
Pairing Dynamic Systems

Solomon Bothwell

March 2024

”An𝐴𝑦𝐵 MealyMachine is the ’universal thing’ that interacts with a 𝐵𝑦𝐴 MooreMachine. It is the uni-
versal thing that can be put togetherwith a 𝐵𝑦𝐴 MooreMachine. They’re not just two different definitions,
they are dual in a certain sense.” David Spivak

In past work encoding state machines as Co-Algebras in Haskell I have leveraged this idea to create
protocol agnostic programs as Mealy Machines which can then be paired with a Moore Machine which
manages a particular protocol.

annihilate :: Moore o i -> Mealy i o -> Fix Identity
annihilate (MooreM' moore) (MealyM' mealy) = Fix $ do

(i, nextMoore) <- moore
(o, mealy') <- mealy i

pure $ annihilate' moore' mealy'

Using the tools presented in the Poly Workshop I wanted to understand more precisely what is going
on with the idea of Pairings and how they might be applied more generally.

Given: 1. A Moore Machine with input set 𝐴 and output set 𝐵 𝑆𝑦𝑆 ⇒ 𝐵𝐴 2. A Mealy Machine with
input set 𝐵 and output set 𝐴 (𝑆𝐵)𝑦𝑆 ⇒ 𝐴𝑦1.

We can create a pairing by the following transformations:

𝑇𝐵𝑦𝑇 ⇒ 𝐴𝑦1 (1)
𝑇𝑦𝑇 ⇒ [𝐵𝑦,𝐴𝑦] (𝑃 ⊗ 𝑄 → 𝑅 ≅ 𝑃 ⇒ [𝑄,𝑅]) (2)
𝑇𝑦𝑇 ⇒ [𝐵𝑦𝐴, 𝑦] ([𝐴𝑦, 𝐵𝑦] ⇒ [𝐴𝑦𝐵, 𝑦]) (3)

𝑆𝑇𝑦𝑆𝑇 ⇒ 𝐵𝑦𝐴 ⊗ [𝐵𝑦𝐴, 𝑦] (The functorial action of ⊗) (4)
𝑆𝑇𝑦𝑆𝑇 ⇒ 𝑦 (𝑃 ⊗ [𝑃,𝑄] ⇒ 𝑄) (5)

This gives us a closed systemwhere the twomachines propagate messages back and forth indefinitely
which we can demonstrate with Agda:

pair-machines : ∀{S T A B : Set} →S y^ S ⇒B y^ A →(T × B) y^ T ⇒A y^ ⊤→(S y^ S) ⊗(T y^ T) ⇒
(B y^ A) ⊗[B y^ A , 𝑌]

pair-machines moore mealy =
moore ⊗⇒⊗-to-hom (compute-tensor ; 𝑝 drop⊤--fiber ; 𝑝 mealy) ; 𝑝 ⊗-second hom-to-y

annihilate : ∀{S T A B : Set} →S y^ S ⇒B y^ A →(T × B) y^ T ⇒A y^ ⊤→S y^ S ⊗T y^ T ⇒𝑌
annihilate moore mealy = pair-machines moore mealy ; 𝑝 eval

If we wish to observe the interactions of our closed system we can substite some other polynomial for
𝑦when ”annihilating” our machines:

1

focus : ∀{A B C : Set} →(B × A →C) →[B y^ A , Y}] ⇒[B y^ A , C y^ ⊤]
map-base (map-base (focus observe) p) b with p .map-fiber b tt
... | a = observe (b , a)
map-fiber (map-base (focus _) p) b tt = p .map-fiber b tt

witness : ∀{S T A B C : Set} →(B × A →C) →S y^ S ⇒B y^ A →(T × B) y^ T ⇒A y^ ⊤→S y^ S ⊗T y^
T ⇒C y^ ⊤

witness observe moore mealy =
pair-machines moore mealy ; 𝑝 ⊗-second (focus observe) ; 𝑝 eval

𝑤𝑖𝑡𝑛𝑒𝑠𝑠 asks us to provide an observation function 𝐵×𝐴 → 𝐶 tomonitor the interactions of the pairing.
The observation function is used to generate a polynomial Cy1 which used as the interface to the dynamic
system.

It turns out that this behavior is not particular to Mealy and Moore but rather that for any dynamic
system 𝑆𝑦𝑆 ⇒ 𝑃 we can create a paired dynamic system of the form 𝑆𝑦𝑆 ⇒ [𝑃, 𝑦] which can then be
annihilated via 𝑒𝑣𝑎𝑙.

annihilate' : ∀{S T : Set} {P : Poly} →S y^ S ⇒P →T y^ T ⇒[P , 𝑌] →S y^ S ⊗T y^ T ⇒y
annihilate' machine dual =

machine ⊗⇒dual ; 𝑝 eval

This allows us to create arbitrary closed loop dynamic systems whose interactions can then be ex-
tracted via an observation function and 𝑤𝑖𝑡𝑛𝑒𝑠𝑠. Leaking observations could allow communication be-
tween multiple isolated dynamic systems.

As a further exploration I would like to look into the use of effects inside these closed loop systems. By
leveraging the state management inherent in these machines we can ensure the sequencing of IO effects
ordinarily done via monads in pure functional languages. This would allow us to create closed loop
dynamic systems which can perform real work in the world.

2

