Dependent products of polynomials

Sean Moss ${ }^{1}$
2022 Workshop on Polynomial Functors
${ }^{1}$ University of Oxford

Dialectica categories, polynomials, models of type theory

- [von Glehn, 2014]:
$(\mathbb{B}, \mathcal{F}) \mapsto\left(\right.$ Poly $\left._{\mathcal{F}}, \mathcal{F}_{\text {Poly }_{\mathcal{F}}}\right)$ is an operation on display map categories.
\Longrightarrow A dependently-typed version of Dialectica categories [de Paiva, 1989], [Hyland, 2002],...
\Longrightarrow A model of dependent types from freely adding sums and products
- Dependent types for other variants?
[Moss, 2018], [Moss, von Glehn, 2018]

Outline

$1 \Sigma \Pi(\mathbb{C})$: polynomials in \mathbb{C}
2 Tensors and (local) exponentials in $\Sigma \Pi(\mathbb{C})$
3 Dialectica categories
$4 \Sigma(\mathbb{A})$ where A has biproducts

Outline

$1 \Sigma \Pi(\mathbb{C})$: polynomials in \mathbb{C}
2 Tensors and (local) exponentials in $\Sigma \Pi(\mathbb{C})$
3 Dialectica categories
$4 \Sigma(\mathbb{A})$ where A has biproducts

The category of polynomials

$$
y:=\operatorname{id} \cong \operatorname{Set}(1,-) \in[\text { Set, Set }]
$$

Poly $\simeq($ closure of $\{y\}$ under sums and products $) \subseteq[$ Set, Set $]$

$\Sigma(\mathbb{C})$, the free sum completion of \mathbb{C}

$\Pi(\mathbb{C})$: the free product completion of \mathbb{C}

$$
\Pi(\mathbb{C}):=\left(\Sigma\left(\mathbb{C}^{\mathrm{op}}\right)\right)^{\mathrm{op}} \simeq\left(\text { closure of }\{\mathbb{C}(c,-)\}_{c \in \mathbb{C}} \text { under products }\right) \subseteq[\mathbb{C}, \text { Set }]^{\text {op }}
$$

$\Sigma \Pi(\mathbb{C}):$ adding products, then adding sums

objects

Bundles of bundles in ob \mathbb{C}.

$$
\begin{gathered}
\left(c_{a}\right)_{a \in A} \\
\vdots \\
A \\
p \downarrow \\
I \\
I
\end{gathered}=\sum_{i \in I} \prod_{a \in A_{i}} c_{a}{ }^{\prime \prime}
$$

morphisms

$\left(c_{a}\right)_{a} \longleftarrow\left(c_{F(x)}\right)_{x} \rightarrow\left(d_{\bar{f}(x)}\right)_{x} \longrightarrow\left(d_{b}\right)_{b}$

Basic examples of $\Sigma(-), \Pi(-), \Sigma \Pi(-)$

$$
\Sigma(\mathbb{1}) \simeq \text { Set } \quad \Pi(\mathbb{1}) \simeq \operatorname{Set}^{\text {op }} \quad \Sigma \Pi(\mathbb{1}) \simeq \text { Poly }
$$

$\Sigma \Pi(2)=$ 'dependently-typed Dialectica category'

$$
\Sigma(I) \simeq \operatorname{Set}^{I}(\text { where } I \in \operatorname{Set})
$$

$\Sigma \Pi(I) \simeq$ polynomial functors Set $^{I} \rightarrow$ Set

Products in $\Sigma(\mathbb{C})$

If \mathbb{C} has products then $\Sigma(\mathbb{C})$ has products given by
and $\mathbb{C} \rightarrow \Sigma(\mathbb{C})$ preserves products.

Corollary

$\Sigma \Pi(\mathbb{C})$ has products, and these distribute over sums.
(Actually a distributive law $\Pi \Sigma \xrightarrow{\delta} \Sigma \Pi$).

The fibration of \mathcal{F}-polynomials in a fibration $p: \mathbb{E} \rightarrow \mathbb{B}$

$$
\left.\left.\left.p\right|_{\mathbb{B} \swarrow_{\operatorname{cod}}^{\mathbb{F}}} ^{\mathbb{E}}\right|_{\mathcal{F}} \boldsymbol{\Sigma}_{\mathcal{F}} \boldsymbol{\Pi}_{\mathcal{F}}(\mathbb{E}) \boldsymbol{\Sigma}_{\mathcal{F}}(p)\right|_{\operatorname{Bod}} ^{\mathcal{F}}
$$

Recovering the basic setting

$$
\begin{array}{cc}
(\mathbb{E} \xrightarrow{p} \mathbb{B})=(\Sigma(\mathbb{C}) \xrightarrow{\Sigma(!)} \Sigma(\mathbb{1}) \simeq \text { Set }) & \mathcal{F}=\operatorname{mor} \text { Set } \\
\Sigma \Pi(\mathbb{C})=\left(\Sigma_{\mathcal{F}} \Pi_{\mathcal{F}}(\mathbb{E})\right)_{1}
\end{array}
$$

Summary of polynomials in \mathbb{C}

- $\Sigma \Pi(\mathbb{C})$, the 'polynomials in \mathbb{C} ', is given by formally/freely adding sums and products to the category \mathbb{C}.
- Poly $\simeq \Sigma \Pi(\mathbb{1})$.
- The fibrational setting gives lots of flexibility. e.g.
(a) control the 'sizes' of sums/products are added,
(b) non-standard notions of 'bundles' of polynomials.

Outline

$1 \Sigma \Pi(\mathbb{C})$: polynomials in \mathbb{C}

2 Tensors and (local) exponentials in $\Sigma \Pi(\mathbb{C})$

3 Dialectica categories
$4 \Sigma(\mathbb{A})$ where \mathbb{A} has biproducts

The Day tensor on $\Sigma(\mathbb{C})$ (e.g. when \mathbb{C} is small)

Let (\mathbb{C}, \otimes, I) be symmetric monoidal.

- 'Convolution’ extends \otimes to the Day tensor on [Cop ${ }^{\text {op }}$, Set]...

$$
(F \otimes G) c:=\int^{x, y \in \mathbb{C}} F x \times G y \times \mathbb{C}(c, x \otimes y) .
$$

- ... which restricts to $\Sigma(\mathbb{C})$:

$$
\left(\sum_{i \in I} c_{i}\right) \otimes\left(\sum_{j \in J} d_{j}\right):=\sum_{(i, j) \in I \times J} c_{i} \otimes d_{j} .
$$

- \otimes has exponentials in [${ }^{\text {op }}$, Set]

$$
(G \multimap H) c:=\int_{y, z \in \mathbb{C}}(\mathbb{C}(z, y \otimes c) \times G y) \Rightarrow H z
$$

but not necessarily in $\Sigma(\mathbb{C})$.

Lifting tensors to $\Sigma \Pi(\mathbb{C})$

- Day convolution takes \times on $\Pi(\mathbb{C})$ to \times on $\Sigma \Pi(\mathbb{C})$.

$$
\left(\sum_{i \in I} \prod_{a \in A_{i}} c_{a}\right) \times\left(\sum_{j \in J} \prod_{b \in B_{j}} d_{b}\right)=\sum_{(i, j) \in I \times J} \prod_{x \in A_{i}+B_{j}}(\ldots)
$$

- If (\mathbb{C}, \otimes, I) is monoidal, extend by Day convolution twice.

$$
\begin{aligned}
& =\sum_{(i, j) \in I \times J} \prod_{(a, b) \in A_{i} \times B_{j}} c_{a} \otimes d_{b}
\end{aligned}
$$

Day exponentials in $\Sigma(\mathbb{C})$?

$$
\mathbb{C} \subseteq \Sigma(\mathbb{C}),
$$

is a dense subcategory closed under \otimes.
\Longrightarrow Sufficient to check exponentials on $c \in \mathbb{C}$:

$$
\xlongequal[c \rightarrow Y \multimap Z]{c \otimes Y \rightarrow Z}
$$

We will see: when $\Sigma(\mathbb{C})$ has products, enough that $(c \multimap d) \in \Sigma(\mathbb{C})$.

Exponentiating by connected objects

- $X \in \mathcal{E}$ is connected (or coprime) iff $\mathcal{E}(X,-): \mathcal{E} \rightarrow$ Set preserves coproducts.
- The connected objects in $\Sigma(\mathbb{C})$ are precisely $\mathbb{C} \subseteq \Sigma(\mathbb{C})$.

$$
c \multimap\left(\sum_{j} d_{j}\right) \cong \sum_{j}\left(c \multimap d_{j}\right)
$$

Exponentiating when $\Sigma(\mathbb{C})$ is closed under products

Suppose $\Sigma(\mathbb{C})$ has products, e.g. because \mathbb{C} has products.

$$
\left(\sum_{i} c_{i}\right) \multimap\left(\sum_{j} d_{j}\right) \cong \prod_{i} \sum_{j}\left(c_{i} \multimap d_{j}\right)
$$

Then $(\Sigma(\mathbb{C}), \otimes, I)$ is closed under \multimap iff $(c \multimap d) \in \Sigma(\mathbb{C})$ for all $c, d \in \mathbb{C}$.

$\Sigma \Pi(\mathbb{C})$ is cartesian closed (for \mathbb{C} locally small)

[Altenkirch, Levy, Staton, 2010] for Poly

- \times in $\Pi(\mathbb{C})$ is free over \mathbb{C} :

$$
\Pi(\mathbb{C})(X \times Y, c) \cong \Pi(\mathbb{C})(X, c)+\Pi(\mathbb{C})(Y, c)
$$

\Longrightarrow For $Y \in \Pi(\mathbb{C}), c \in \mathbb{C}$,

$$
Y \Rightarrow c \cong c+\sum_{f \in \Pi(\mathbb{C})(Y, c)} 1 .
$$

- For general $\left(\prod_{k \in K} c_{k}\right) \in \Pi(\mathbb{C})$,

$$
Y \Rightarrow\left(\prod_{k} c_{k}\right) \cong \prod_{k}\left(Y \Rightarrow c_{k}\right) .
$$

Tensors and exponentials so far

- Easy to lift a tensor \otimes from \mathbb{C} to $\Sigma(\mathbb{C})$ or to $\Sigma \Pi(\mathbb{C})$.
- $\Sigma \Pi(\mathbb{C})$ admits \multimap iff $c \multimap d$ exists in $\Sigma \Pi(\mathbb{C})$ for $c, d \in \mathbb{C}$.
- $\Sigma \Pi(\mathbb{C})$ cartesian closed.

Local exponentials?
Pullbacks in $\Sigma \Pi(\mathbb{C})$ are not guaranteed, so let's focus on Poly where having all finite limits simplifies things.

Dependent products in a category \mathcal{E} with finite limits

Dependent product along $f: B \rightarrow A$ is a right adjoint $\Pi_{f}: \mathcal{E} / B \rightarrow \mathcal{E} / A$ to pullback $f^{*}: \mathcal{E} / A \rightarrow \mathcal{E} / B$.

- Gives local exponentials: $\Pi_{f}\left(f^{*}(-)\right) \cong f \Rightarrow(-)$ in \mathcal{E} / A.
- Conversely: can construct $\Pi_{f}(-)$ from $f \Rightarrow(-)$ (and pullbacks).
\Longrightarrow Dependent products along f exist iff f is exponentiable in \mathcal{E} / A.
- Also: exponentiable maps are stable under pullback.
\Longrightarrow If \mathcal{E} is a CCC (with pullbacks), then product projections are exponentiable.

Exponentiable maps in Poly

1. Product projections are exponentiable.
$y^{B} \xrightarrow{y^{f}} y^{A}$ is exponentiable whenever $f: A \rightarrow B$ is injective
2. In Poly $/ y^{A}$, exponentiable objects are closed under sums.
3. Poly/ $\sum_{i} y^{A_{i}} \simeq \prod_{i}\left(\right.$ Poly $\left./ y^{A_{i}}\right)$ therefore exponentiable maps are closed under sums.

No other maps in Poly are exponentiable [von Glehn], [Altenkirch, Levy, Staton].

Summary of (local) exponentials

- $\Sigma \Pi(\mathbb{C})$ is always cartesian closed.
- Poly is not locally cartesian closed, but we know exactly which maps are exponentiable.
- In general $\Sigma \Pi(\mathbb{C})$ might not have all pullbacks. Instead, find a class

$$
\mathcal{F}=\mathcal{F}_{\Sigma \Pi(\mathbb{C})} \subseteq \operatorname{mor}(\Sigma \Pi(\mathbb{C}))
$$

of display maps modelling " Π-types": Π_{f} where $f \in \mathcal{F}$, defined on \mathcal{F}, valued in \mathcal{F}.

- The \mathcal{F} that works for Poly generalizes to $\Sigma \Pi(\mathbb{C})$.
(cf. "Reedy fibrations" of [Shulman, 2014], [Uemura, 2017]).

Outline

$1 \Sigma \Pi(\mathbb{C})$: polynomials in \mathbb{C}

2 Tensors and (local) exponentials in $\Sigma \Pi(\mathbb{C})$

3 Dialectica categories
$4 \Sigma(\mathbb{A})$ where A has biproducts

The 'Dialectica polynomials' $\Sigma \Pi(2)$ where $2=\{\perp \leq \top\}$

"The proof of $\beta\left(f\left(i_{0}\right), y\right)$ must consume precisely one predetermined instantiation of $\forall x \in A_{i_{0}} . \alpha\left(i_{0}, x\right)$ ".

Dial ('classic Dialectica') [de Paiva, 1989]

Dial $\subseteq \Sigma \Pi(2)$ is the full subcategory on objects

$$
\alpha \mapsto I \times A \rightarrow I
$$

- Dial has sums of ' \forall-homogeneous' summands.

$$
\begin{aligned}
& (\exists i \in I . \forall x \in A . \alpha(i, x))+(\exists j \in J . \forall x \in A . \beta(j, x)) \\
& \cong(\exists x \in I+J . \forall a \in A . \operatorname{match} x\{\operatorname{inl}(i) \rightarrow \alpha(i, a), \operatorname{inr}(j) \rightarrow \beta(j, a)\})
\end{aligned}
$$

- [Hofstra, 2011]:

Take $\mathcal{F}=$ product projections in Set and add \mathcal{F}-sums and \mathcal{F}-products to a fibration of propositions $\mathbb{P} \rightarrow$ Set.

$$
\text { Cf. Lens } \subseteq \text { Poly }
$$

Products and tensor in Dial

Dial is closed under the products of $\Sigma \Pi(2)$:

$$
\left(\sum_{i \in I} \prod_{x \in A} \alpha(i, x)\right) \times\left(\sum_{j \in J} \prod_{y \in B} \beta(j, y)\right)=\sum_{(i, j) \in I \times J} \underbrace{\left(\prod_{x \in A} \alpha(i, x)\right) \times\left(\prod_{y \in B} \beta(j, y)\right)}_{\text {product over } A+B}
$$

and also the tensor product induced by $(2, \wedge, \top)$:

$$
\left(\sum_{i \in I} \prod_{x \in A} \alpha(i, x)\right) \otimes\left(\sum_{j \in J} \prod_{y \in B} \beta(j, y)\right)=\sum_{(i, j) \in I \times J} \prod_{(x, y) \in A \times B}(\alpha(i, x) \wedge \beta(j, y))
$$

$\Sigma \Pi(2)$ has exponentials for both, Dial only for the latter.

Dialectica categories so far

- The simplest version is $\Sigma \Pi(2)$ - objects are " $\exists i \in I . \forall x \in A_{i} . \alpha(i, x)$ ". The original Dial just requires $\left(A_{i}\right)_{i}$ be constant in $i \in I$.
- Dial is SMC with \otimes, cartesian, has only weak sums. $\Sigma \Pi(2)$ is SMC with \otimes, cartesian closed, has sums.
- 'Really' about adding quantifiers to a fibration $\mathbb{P} \rightarrow$ Set of predicates.

Another way to 'make' Dial cartesian closed is to take the co-Kleisli category of a well-chosen comonad, e.g. such that \otimes becomes the cartesian product (cf. ! modality in linear logic).

- Diller-Nahm variant [de Paiva, 1989] using $\mathcal{M}_{\text {fin }}$.
- 'Error' variant [Biering, 2008] using $(-)+1$.

Outline

$1 \Sigma \Pi(\mathbb{C})$: polynomials in \mathbb{C}

2 Tensors and (local) exponentials in $\Sigma \Pi(\mathbb{C})$

3 Dialectica categories
$4 \Sigma(\mathbb{A})$ where \mathbb{A} has biproducts

The 'type theory part' of Dill

- The finite multisets monad $\mathcal{M}_{\text {fin }}:$ Set \rightarrow Set induces a comonad L on Poly.

$$
\sum_{i \in I} y^{A_{i}} \mapsto \sum_{i \in I} y^{\mathcal{M}_{\mathrm{fin}} A_{i}}
$$

- $(\text { Poly })_{L} \simeq \Sigma\left(\left(\text { Set }_{\mathcal{M}_{\text {fin }}}\right)^{\text {op }}\right) \simeq \Sigma\left(\right.$ FreeCMon $\left.{ }^{\text {op }}\right)$.

Recent work on automatic differentiation uses CC structure of $\Sigma(\mathbf{C M o n}), \Sigma\left(\right.$ CMon $\left.^{\text {op }}\right), \ldots$. [Vákár, Smeding, Lucatelli Nunes].

$\Sigma(\mathbb{A})$ is cartesian closed - when A has biproducts and products

- Earlier: if A has products, suffices to exponentiate A's by A's.
- $\times=\oplus=+$ in $\mathbb{A}:$

$$
\mathbb{A}(a \oplus b, c) \cong \mathbb{A}(a, c) \times \mathbb{A}(b, c)
$$

\Longrightarrow Exponentiate A's by A's:

$$
b \Rightarrow c \cong c \times\left(\sum_{f \in \mathrm{~A}(b, c)} 1\right) \cong \sum_{f \in \mathrm{~A}(b, c)} c
$$

Polynomials via an enriched sum completion?

[Kelly, Basic concepts of enriched category theory]

- Let $(\mathcal{V}, \otimes, I)$ be a bicomplete SMC (e.g. CMon, Set $_{*}$).
- Free \mathcal{V}-category $\mathbb{C}_{\mathcal{V}}$ on a Set-category \mathbb{C} :

$$
\text { ob } \mathbb{C}_{\mathcal{V}}:=\operatorname{ob} \mathbb{C} \quad \mathbb{C}_{\mathcal{V}}(c, d):=\mathbb{C}(c, d) \cdot I
$$

- Free \mathcal{V}-sum completion $\Sigma_{\mathcal{V}}(\mathcal{A})$: close \mathcal{A} under sums in $\left[\mathcal{A}^{\text {op }}, \mathcal{V}\right]_{\mathcal{V}}$.
- $\mathbb{1}_{\mathrm{CMon}} \simeq \mathbb{N}$ (as a 'semiring'/one-object CMon-category).
- FreeCMon $\simeq \Sigma_{\mathrm{CMon}}\left(\mathbb{1}_{\mathrm{CMon}}\right)$ (cf. [Mac Lane, Ex. VIII.2.5-6]).
- Thus $(\text { Poly })_{L} \simeq \Sigma \Pi_{\mathrm{CMon}}\left(\mathbb{1}_{\mathrm{CMon}}\right)$.

