What is a Functor?

Todd Trimble

Western Connecticut State University Department of Mathematics

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Back-story

Classical CT

- 1. Adjoints and actions
- 2. Adjoint lifting theorem
- 3. Beck's "crude" monadicity theorem
- 4. Left adjoint monads "=" right adjoint comonads

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Back-story

Classical CT

- 1. Adjoints and actions
- 2. Adjoint lifting theorem
- 3. Beck's "crude" monadicity theorem
- 4. Left adjoint monads "=" right adjoint comonads

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

C-sets

- 1. Monadic over slice
- 2. Comonadic over slice
- 3. Comonadic over Set

Back-story

Classical CT

- 1. Adjoints and actions
- 2. Adjoint lifting theorem
- 3. Beck's "crude" monadicity theorem
- 4. Left adjoint monads "=" right adjoint comonads

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

C-sets

- 1. Monadic over slice
- 2. Comonadic over slice
- 3. Comonadic over Set

What are functors?

Adjoints and actions

Let $T: D \to D$ be a monad; let $G: C \to D$ have a left adjoint $F: D \to C$. The following are equivalent:

• Left *T*-actions
$$\alpha$$
 : $TG \rightarrow G$.

• Monad maps
$$\theta : T \to GF$$
.

• Right *T*-actions
$$\beta : FT \to F$$
.

Special case: T = UF, $\theta = id$. The left T-action $\alpha : TU \rightarrow U$ is

 $U\varepsilon: UFU \rightarrow U$

and the right T-action $\beta : FT \rightarrow F$ is

$$\varepsilon F : FUF \rightarrow F$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Adjoint lifting theorem

Let $T: D \to D$ be a monad. Category of algebras $U: D^T \to D$.

• Lifts of functors $G: C \to D$ through $U: D^T \to D$,

are equivalent to T-algebra structures α : $TG \rightarrow G$.

• If in addition C has reflexive coequalizers, then \hat{G} has a left adjoint \hat{F} iff G has a left adjoint F.

Construction: $\hat{F}(d, \alpha : Td \rightarrow d) = \text{coequalizer in } C$:

$$FTd \xrightarrow[\beta d]{F\alpha} Fd \longrightarrow "F \circ_T d"$$

"Crude" Monadicity Theorem

Theorem: (Beck) A functor $G : C \rightarrow D$ is monadic if

G has a left adjoint F (and then GF is the monad T: canonical left action Gε : GFG → G);

- C has reflexive coequalizers $(\hat{F} \dashv \hat{G})$, and G preserves them (unit $\hat{\eta} : id \rightarrow \hat{G}\hat{F}$ an isomorphism; note (1));
- G reflects isos (counit $\hat{\varepsilon} : \hat{F}\hat{G} \to \text{id an isomorphism; note (2)}$).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

"Crude" Monadicity Theorem

Theorem: (Beck) A functor $G : C \rightarrow D$ is monadic if

G has a left adjoint F (and then GF is the monad T: canonical left action Gε : GFG → G);

- C has reflexive coequalizers $(\hat{F} \dashv \hat{G})$, and G preserves them (unit $\hat{\eta} : id \rightarrow \hat{G}\hat{F}$ an isomorphism; note (1));
- G reflects isos (counit $\hat{\varepsilon} : \hat{F}\hat{G} \to \text{id an isomorphism; note (2)}$).

Crudely monadic functors compose. Even better:

Theorem: If $U: C \rightarrow D$ is crudely monadic and $V: D \rightarrow E$ is monadic, then $VU: C \rightarrow E$ is monadic.

Left adjoint monads = right adjoint comonads

Theorem: (Eilenberg-Moore, 1965)

If M : D → D is a monad with a right adjoint K : D → D, then K carries a comonad structure mated to the monad structure on M,

$$\frac{\mu: MM \to M}{\delta: K \to KK}, \qquad \frac{\eta: \mathrm{id} \to M}{\varepsilon: K \to \mathrm{id}}$$

Left adjoint monads = right adjoint comonads

Theorem: (Eilenberg-Moore, 1965)

If M : D → D is a monad with a right adjoint K : D → D, then K carries a comonad structure mated to the monad structure on M,

$$\frac{\mu: MM \to M}{\delta: K \to KK}, \qquad \frac{\eta: \mathrm{id} \to M}{\varepsilon: K \to \mathrm{id}}$$

► *M*-algebras are equivalent to *K*-coalgebras,

$$\frac{\alpha: \mathbf{Md} \to \mathbf{d}}{\gamma: \mathbf{d} \to \mathbf{Kd}}$$

▶ If
$$(F: D \to C) \dashv (U: C \to D) \dashv (G: D \to C)$$
, then
 $M = UF \dashv UG = K$ and $Alg_{UF} \simeq Coalg_{UG}$.

C a category: $(C_0, C_1, d_0 = \text{dom} : C_1 \rightarrow C_0, d_1 = \text{cod} : C_1 \rightarrow C_0).$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

C a category: $(C_0, C_1, d_0 = \text{dom} : C_1 \rightarrow C_0, d_1 = \text{cod} : C_1 \rightarrow C_0)$. Set^{*C*}: category of *C* \rightarrow Set, with U_C : Set^{*C*} \rightarrow Set/ C_0 .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- $C \text{ a category: } (C_0, C_1, d_0 = \mathsf{dom}: C_1 \rightarrow C_0, d_1 = \mathsf{cod}: C_1 \rightarrow C_0).$
 - Set^C: category of $C \rightarrow \text{Set}$, with $U_C : \text{Set}^C \rightarrow \text{Set}/C_0$.
 - Left adjoint $F_C \dashv U_C$:

$$\left(\begin{array}{c} X\\ \downarrow\\ C_0 \end{array}\right) \qquad \stackrel{F_C}{\longmapsto} \quad \sum_{c:C_0} Xc \cdot C(c,-)$$

- $C \text{ a category: } (C_0, C_1, d_0 = \mathsf{dom}: C_1 \to C_0, d_1 = \mathsf{cod}: C_1 \to C_0).$
 - Set^C: category of $C \rightarrow \text{Set}$, with $U_C : \text{Set}^C \rightarrow \text{Set}/C_0$.
 - Left adjoint $F_C \dashv U_C$:

$$\left(\begin{array}{c} X\\ \downarrow\\ C_0 \end{array}\right) \qquad \stackrel{F_C}{\longmapsto} \quad \sum_{c:C_0} Xc \cdot C(c,-)$$

• $U_C F_C X$ in Set/ C_0 is the family indexed over $d : C_0$:

$$\left(\sum_{c:C_0}\sum_{f:c\to d}Xc\right)_{d:C_0}=\left(\sum_{f:C_1}X(d_0f)\right)_{d=d_1f}=\Sigma_{d_1}d_0^*X$$

- $C \text{ a category: } (C_0,C_1,d_0=\mathsf{dom}:C_1\to C_0,d_1=\mathsf{cod}:C_1\to C_0).$
 - Set^C: category of $C \rightarrow \text{Set}$, with $U_C : \text{Set}^C \rightarrow \text{Set}/C_0$.
 - Left adjoint $F_C \dashv U_C$:

$$\left(\begin{array}{c} X\\ \downarrow\\ C_0 \end{array}\right) \qquad \stackrel{F_C}{\longmapsto} \quad \sum_{c:C_0} Xc \cdot C(c,-)$$

• $U_C F_C X$ in Set/ C_0 is the family indexed over $d : C_0$:

$$\left(\sum_{c:C_0}\sum_{f:c\to d}Xc\right)_{d:C_0}=\left(\sum_{f:C_1}X(d_0f)\right)_{d=d_1f}=\Sigma_{d_1}d_0^*X$$

• Monad $U_C F_C = \sum_{d_1} d_0^*$ has a right adjoint $K_C = \prod_{d_0} d_1^*$.

Proposition: The functor $U_C : \operatorname{Set}^C \to \operatorname{Set}/C_0$ is crudely monadic:

- Has a left adjoint $F_C : \operatorname{Set}/C_0 \to \operatorname{Set}^C$;
- U_C : Set^C → Set/C₀ preserves reflexive coequalizers (colimits in Set^C are computed "pointwise");
- ► U_C reflects isos (a natural transformation is invertible if its components are).

Proposition: The functor $U_C : \operatorname{Set}^C \to \operatorname{Set}/C_0$ is crudely monadic:

- Has a left adjoint $F_C : \operatorname{Set}/C_0 \to \operatorname{Set}^C$;
- U_C : Set^C → Set/C₀ preserves reflexive coequalizers (colimits in Set^C are computed "pointwise");
- U_C reflects isos (a natural transformation is invertible if its components are).

By Eilenberg-Moore (1965), since $M_C = U_C F_C$ has a right adjoint K_C , the functor U_C is also comonadic: $F_C \dashv U_C \dashv G_C$:

$$\left(\begin{array}{c} X\\ \downarrow\\ C_0 \end{array}\right) \qquad \stackrel{G_C}{\longmapsto} \quad \prod_{d:C_0} Xd^{C(-,d)}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

C-sets: crude comonadicity and Polyfun

Proposition: U_C : Set^{*C*} \rightarrow Set/ C_0 is crudely comonadic.

Proof: Know U_C is comonadic (right adjoint G_C , reflects isos). U_C also preserves coreflexive equalizers, e.g., by $F_C \dashv U_C$.

C-sets: crude comonadicity and Polyfun

Proposition: U_C : Set^{*C*} \rightarrow Set/ C_0 is crudely comonadic.

Proof: Know U_C is comonadic (right adjoint G_C , reflects isos). U_C also preserves coreflexive equalizers, e.g., by $F_C \dashv U_C$.

Proposition: Σ_{C_0} : Set/ $C_0 \rightarrow$ Set is comonadic, in fact crudely so.

Proof: The comonad is $C_0 \times -$: Set \rightarrow Set. Function $X \rightarrow C_0 =$ coalgebra $X \rightarrow C_0 \times X$. Also Σ_{C_0} preserves connected limits, in particular coreflexive equalizers.

Corollary: The composite

$$\operatorname{Set}^{\mathsf{C}} \xrightarrow{U_{\mathsf{C}}} \operatorname{Set}/C_0 \xrightarrow{\Sigma_{C_0}} \operatorname{Set}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is (crudely) comonadic.

From $U_C \dashv G_C$ and $\Sigma_{C_0} \dashv C_0^*$, we have $\Sigma_{C_0} U_C \dashv G_C C_0^*$, hence a comonad $p = \Sigma_{C_0} U_C G_C C_0^*$:

so that the polynomial functor

$$p = \left(\begin{array}{c} \operatorname{Set} \stackrel{C_1^*}{\longrightarrow} \operatorname{Set}/C_1 \stackrel{\Pi_{d_0}}{\longrightarrow} \operatorname{Set}/C_0 \stackrel{\Sigma_{C_0}}{\longrightarrow} \operatorname{Set} \end{array}
ight)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is a comonad, and

Corollary: The category of p-coalgebras is Set^C, with comonadic functor

$$\operatorname{Set}^{C} \xrightarrow{U_{C}} \operatorname{Set}/C_{0} \xrightarrow{\Sigma_{C_{0}}} \operatorname{Set}$$

$$(F: C \rightarrow \mathsf{Set}) \longmapsto \sum_{c: C_0} Fc$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Corollary: The category of p-coalgebras is Set^C, with comonadic functor

$$\operatorname{Set}^{C} \xrightarrow{U_{C}} \operatorname{Set}/C_{0} \xrightarrow{\Sigma_{C_{0}}} \operatorname{Set}$$

$$(F: C \rightarrow \mathsf{Set}) \longmapsto \sum_{c: C_0} Fc$$

Calculate p(S):

Set
$$\xrightarrow{C_0^*}$$
 Set/ $C_0 \xrightarrow{K_C}$ Set/ $C_0 \xrightarrow{\Sigma_{C_0}}$ Set
 $S \longmapsto (C_0^*S)_d = (S)_d \longmapsto \sum_{c:C_0} \prod_{d:C_0} S^{C(c,d)}$

We have

$$\sum_{c:C_0} \prod_{d:C_0} S^{C(c,d)} \xrightarrow{\sim} \sum_{c:C_0} S^{\sum_{d:C_0} C(c,d)} \xrightarrow{\sim} \sum_{c:C_0} S^{d_0^*(c)}$$

so that *p*-coalgebra structures take the form

$$S \xrightarrow{\gamma} \sum_{c:C_0} S^{d_0^*(c)}.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

We have

$$\sum_{c:C_0} \prod_{d:C_0} S^{C(c,d)} \xrightarrow{\sim} \sum_{c:C_0} S^{\sum_{d:C_0} C(c,d)} \xrightarrow{\sim} \sum_{c:C_0} S^{d_0^*(c)}$$

so that *p*-coalgebra structures take the form

$$S \xrightarrow{\gamma} \sum_{c:C_0} S^{d_0^*(c)}.$$

Identify S with a category EI(F) of $F : C \rightarrow Set$: the composite

$$S
ightarrow \sum_{c:C_0} S^{d_0^*(c)}
ightarrow \sum_{c:C_0} 1 = C_0$$

gives a fibering $S \to C_0$, and for each $f : c \to d$, the corresponding map $S_f : S_c \to S_d$ of fibers takes $s \in S_c$ to $\gamma(s)(f) \in S_d$.

Notation: Polynomial comonad p: Set \rightarrow Set for C, q: Set \rightarrow Set for D. Sets p1, q1 for C_0, D_0 . Left adjoint monad M_p on Set/ C_0 , right adjoint comonad K_p . Coalgebra categories Set_p = Set^C.

Notation: Polynomial comonad p: Set \rightarrow Set for C, q: Set \rightarrow Set for D. Sets p1, q1 for C_0, D_0 . Left adjoint monad M_p on Set/ C_0 , right adjoint comonad K_p . Coalgebra categories Set_p = Set^C.

A functor $F : C \rightarrow D$ is ...

Notation: Polynomial comonad p: Set \rightarrow Set for C, q: Set \rightarrow Set for D. Sets p1, q1 for C_0, D_0 . Left adjoint monad M_p on Set/ C_0 , right adjoint comonad K_p . Coalgebra categories Set_p = Set^C.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A functor $F : C \rightarrow D$ is ... not...

Notation: Polynomial comonad p: Set \rightarrow Set for C, q: Set \rightarrow Set for D. Sets p1, q1 for C_0, D_0 . Left adjoint monad M_p on Set/ C_0 , right adjoint comonad K_p . Coalgebra categories Set_p = Set^C.

A functor $F: C \rightarrow D$ is ... not...

• A function $f : p1 \rightarrow q1$ together with a lift $F : \operatorname{Set}^{C} \rightarrow \operatorname{Set}^{D}$ over $\Sigma_{f} : \operatorname{Set}/p1 \rightarrow \operatorname{Set}/q1$:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(same as an M_q -algebra structure on $\Sigma_f U_p$; same as a K_q -coalgebra structure on $\Sigma_f U_p$).

Notation: Polynomial comonad p: Set \rightarrow Set for C, q: Set \rightarrow Set for D. Sets p1, q1 for C_0, D_0 . Left adjoint monad M_p on Set/ C_0 , right adjoint comonad K_p . Coalgebra categories Set_p = Set^C.

A functor $F: C \rightarrow D$ is ... not...

• A function $f : p1 \rightarrow q1$ together with a lift $F : \operatorname{Set}^{C} \rightarrow \operatorname{Set}^{D}$ over $\Sigma_{f} : \operatorname{Set}/p1 \rightarrow \operatorname{Set}/q1$:

(same as an M_q -algebra structure on $\Sigma_f U_p$; same as a K_q -coalgebra structure on $\Sigma_f U_p$).

▶ This is the concept of *cofunctor* from *C* to *D*.

A functor is ...

• (Viewing categories as monads in Span) A function $f: C_0 \rightarrow D_0$ together with a 2-cell in Span:

compatible with monad structures, e.g.,

$$\begin{array}{cccc} \Sigma_{f} M_{p} M_{p} & \xrightarrow{\psi M_{p}} & M_{q} \Sigma_{f} M_{p} & \xrightarrow{M_{q} \psi} & M_{q} M_{q} \Sigma_{f} \\ \Sigma_{f} \mu_{p} & & & \downarrow \mu_{q} \Sigma_{f} \\ & \Sigma_{f} M_{p} & \xrightarrow{\theta} & M_{q} \Sigma_{f} \end{array}$$

A functor is ...

• A pair $(f : p1 \rightarrow q1, \psi : \Sigma_f M_p \rightarrow M_q \Sigma_f)$ satisfying conditions;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A functor is ...

- A pair $(f : p1 \rightarrow q1, \psi : \Sigma_f M_p \rightarrow M_q \Sigma_f)$ satisfying conditions;
- A pair $(f : p1 \rightarrow q1, \phi : M_p f^* \rightarrow f^* M_q)$ satisfying conditions;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A functor is ...

- A pair $(f : p1 \rightarrow q1, \psi : \Sigma_f M_p \rightarrow M_q \Sigma_f)$ satisfying conditions;
- A pair $(f: p1 \rightarrow q1, \phi: M_p f^* \rightarrow f^* M_q)$ satisfying conditions;
- A pair $(f: p1 \rightarrow q1, \ \theta: f^*K_q \rightarrow K_p f^*)$ satisfying conditions;

A functor is ...

- A pair $(f : p1 \rightarrow q1, \psi : \Sigma_f M_p \rightarrow M_q \Sigma_f)$ satisfying conditions;
- A pair $(f: p1 \rightarrow q1, \phi: M_p f^* \rightarrow f^* M_q)$ satisfying conditions;
- A pair $(f: p1 \rightarrow q1, \ \theta: f^*K_q \rightarrow K_pf^*)$ satisfying conditions;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• A pair $(f: p1 \rightarrow q1, \ \theta: f^*U_qG_q \rightarrow K_pf^*)$ with conditions;

A functor is ...

- A pair $(f : p1 \rightarrow q1, \psi : \Sigma_f M_p \rightarrow M_q \Sigma_f)$ satisfying conditions;
- A pair $(f : p1 \rightarrow q1, \phi : M_p f^* \rightarrow f^* M_q)$ satisfying conditions;
- A pair $(f: p1 \rightarrow q1, \ \theta: f^*K_q \rightarrow K_pf^*)$ satisfying conditions;

- A pair $(f: p1 \rightarrow q1, \ \theta: f^*U_qG_q \rightarrow K_pf^*)$ with conditions;
- A pair (f : p1 → q1, γ : f^{*}U_q → K_pf^{*}U_q satisfying... K_p-coalgebra conditions on f^{*}U_q!

A functor is ...

- A pair (f : p1 → q1, ψ : Σ_f M_p → M_qΣ_f) satisfying conditions;
- A pair $(f: p1 \rightarrow q1, \phi: M_p f^* \rightarrow f^* M_q)$ satisfying conditions;
- A pair $(f: p1 \rightarrow q1, \ \theta: f^*K_q \rightarrow K_pf^*)$ satisfying conditions;
- A pair $(f: p1 \rightarrow q1, \ \theta: f^*U_qG_q \rightarrow K_pf^*)$ with conditions;
- A pair (f : p1 → q1, γ : f*U_q → K_pf*U_q satisfying... K_p-coalgebra conditions on f*U_q!

Interpretation: K_p -coalgebra map gives a lift $\operatorname{Set}^F : \operatorname{Set}^D \to \operatorname{Set}^C$:

$$\begin{array}{ccc} \operatorname{Set}_{q} & \stackrel{\operatorname{Set}^{F}}{\longrightarrow} & \operatorname{Set}_{p} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & &$$

What are functors? Enter Beck-Chevalley

<ロト <回ト < 注ト < 注ト

э

What are functors? Enter Beck-Chevalley

Condensing the previous diagram, let us write

The "top" Polyfun is based on a bundle h obtained as a pullback

Statement: A functor from p to q consists of $f : p(1) \rightarrow q(1)$ together with a p-coalgebra structure on f^*q and a p-coalgebra map θ making the triangle commute. "Lens-like."

Thank you!

・ロト・(四)・(日)・(日)・(日)・(日)

Notes

Note 1: To prove $\eta : id \to \hat{G}\hat{F} : D^T \to D^T$ is an iso, it suffices to prove

$$U\eta: U o U\hat{G}\hat{F} = G\hat{F}$$

is an iso, since $U: D^T \to D$ reflects isos. For an object $(d, \alpha: Td \to d)$ of D^T , we have

$$\mathsf{FTd} \xrightarrow[\beta d]{\mathsf{F}\alpha} \mathsf{Fd} \xrightarrow[]{\mathsf{coeq}} \hat{\mathsf{F}}(\mathsf{d},\alpha).$$

Since G is assumed to preserve reflexive coequalizers,

$$GFTd \xrightarrow[G\beta d]{GF\alpha} GFd \xrightarrow[Goeq]{coeq} G\hat{F}(d, \alpha).$$

But this coincides with

$$TTd \xrightarrow[\mu d]{} Td \xrightarrow[\mu d]{} d.$$

Notes

Note 2: The counit $\hat{F}\hat{G} \rightarrow \text{id}$ is given by

Since G is assumed to reflect isos, it suffices that $G\hat{F}\hat{G} \rightarrow G$ be an iso. Since G preserves reflexive coequalizers, the top sequence of

is a coequalizer, but then again, as is well-known, the lower sequence is a split coequalizer (QED):

$$GFTGc \xrightarrow{GFG_{\mathcal{E}c}} GFGc \xrightarrow{G_{\mathcal{E}c}} Gc.$$