor calculus

Lemma: There is an adjunction

$$\operatorname{Fun}_{*}(\mathcal{B}^{n},\mathcal{A}) \xrightarrow{\Delta^{*}} \operatorname{Fun}(\mathcal{B},\mathcal{A})$$

where $\operatorname{Fun}(\mathcal{B}, \mathcal{A})$ is the category of functors from \mathcal{B} to \mathcal{A} and $\operatorname{Fun}_*(\mathcal{B}^n, \mathcal{A})$ is the category of functors of *n* variables from \mathcal{B} to \mathcal{A} that are reduced in each variable, and Δ is the diagonal functor.

Consequence:

$$C_n := \Delta^* cr_n$$
 is a comonad on $\operatorname{Fun}(\mathcal{B}, \mathcal{A})$. For $F : \mathcal{B} \to \mathcal{A}$, $X \in \mathcal{A}$,

$$C_nF(X) := cr_nF(X, X, \ldots, X).$$

Constructing $P_n F$ in the abelian functor calculus

Definition: For $F : \mathcal{B} \to \mathcal{A}$, $P_n F : \mathcal{B} \to Ch_{\geq 0}\mathcal{A}$ is the chain complex $\dots \longrightarrow C_{n+1}^{\times 3} F \xrightarrow{\epsilon - C_{n+1}\epsilon + C_{n+1}^{\times 2}\epsilon} C_{n+1}^{\times 2} F \xrightarrow{\epsilon - C_{n+1}\epsilon} C_{n+1} F \xrightarrow{\epsilon} F$ where $\epsilon : C_{n+1} = \Delta^* cr_{n+1} \Rightarrow \text{id}$ is the counit of the adjunction

where $\epsilon : C_{n+1} = \Delta^* cr_{n+1} \Rightarrow id$ is the counit of the adjunction (Δ^*, cr_{n+1}) .

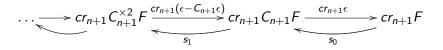
Constructing $P_n F$ in the abelian functor calculus

Proposition:

For $F : \mathcal{B} \to \mathcal{A}$, $P_nF : \mathcal{B} \to Ch_{\geq 0}\mathcal{A}$ is a degree *n* functor.

Proof:

There is a natural contracting homotopy on $cr_{n+1}P_nF$:



given by $s_k = \eta cr_{n+1}(C_{n+1})^{\times k}$ where $\eta : id \Rightarrow cr_{n+1}\Delta^*$ is the unit of the adjunction (Δ^*, cr_{n+1}) .

Questions

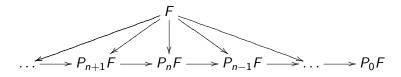
Can we do something like this in a more topological (or homotopy-theoretical) context?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- How would it compare with Goodwillie's calculus?
- Can we make other calculi this way?

Discrete Functor Calculus

Theorem (Bauer, J, McCarthy, 2015; Mauer-Oats, 2006) Given a functor $F : \mathcal{C} \to \mathcal{D}$ between a simplicial model category \mathcal{C} and a pointed stable simplicial model category \mathcal{D} , there exists a Taylor tower of functors and natural transformations



such that

- for all $n \ge 0$, $P_n F$ is a degree *n* functor,
- *P_nF* is universal (in an appropriate homotopy category) among degree *n* functors with natural transformations from *F*.

Degree *n* functors

Definition: *F* is degree *n* iff $cr_{n+1}F \simeq *$.

Definition:

For an *n*-tuple $X = (X_1, \ldots, X_n)$ of objects in C,

 $cr_n F(X) := ihofiber (U \in \mathcal{P}(n) \mapsto F(X_1(U) \sqcup \cdots \sqcup X_n(U)))$

where

$$\mathsf{X}_i(U) = egin{cases} \mathsf{X}_i & i \notin U, \ * & i \in U. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

$cr_2F(X_1, X_2)$ is the iterated homotopy fiber of the diagram

(ロ)、(型)、(E)、(E)、 E) の(()

Construction of $P_n F$ for the discrete calculus

Lemma

 $\perp_{n+1} = \Delta^* cr_{n+1}$ defines a comonad on Fun $(\mathcal{C}, \mathcal{D})$.

Definition

For a functor $F : \mathcal{C} \to \mathcal{D}$,

- $k \mapsto \operatorname{Bar}_{k}^{n+1}F := \bot_{n+1}^{k+1}F$ defines a simplicial object in $\operatorname{Fun}(\mathcal{C}, \mathcal{D}).$

 $\operatorname{Bar}_{\bullet}^{n+1}F \xrightarrow{\epsilon} F.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• $P_n F := \text{hocofiber} \left(\| \text{Bar}_{\bullet}^{n+1} F \| \to F \right).$

Construction of $P_n F$ for the discrete calculus

Proposition

 P_nF is degree *n*.

Proof:

The comonad \perp_{n+1} arises from a composite of adjunctions

$$\operatorname{Fun}(\mathcal{C}^{n+1},\mathcal{D})_{t} \xrightarrow[t^{+}]{\underbrace{\mathcal{U}}} \operatorname{Fun}(\mathcal{C}^{n+1},\mathcal{D}) \xrightarrow[t^{*}]{\underbrace{\Delta^{*}}} \operatorname{Fun}(\mathcal{C},\mathcal{D})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

with $cr_{n+1} = U \circ t^+ \circ \sqcup^*$.

The unit for the adjunction provides a contracting homotopy for $cr_{n+1}Bar_{\bullet}^{n+1}F$ via an extra degeneracy, so that

$$cr_{n+1}P_nF = \text{hocofiber}\left(\|cr_{n+1}\text{Bar}^{n+1}_{\bullet}F\| \rightarrow cr_{n+1}F\right)$$

 $\simeq \text{hocofiber}\left(cr_{n+1}F \rightarrow cr_{n+1}F\right)$
 $\simeq *.$

Theorem

- For a functor F that commutes with realization (|F(-)| → F ∘ | − |), the discrete P_nF is weakly equivalent to the n-excisive P_nF.
- ▶ In general, the discrete P_nF and the *n*-excisive P_nF agree on the initial object of C.

Calculus from Comonads (Hess-J, 20??)

Questions

For a comonad K acting on a (simplicial) model category C and an object x in C, we can always construct a new object

$${\sf \Gamma}_{{\sf K}}(x):={\sf hocofiber}\left(\|{\sf Bar}^{{\sf K}}_ullet(x)\| o x
ight).$$

If we define degree n in terms of a comonad K (e.g., x is degree n iff Kx ~ *), what conditions on K guarantee that Γ_K(x) will be degree n for all x?

Questions

What conditions on a tower of comonads and comonad maps

$$\ldots K_n \to K_{n-1} \to \cdots \to K_2 \to K_1$$

will guarantee that

$$\dots$$
 $\Gamma_{K_n}(x) \rightarrow \Gamma_{K_{n-1}}(x) \rightarrow \dots \rightarrow \Gamma_{K_2}(x) \rightarrow \Gamma_{K_1}(x)$

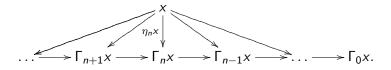
is a Taylor tower for x?

- What are the essential properties of a Taylor tower (what makes a tower a calculus)?
- Can the process that produced the comonads for the discrete calculus tower be generalized?
- What kinds of new examples are produced?

What is a calculus?

Definition

Let \mathcal{M} be a model category, and let \mathcal{M}' be a subcategory of \mathcal{M} . Let Γ be a functor that assigns to an object x in \mathcal{M}' , a coaugmented tower of objects in \mathcal{M} :



If the following conditions hold, then Γ is a <u>calculus</u> on \mathcal{M}' with values in $\mathcal{M}.$

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

What is a calculus?

1. For all $m \leq n$ and all objects x in \mathcal{M}' , the natural transformation

$$\Gamma_m \eta_n(x) : \Gamma_m x \to \Gamma_m \Gamma_n x$$

is a weak equivalence.

2. For all $m \ge n$ and all objects x in \mathcal{M}' , the natural transformation

$$\eta_m(\Gamma_n x): \Gamma_n x \to \Gamma_m \Gamma_n x$$

- ロ ト - 4 回 ト - 4 □

is a weak equivalence.

3. If $f : x \to x'$ is a weak equivalence in \mathcal{M}' , then $\Gamma_n f : \Gamma_n x \to \Gamma_n x'$ is a weak equivalence in \mathcal{M} for all n.

Example of a calculus

Let Ch be the category of unbounded chain complexes over a commutative ring R (with the projective model structure). For $n \ge 0$, define $\Gamma_n : Ch \rightarrow Ch$ by

$$\Gamma_n(X,d)_k = \begin{cases} X_k & : k \le n \\ X_{n+1} / \ker d_{n+1} & : k = n+1 \\ 0 & : k > n+1, \end{cases}$$

Then

$$H_k(\Gamma_n(X,d)) = \begin{cases} H_k(X,d) & : k \leq n \\ 0 & : k > n. \end{cases}$$

The natural transformations $\eta_n : \operatorname{Id}_{Ch} \to \Gamma_n$ and $\gamma_n : \Gamma_n \to \Gamma_{n-1}$ are given by taking appropriate quotients. The chain complexes that are of degree at most *n* with respect to Γ are those with homology concentrated in degree at most *n*

Conditions on comonads

Definition, current version

Let \mathcal{M} be a pointed simplicial model category, and let \mathcal{M}' be a subcategory of \mathcal{M} . A comonad $\mathbb{K} = (\mathcal{K}, \Delta, \varepsilon)$ on \mathcal{M} is <u>compliant</u> with respect to \mathcal{M}' if

- 1. $Bar_{\bullet}^{\mathbb{K}}(x)$ is levelwise cofibrant for all objects x in \mathcal{M}' ,
- 2. K^s sends weak equivalences in \mathcal{M}' to weak equivalences, and
- 3. *K* admits natural transformations $|K^{s}(-)| \rightarrow K^{s} \circ |-|$ that are componentwise weak equivalences (plus a little more).

Two comonads K and L on \mathcal{M} that are compliant with respect to \mathcal{M}' are jointly compliant if all of the simplicial objects

$$\mathsf{Bar}^{\mathbb{L}}_{\bullet}(|\mathsf{Bar}^{\mathbb{K}}_{\bullet}(x)|), \quad \mathsf{Bar}^{\mathbb{K}}_{\bullet}(|\mathsf{Bar}^{\mathbb{L}}_{\bullet}(x)|), \quad |\mathsf{Bar}^{\mathbb{L}}_{\bullet}\mathsf{Bar}^{\mathbb{K}}_{\bullet}(x)|_{h}, \quad |\mathsf{Bar}^{\mathbb{L}}_{\bullet}\mathsf{Bar}^{\mathbb{K}}_{\bullet}(x)|_{h},$$

are levelwise cofibrant for all objects x in \mathcal{M}' .

Calculi from comonads

Ingredients

- \mathcal{M} is a pointed simplicial model category.
- \mathcal{M}' is a subcategory of \mathcal{M} .
- $\mathcal{K} = (\mathbb{K}_{n+1} \xrightarrow{\sigma_n} \mathbb{K}_n)_{n \ge 1}$ is a tower of comonads.

Theorem

If each comonad \mathbb{K}_n is compliant with respect to \mathcal{M}' , and each pair of comonads $(\mathbb{K}_m, \mathbb{K}_n)$ is jointly compliant with respect to \mathcal{M}' , then the coaugmented tower obtained from \mathcal{K} is a calculus.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- A. Mauer-Oats, Algebraic Goodwillie calculus and a cotriple model for the remainder, <u>Trans. Amer. Math. Soc.</u>, **358**, 2006, 1869-1895.
- K. Bauer, B. Johnson, C. Osborne, E. Riehl, and A. Tebbe, Directional derivatives and higher order chain rules for abelian functor calculus, Topology Appl., **235**, 2018, 375–427.
- K. Bauer, B. Johnson, R. McCarthy, Cross effects and calculus in an unbased setting, <u>Trans. Amer. Math. Soc.</u>, **367 (9)**, 2015, pp 6671–6718.
- A. Dold and D. Puppe, Homologie nicht-additiver Funktoren. Anwendungen, <u>Ann. Inst. Fourier (Grenoble)</u>, **11**, 1961, 201–312.
- S. Eilenberg and S. Mac Lane, Homology theories for multiplicative systems, <u>Trans. Amer. Math. Soc.</u>, **71**, 1951, 294–330.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- S. Eilenberg and S. Mac Lane, On the groups H(Π, n). II. Methods of computation, <u>Ann. of Math. (2)</u>, **60**, 1954, 49–139.
- T. Goodwillie, Calculus III. Geom. Topol., 7, 2003, 645–711.
- B. Johnson and R. McCarthy, Deriving calculus with cotriples, Trans. Amer. Math. Soc., **356 (2)**, 2004, pp 757–803.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Abelian Functor Calculus – Cross effects

An analogy:

For $f : \mathbb{R} \to \mathbb{R}$, f is degree $1 \Rightarrow f(x) = ax + b$ for some a and b. Then

$$cr_1f(x) := f(x) - f(0) = ax$$

is linear, and

$$cr_2f(x,y) = cr_1f(x+y) - cr_1f(x) - cr_1f(y) = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

For
$$f : \mathbb{R} \to \mathbb{R}$$
:
f is degree $2 \Rightarrow f(x) = ax^2 + bx + c$ for some a, b, and c. Then

$$cr_2f(x,y) = cr_1f(x+y) - cr_1f(x) - cr_1f(y) = a(x+y)^2 + b(x+y) - ax^2 - bx - ay^2 - by = 2axy$$

is linear in both x and y and

$$cr_3f(x, y, z) = cr_2f(x, y + z) - cr_2f(x, y) - cr_2f(x, z)$$

= $2ax(y + z) - 2axy - 2axz = 0.$

In fact, *f* is degree *n* iff $cr_{n+1}f(x_1, x_2, ..., x_{n+1}) = 0$.