What is a Functor?

Todd Trimble

Western Connecticut State University
Department of Mathematics

Outline of talk

- Back-story

Outline of talk

- Back-story
- Classical CT

1. Adjoints and actions
2. Adjoint lifting theorem
3. Beck's "crude" monadicity theorem
4. Left adjoint monads " $=$ " right adjoint comonads

Outline of talk

- Back-story
- Classical CT

1. Adjoints and actions
2. Adjoint lifting theorem
3. Beck's "crude" monadicity theorem
4. Left adjoint monads " $=$ " right adjoint comonads

- C-sets

1. Monadic over slice
2. Comonadic over slice
3. Comonadic over Set

Outline of talk

- Back-story
- Classical CT

1. Adjoints and actions
2. Adjoint lifting theorem
3. Beck's "crude" monadicity theorem
4. Left adjoint monads " $=$ " right adjoint comonads

- C-sets

1. Monadic over slice
2. Comonadic over slice
3. Comonadic over Set

- What are functors?

Adjoints and actions

Let $T: D \rightarrow D$ be a monad; let $G: C \rightarrow D$ have a left adjoint $F: D \rightarrow C$. The following are equivalent:

- Left T-actions $\alpha: T G \rightarrow G$.
- Monad maps $\theta: T \rightarrow G F$.
- Right T-actions $\beta: F T \rightarrow F$.

Special case: $T=U F, \theta=\mathrm{id}$. The left T-action $\alpha: T U \rightarrow U$ is

$$
U \varepsilon: U F U \rightarrow U
$$

and the right T-action $\beta: F T \rightarrow F$ is

$$
\varepsilon F: F U F \rightarrow F
$$

Adjoint lifting theorem

Let $T: D \rightarrow D$ be a monad. Category of algebras $U: D^{T} \rightarrow D$.

- Lifts of functors $G: C \rightarrow D$ through $U: D^{T} \rightarrow D$,

are equivalent to T-algebra structures $\alpha: T G \rightarrow G$.
- If in addition C has reflexive coequalizers, then \hat{G} has a left adjoint \hat{F} iff G has a left adjoint F.
Construction: $\hat{F}(d, \alpha: T d \rightarrow d)=$ coequalizer in C :

$$
F T d \underset{\beta d}{F \alpha} F d \longrightarrow " F \circ_{T} d "
$$

"Crude" Monadicity Theorem

Theorem: (Beck) A functor $G: C \rightarrow D$ is monadic if

- G has a left adjoint F (and then $G F$ is the monad T : canonical left action $G \varepsilon: G F G \rightarrow G$);

- C has reflexive coequalizers $(\hat{F} \dashv \hat{G})$, and G preserves them (unit $\hat{\eta}$: id $\rightarrow \hat{G} \hat{F}$ an isomorphism; note (1));
- G reflects isos (counit $\hat{\varepsilon}: \hat{F} \hat{G} \rightarrow$ id an isomorphism; note (2)).

"Crude" Monadicity Theorem

Theorem: (Beck) A functor $G: C \rightarrow D$ is monadic if

- G has a left adjoint F (and then $G F$ is the monad T : canonical left action $G \varepsilon: G F G \rightarrow G$);

- C has reflexive coequalizers $(\hat{F} \dashv \hat{G})$, and G preserves them (unit $\hat{\eta}$: id $\rightarrow \hat{G} \hat{F}$ an isomorphism; note (1));
- G reflects isos (counit $\hat{\varepsilon}: \hat{F} \hat{G} \rightarrow$ id an isomorphism; note (2)).

Crudely monadic functors compose. Even better:
Theorem: If $U: C \rightarrow D$ is crudely monadic and $V: D \rightarrow E$ is monadic, then $V U: C \rightarrow E$ is monadic.

Left adjoint monads $=$ right adjoint comonads

Theorem: (Eilenberg-Moore, 1965)

- If $M: D \rightarrow D$ is a monad with a right adjoint $K: D \rightarrow D$, then K carries a comonad structure mated to the monad structure on M,

$$
\frac{\mu: M M \rightarrow M}{\delta: K \rightarrow K K}, \quad \frac{\eta: \mathrm{id} \rightarrow M}{\varepsilon: K \rightarrow \mathrm{id}}
$$

Left adjoint monads $=$ right adjoint comonads

Theorem: (Eilenberg-Moore, 1965)

- If $M: D \rightarrow D$ is a monad with a right adjoint $K: D \rightarrow D$, then K carries a comonad structure mated to the monad structure on M,

$$
\frac{\mu: M M \rightarrow M}{\delta: K \rightarrow K K}, \quad \frac{\eta: \mathrm{id} \rightarrow M}{\varepsilon: K \rightarrow \mathrm{id}}
$$

- M-algebras are equivalent to K-coalgebras,

$$
\frac{\alpha: M d \rightarrow d}{\gamma: d \rightarrow K d}
$$

- If $(F: D \rightarrow C) \dashv(U: C \rightarrow D) \dashv(G: D \rightarrow C)$, then $M=U F \dashv U G=K$ and Alg $_{U F} \simeq$ Coalg $_{U G}$.

Example: C-sets

C a category: $\left(C_{0}, C_{1}, d_{0}=\operatorname{dom}: C_{1} \rightarrow C_{0}, d_{1}=\operatorname{cod}: C_{1} \rightarrow C_{0}\right)$.

Example: C-sets

C a category: $\left(C_{0}, C_{1}, d_{0}=\operatorname{dom}: C_{1} \rightarrow C_{0}, d_{1}=\operatorname{cod}: C_{1} \rightarrow C_{0}\right)$.

- Set C : category of $C \rightarrow$ Set, with $U_{C}:$ Set ${ }^{C} \rightarrow$ Set/ C_{0}.

Example: C-sets

C a category: $\left(C_{0}, C_{1}, d_{0}=\operatorname{dom}: C_{1} \rightarrow C_{0}, d_{1}=\operatorname{cod}: C_{1} \rightarrow C_{0}\right)$.

- Set C : category of $C \rightarrow$ Set, with $U_{C}:$ Set ${ }^{C} \rightarrow$ Set/ C_{0}.
- Left adjoint $F_{C} \dashv U_{C}$:

$$
\left(\begin{array}{c}
X \\
\downarrow \\
C_{0}
\end{array}\right) \quad \stackrel{F_{C}}{\longmapsto} \quad \sum_{c: C_{0}} X c \cdot C(c,-)
$$

Example: C-sets

C a category: $\left(C_{0}, C_{1}, d_{0}=\operatorname{dom}: C_{1} \rightarrow C_{0}, d_{1}=\operatorname{cod}: C_{1} \rightarrow C_{0}\right)$.

- Set C : category of $C \rightarrow$ Set, with $U_{C}:$ Set ${ }^{C} \rightarrow$ Set/ C_{0}.
- Left adjoint $F_{C} \dashv U_{C}$:

$$
\left(\begin{array}{l}
x \\
\downarrow \\
C_{0}
\end{array}\right) \quad \stackrel{F_{c}}{\longmapsto} \quad \sum_{c: C_{0}} X_{c} \cdot C(c,-)
$$

- $U_{C} F_{C} X$ in Set/ C_{0} is the family indexed over $d: C_{0}$:

$$
\left(\sum_{c: C_{0}} \sum_{f: c \rightarrow d} X c\right)_{d: C_{0}}=\left(\sum_{f: C_{1}} X\left(d_{0} f\right)\right)_{d=d_{1} f}=\Sigma_{d_{1}} d_{0}^{*} X
$$

Example: C-sets

C a category: $\left(C_{0}, C_{1}, d_{0}=\operatorname{dom}: C_{1} \rightarrow C_{0}, d_{1}=\operatorname{cod}: C_{1} \rightarrow C_{0}\right)$.

- Set C : category of $C \rightarrow$ Set, with $U_{C}:$ Set ${ }^{C} \rightarrow$ Set/ C_{0}.
- Left adjoint $F_{C} \dashv U_{C}$:

$$
\left(\begin{array}{l}
x \\
\downarrow \\
C_{0}
\end{array}\right) \quad \stackrel{F_{c}}{\longmapsto} \quad \sum_{c: C_{0}} X_{c} \cdot C(c,-)
$$

- $U_{C} F_{C} X$ in Set/ C_{0} is the family indexed over $d: C_{0}$:

$$
\left(\sum_{c: C_{0}} \sum_{f: c \rightarrow d} X c\right)_{d: C_{0}}=\left(\sum_{f: C_{1}} X\left(d_{0} f\right)\right)_{d=d_{1} f}=\Sigma_{d_{1}} d_{0}^{*} X
$$

- Monad $U_{C} F_{C}=\Sigma_{d_{1}} d_{0}^{*}$ has a right adjoint $K_{C}=\Pi_{d_{0}} d_{1}^{*}$.

Example: C-sets

Proposition: The functor $U_{C}:$ Set ${ }^{C} \rightarrow$ Set $/ C_{0}$ is crudely monadic:

- Has a left adjoint $F_{C}:$ Set $/ C_{0} \rightarrow$ Set C;
- $U_{C}:$ Set $^{C} \rightarrow$ Set $/ C_{0}$ preserves reflexive coequalizers (colimits in Set ${ }^{C}$ are computed "pointwise");
- U_{C} reflects isos (a natural transformation is invertible if its components are).

Example: C-sets

Proposition: The functor $U_{C}:$ Set ${ }^{C} \rightarrow$ Set $/ C_{0}$ is crudely monadic:

- Has a left adjoint $F_{C}:$ Set $/ C_{0} \rightarrow$ Set C;
- $U_{C}:$ Set $^{C} \rightarrow$ Set $/ C_{0}$ preserves reflexive coequalizers (colimits in Set ${ }^{C}$ are computed "pointwise");
- U_{C} reflects isos (a natural transformation is invertible if its components are).

By Eilenberg-Moore (1965), since $M_{C}=U_{C} F_{C}$ has a right adjoint K_{C}, the functor U_{C} is also comonadic: $F_{C} \dashv U_{C} \dashv G_{C}$:

$$
\left(\begin{array}{c}
X \\
\downarrow \\
C_{0}
\end{array}\right) \stackrel{G_{C}}{\longmapsto} \prod_{d: C_{0}} X d^{C(-, d)}
$$

C-sets: crude comonadicity and Polyfun

Proposition: $U_{C}: \operatorname{Set}^{C} \rightarrow$ Set/ C_{0} is crudely comonadic.

Proof: Know U_{C} is comonadic (right adjoint G_{C}, reflects isos). U_{C} also preserves coreflexive equalizers, e.g., by $F_{C} \dashv U_{C}$.

C-sets: crude comonadicity and Polyfun

Proposition: $U_{C}:$ Set $^{C} \rightarrow$ Set $/ C_{0}$ is crudely comonadic.
Proof: Know U_{C} is comonadic (right adjoint G_{C}, reflects isos). U_{C} also preserves coreflexive equalizers, e.g., by $F_{C} \dashv U_{C}$.

Proposition: $\Sigma_{C_{0}}$: Set/ $C_{0} \rightarrow$ Set is comonadic, in fact crudely so.

Proof: The comonad is $C_{0} \times-$: Set \rightarrow Set. Function $X \rightarrow C_{0}=$ coalgebra $X \rightarrow C_{0} \times X$. Also $\Sigma_{C_{0}}$ preserves connected limits, in particular coreflexive equalizers.

Corollary: The composite

$$
\mathrm{Set}^{C} \xrightarrow{U_{C}} \text { Set } / C_{0} \xrightarrow{\Sigma_{c_{0}}} \text { Set }
$$

is (crudely) comonadic.

C-sets as coalgebras

From $U_{C} \dashv G_{C}$ and $\Sigma_{C_{0}} \dashv C_{0}^{*}$, we have $\Sigma_{C_{0}} U_{C} \dashv G_{C} C_{0}^{*}$, hence a comonad $p=\Sigma_{C_{0}} U_{C} G_{C} C_{0}^{*}$:

so that the polynomial functor

$$
p=\left(\operatorname{Set} \xrightarrow{C_{1}^{*}} \operatorname{Set} / C_{1} \xrightarrow{\Pi_{d_{0}}} \text { Set } / C_{0} \xrightarrow{\Sigma_{C_{0}}} \text { Set }\right)
$$

is a comonad, and

C-sets as coalgebras

Corollary: The category of p-coalgebras is Set C, with comonadic functor

$$
\begin{gathered}
\mathrm{Set}^{C} \xrightarrow{U_{C}} \operatorname{Set} / C_{0} \xrightarrow{\Sigma_{c_{0}}} \text { Set } \\
(F: C \rightarrow \text { Set }) \longmapsto \sum_{c: C_{0}} F C
\end{gathered}
$$

C-sets as coalgebras

Corollary: The category of p-coalgebras is Set^{C}, with comonadic functor

$$
\begin{gathered}
\mathrm{Set}^{C} \xrightarrow{U_{C}} \operatorname{Set} / C_{0} \xrightarrow{\Sigma_{c_{0}}} \text { Set } \\
(F: C \rightarrow \text { Set }) \longmapsto \sum_{c: C_{0}} F C
\end{gathered}
$$

Calculate $p(S)$:

Set $\xrightarrow{C_{0}^{*}}$ Set $/ C_{0} \xrightarrow{K_{C}}$ Set $/ C_{0} \xrightarrow{\Sigma_{C_{0}}}$ Set
$S \longmapsto\left(C_{0}^{*} S\right)_{d}=(S)_{d} \longmapsto \sum_{c: C_{0}} \prod_{d: C_{0}} S^{C(c, d)}$

C-sets as coalgebras

We have

$$
\sum_{c: C_{0}} \prod_{d: c_{0}} S^{C(c, d)} \longrightarrow \sum_{c: C_{0}} S^{\sum_{d: c_{0}} C(c, d)} \sim \sum_{c: C_{0}} S^{d_{0}^{*}(c)}
$$

so that p-coalgebra structures take the form

$$
S \xrightarrow{\gamma} \sum_{c: C_{0}} S^{d_{0}^{*}(c)} .
$$

C-sets as coalgebras

We have

$$
\sum_{c: c_{0}} \prod_{d: C_{0}} S^{C(c, d)} \longrightarrow \sum_{c: C_{0}} S^{\sum_{d: c_{0}} C(c, d)} \longrightarrow \sum_{c: C_{0}} S^{d_{0}^{*}(c)}
$$

so that p-coalgebra structures take the form

$$
S \xrightarrow{\gamma} \sum_{c: C_{0}} S^{d_{0}^{*}(c)} .
$$

Identify S with a category $\operatorname{EI}(F)$ of $F: C \rightarrow$ Set: the composite

$$
S \rightarrow \sum_{c: C_{0}} S^{d_{0}^{*}(c)} \rightarrow \sum_{c: C_{0}} 1=C_{0}
$$

gives a fibering $S \rightarrow C_{0}$, and for each $f: c \rightarrow d$, the corresponding $\operatorname{map} S_{f}: S_{c} \rightarrow S_{d}$ of fibers takes $s \in S_{c}$ to $\gamma(s)(f) \in S_{d}$.

What are functors?

Notation: Polynomial comonad p : Set \rightarrow Set for C, q : Set \rightarrow Set for D. Sets $p 1, q 1$ for C_{0}, D_{0}. Left adjoint monad M_{p} on Set/ C_{0}, right adjoint comonad K_{p}. Coalgebra categories $\operatorname{Set}_{p}=\operatorname{Set}^{C}$.

What are functors?

Notation: Polynomial comonad p : Set \rightarrow Set for C, q : Set \rightarrow Set for D. Sets $p 1, q 1$ for C_{0}, D_{0}. Left adjoint monad M_{p} on Set/ C_{0}, right adjoint comonad K_{p}. Coalgebra categories $\operatorname{Set}_{p}=\operatorname{Set}^{C}$.

A functor $F: C \rightarrow D$ is \ldots

What are functors?

Notation: Polynomial comonad p : Set \rightarrow Set for C, q : Set \rightarrow Set for D. Sets $p 1, q 1$ for C_{0}, D_{0}. Left adjoint monad M_{p} on Set/ C_{0}, right adjoint comonad K_{p}. Coalgebra categories $\operatorname{Set}_{p}=\operatorname{Set}^{C}$.

A functor $F: C \rightarrow D$ is \ldots not...

What are functors?

Notation: Polynomial comonad p : Set \rightarrow Set for $C, q:$ Set \rightarrow Set for D. Sets $p 1, q 1$ for C_{0}, D_{0}. Left adjoint monad M_{p} on Set $/ C_{0}$, right adjoint comonad K_{p}. Coalgebra categories $\operatorname{Set}_{p}=\operatorname{Set}^{C}$.

A functor $F: C \rightarrow D$ is ... not...

- A function $f: p 1 \rightarrow q 1$ together with a lift $F: \operatorname{Set}^{C} \rightarrow \operatorname{Set}^{D}$ over Σ_{f} : Set $/ p 1 \rightarrow$ Set/q1:

$$
\begin{aligned}
& \operatorname{Set}_{p} \xrightarrow{F} \text { Set }_{q} \\
& \downarrow U_{p} \quad \downarrow U_{q} \\
& \text { Set/p1 } \xrightarrow{\Sigma_{f}} \text { Set/q1 }
\end{aligned}
$$

(same as an M_{q}-algebra structure on $\Sigma_{f} U_{p}$; same as a K_{q}-coalgebra structure on $\Sigma_{f} U_{p}$).

What are functors?

Notation: Polynomial comonad p : Set \rightarrow Set for $C, q:$ Set \rightarrow Set for D. Sets $p 1, q 1$ for C_{0}, D_{0}. Left adjoint monad M_{p} on Set $/ C_{0}$, right adjoint comonad K_{p}. Coalgebra categories $\operatorname{Set}_{p}=\operatorname{Set}^{C}$.

A functor $F: C \rightarrow D$ is ... not...

- A function $f: p 1 \rightarrow q 1$ together with a lift $F: \operatorname{Set}^{C} \rightarrow \operatorname{Set}^{D}$ over Σ_{f} : Set $/ p 1 \rightarrow$ Set/q1:

$$
\begin{array}{rrr}
\operatorname{Set}_{p} & \stackrel{F}{\longrightarrow} \operatorname{Set}_{q} \\
\downarrow \|_{p} & & \downarrow^{\downarrow} U_{q} \\
\text { Set } / p 1 & \xrightarrow{\Sigma_{f}} & \text { Set/q1 }
\end{array}
$$

(same as an M_{q}-algebra structure on $\Sigma_{f} U_{p}$; same as a K_{q}-coalgebra structure on $\Sigma_{f} U_{p}$).

- This is the concept of cofunctor from C to D.

What are functors?

A functor is ...

- (Viewing categories as monads in Span) A function $f: C_{0} \rightarrow D_{0}$ together with a 2-cell in Span:

$$
\begin{array}{ccccc}
C_{0} \longrightarrow & C_{0} & \text { Set } / C_{0} \xrightarrow{M_{p}} \text { Set } / C_{0} \\
\downarrow_{f} \swarrow_{\psi} \downarrow_{f} & \Sigma_{f} & \Sigma_{\psi} & \Sigma_{f} \\
D_{0} \rightarrow \longrightarrow \rightarrow & \Sigma_{0} & \text { Set } / D_{0} \xrightarrow[M_{q}]{ } \text { Set } / D_{0}
\end{array}
$$

compatible with monad structures, e.g.,

$$
\begin{aligned}
& \Sigma_{f} M_{p} M_{p} \xrightarrow{\psi M_{p}} M_{q} \Sigma_{f} M_{p} \xrightarrow{M_{q} \psi} M_{q} M_{q} \Sigma_{f} \\
& \Sigma_{f} \mu_{p} \downarrow \\
& \Sigma_{f} M_{p} \xrightarrow{\downarrow^{\prime} \Sigma_{f}} \\
& \\
& M_{q} \Sigma_{f}
\end{aligned}
$$

What are functors? Various answers

A functor is ...

- A pair $\left(f: p 1 \rightarrow q 1, \psi: \Sigma_{f} M_{p} \rightarrow M_{q} \Sigma_{f}\right)$ satisfying conditions;

What are functors? Various answers

A functor is ...

- A pair $\left(f: p 1 \rightarrow q 1, \psi: \Sigma_{f} M_{p} \rightarrow M_{q} \Sigma_{f}\right)$ satisfying conditions;
- A pair $\left(f: p 1 \rightarrow q 1, \phi: M_{p} f^{*} \rightarrow f^{*} M_{q}\right)$ satisfying conditions;

What are functors? Various answers

A functor is ...

- A pair $\left(f: p 1 \rightarrow q 1, \psi: \Sigma_{f} M_{p} \rightarrow M_{q} \Sigma_{f}\right)$ satisfying conditions;
- A pair $\left(f: p 1 \rightarrow q 1, \phi: M_{p} f^{*} \rightarrow f^{*} M_{q}\right)$ satisfying conditions;
- A pair $\left(f: p 1 \rightarrow q 1, \theta: f^{*} K_{q} \rightarrow K_{p} f^{*}\right)$ satisfying conditions;

What are functors? Various answers

A functor is ...

- A pair $\left(f: p 1 \rightarrow q 1, \psi: \Sigma_{f} M_{p} \rightarrow M_{q} \Sigma_{f}\right)$ satisfying conditions;
- A pair $\left(f: p 1 \rightarrow q 1, \phi: M_{p} f^{*} \rightarrow f^{*} M_{q}\right)$ satisfying conditions;
- A pair $\left(f: p 1 \rightarrow q 1, \theta: f^{*} K_{q} \rightarrow K_{p} f^{*}\right)$ satisfying conditions;
- A pair $\left(f: p 1 \rightarrow q 1, \theta: f^{*} U_{q} G_{q} \rightarrow K_{p} f^{*}\right)$ with conditions;

What are functors? Various answers

A functor is ...

- A pair $\left(f: p 1 \rightarrow q 1, \psi: \Sigma_{f} M_{p} \rightarrow M_{q} \Sigma_{f}\right)$ satisfying conditions;
- A pair $\left(f: p 1 \rightarrow q 1, \phi: M_{p} f^{*} \rightarrow f^{*} M_{q}\right)$ satisfying conditions;
- A pair $\left(f: p 1 \rightarrow q 1, \theta: f^{*} K_{q} \rightarrow K_{p} f^{*}\right)$ satisfying conditions;
- A pair $\left(f: p 1 \rightarrow q 1, \theta: f^{*} U_{q} G_{q} \rightarrow K_{p} f^{*}\right)$ with conditions;
- A pair $\left(f: p 1 \rightarrow q 1, \gamma: f^{*} U_{q} \rightarrow K_{p} f^{*} U_{q}\right.$ satisfying... K_{p}-coalgebra conditions on $f^{*} U_{q}$!

What are functors? Various answers

A functor is ...

- A pair $\left(f: p 1 \rightarrow q 1, \psi: \Sigma_{f} M_{p} \rightarrow M_{q} \Sigma_{f}\right)$ satisfying conditions;
- A pair $\left(f: p 1 \rightarrow q 1, \phi: M_{p} f^{*} \rightarrow f^{*} M_{q}\right)$ satisfying conditions;
- A pair $\left(f: p 1 \rightarrow q 1, \theta: f^{*} K_{q} \rightarrow K_{p} f^{*}\right)$ satisfying conditions;
- A pair $\left(f: p 1 \rightarrow q 1, \theta: f^{*} U_{q} G_{q} \rightarrow K_{p} f^{*}\right)$ with conditions;
- A pair $\left(f: p 1 \rightarrow q 1, \gamma: f^{*} U_{q} \rightarrow K_{p} f^{*} U_{q}\right.$ satisfying... K_{p}-coalgebra conditions on $f^{*} U_{q}$!
Interpretation: K_{p}-coalgebra map gives a lift $\mathrm{Set}^{F}: \mathrm{Set}^{D} \rightarrow \mathrm{Set}^{C}$:
$\operatorname{Set}_{q} \xrightarrow{\mathrm{Set}^{F}} \operatorname{Set}_{p}$

(Set ${ }^{F}$ is a left/right adjoint, since f^{*} is)
Set/ $D_{0} \xrightarrow[f^{*}]{ }$ Set/ C_{0}

What are functors? Enter Beck-Chevalley

What are functors? Enter Beck-Chevalley

Set $\xrightarrow[C_{0}^{*}]{ }$ Set $/ C_{0}$

What are functors?

Condensing the previous diagram, let us write

The "top" Polyfun is based on a bundle h obtained as a pullback

Statement: A functor from p to q consists of $f: p(1) \rightarrow q(1)$ together with a p-coalgebra structure on $f^{*} q$ and a p-coalgebra map θ making the triangle commute. "Lens-like,"

Thank you!

Notes

Note 1: To prove $\eta:$ id $\rightarrow \hat{G} \hat{F}: D^{T} \rightarrow D^{T}$ is an iso, it suffices to prove

$$
U \eta: U \rightarrow U \hat{G} \hat{F}=G \hat{F}
$$

is an iso, since $U: D^{T} \rightarrow D$ reflects isos. For an object $(d, \alpha: T d \rightarrow d)$ of D^{T}, we have

$$
F T d \xrightarrow[\beta d]{\stackrel{F \alpha}{\longrightarrow}} F d \xrightarrow{\text { coeq }} \hat{F}(d, \alpha) .
$$

Since G is assumed to preserve reflexive coequalizers,

$$
\text { GFTd } \xrightarrow[G \beta d]{G F \alpha} G F d \xrightarrow{\mathrm{coeq}} G \hat{F}(d, \alpha) .
$$

But this coincides with

$$
T T d \xrightarrow[\mu d]{\xrightarrow{T \alpha}} T d \xrightarrow{\alpha=\operatorname{coog}} d .
$$

Notes

Note 2: The counit $\hat{F} \hat{G} \rightarrow$ id is given by

$$
F T G c \xrightarrow[\varepsilon F G c]{\xrightarrow{F G \varepsilon c}} F G c \xrightarrow[\varepsilon c]{\longrightarrow} \underset{c}{\downarrow}
$$

Since G is assumed to reflect isos, it suffices that $G \hat{F} \hat{G} \rightarrow G$ be an iso. Since G preserves reflexive coequalizers, the top sequence of

$$
G F T G c \xrightarrow[G \varepsilon F G c]{\text { GFG\&c}} G F G c \xrightarrow{\text { G(coeq) }} G \hat{F} \hat{G} c
$$

is a coequalizer, but then again, as is well-known, the lower sequence is a split coequalizer (QED):

$$
G F T G c \xrightarrow[\mu G c]{\xrightarrow[G F G \varepsilon c]{ }} G F G c \xrightarrow{G \varepsilon c} G c .
$$

