
Bicomodules for Poly-shaped reservoir computer

André Muricy Santos

March 1, 2024

1 What are reservoir computers?

Reservoir computing is a machine learning technique for learning complex time series. A reservoir is an open,
random, discrete dynamical system with many dimensions - called “nodes”. The reservoir system has input weights
connecting to each node, internal weights connecting each node to each other node (though this architecture is not
necessary - sometimes they’re arranged in a ring or other topologies), and output weights connecting each node to
an output. The input and internal nodes are fixed forever, and the output weights are trained after enough training
samples (where each training sample is one step of the input sequences). There’s three basic regimes/modes to
most reservoir architectures. Here they are:

1.1 Training

The reservoir does a couple things. Each timestep, it takes an input sample (a vector of the dimension of the
sequence we’re trying to predict - e.g. for the Lorenz system, this will be of length 3; the x-y-z coordinates) and
multiplies it by its input weights (a matrix of dimensions systemDim × amtOfNodes ). It then takes this result and
adds it to another matrix which is the result of multiplying the current states of every node by the internal weights.
Finally this matrix goes through an activation function (tanh for example) and this becomes its new state! The
input that led to this new state, along with the new state itself, is then stored and remembered in a list. This is
repeated for a number of training steps, which leads the list to grow - it then looks like a ”history” matrix. After
this is repeated enough times, the history matrix is used to produce an output weight matrix with linear regression.
We then move to the next regime.

1.2 Warmup/touching

The reservoir, now trained, needs to get rid of so-called “transient dynamics”. The idea is that, after training, its
states carry a lot of information about training dynamics (which were produced by some “training” input sequence).
These need to be “washed away”. The reservoir is fed a bunch of training samples of the sequence it’s supposed
to predict now, just to update its internal state according to these for a few timesteps (it doesn’t use its output
weights yet). I also like calling this regime ”touching” and the next one ”going”, because it feels like cranking a
machine for a while and then letting it go and do its own thing.

1.3 Prediction/going

Finally, the reservoir stops receiving inputs from the sequence it wants to predict and instead starts taking in its
own output. This is also its prediction of what the next step of the test/predicted sequence would be, according to
its perspective.

So we have a dynamical system with three different modes, where in each mode the different components of the
system are taking in inputs from and providing outputs to different places. What does this remind you of?

2 It’s a morphism in Poly!

The entire reservoir, from training to prediction, is basically a big morphism in Poly of type SyS → ptrain +
pwarmup + pprediction. The three different regimes/stages are represented by different summands in the target of
the morphism, and that’s pretty cool. I have Agda code from my master’s thesis for this in the repo linked at the
bottom 1, and also a link to the thesis itself 2.

1https://github.com/amuricys/polynomial-functors
2https://odr.chalmers.se/server/api/core/bitstreams/774ba4a2-58b4-407f-aa6b-b0209b6c7d70/content

1

https://github.com/amuricys/polynomial-functors
https://odr.chalmers.se/server/api/core/bitstreams/774ba4a2-58b4-407f-aa6b-b0209b6c7d70/content


Figure 1: The three different regimes of a reservoir

There’s just one problem: Morphisms of that shape could transition between modes arbitrarily. Simply knowing
the type SyS → p+ q doesn’t tell you anything about the possibility of transitions between p-modes and q-modes.
There’s nothing preventing the implementation of the reservoir from going back from pWarmup to pTrain, for
example. And this is where bicomodules come in.

2.1 Stronger mode-dependence

A morphism of bicomodules from this: My

▷

◁
SyS

Ny to this: My

▷

◁
p

Ny acts on a polynomial by “partitioning”
it into M polynomials on N -many variables. If we set M = N , it gives us what we want; we can think of the state
space S as S1 + S2 + S3. . . SM , where each M corresponds to a mode. In our case, since we have 3 modes, we can
think of our map SyS → ptrain + pwarmup + pprediction like this instead:

• S1y
S → ptrain — the positions in ptrain are now only in y-variables that point to ptrain and pwarmup - so y1

and y2

• S2y
S → pwarmup – the positions in pwarmup are only in y-variables that point to pwarmup and pprediction - so

y2 and y3

• S3y
S → pprediction – the positions in pprediction are only in y-variables that point to pprediction itself - so only

y3

The bicomodule data/laws force the directions in each of the partitioned polynomials to only lead to the subset
of states that do the transitions that can be done. This is even more type-safe; a mode-dependent dynamical system
can only perform transitions to regimes specified by the data in the bicomodule.

2.2 Future work

This is fine if we’re thinking of a reservoir as only a single morphism, but ideally we would be able to split this
further. There should be morphisms Strainy

S
train → ptrain, Swarmupy

S
warmup → pwarmup and Spredy

S
pred → ppred

that correspond to each of these steps. The reason we want this is so that we can do fun things like comparing
a morphism corresponding to a trained reservoir (the last one: Spredy

S
predßppred) to a morphism corresponding to

the sequence it predicts. Charts in Poly can be used to compare systems, and the commuting squares of charts
and lenses correspond to the fact that such lenses are really identical behaviorally. What if we had “approximately
commuting” squares? Could these tell us anything about how to, for instance, optimally set hyperparameters
(number of nodes, reservoir topology, distribution from which weights are drawn, activation function, number of
training samples, etc)? The only problem is that these morphisms don’t compose, and simply tensoring them
immediately forces the resulting morphism to account for a mode-dependent system, which the input sequences are
not. It’s hard to make things type check.

I’m also thinking a lot about how to talk about bifurcations in dynamical systems in the language of Poly. I’ve
had a sneaking intuition that the discreteness of bifurcations corresponds somehow to a change in wiring pattern
in a mode-dependent system, and during the workshop I got to explore this a bit with Sophie, but it’s still not
clear where to go. Bicomodules allow us to partition the state space; could these partitions somehow correspond to
different qualitative dynamics in a parametrized flow?

Anyway, this is very exciting stuff. I came to the workshop with all these ideas floating around my head,
centering around the dialectic between continuous and discrete, how dynamical systems compute, how computation
is possible at all etc. I’m leaving with even more questions, but also even more excited.

2


	What are reservoir computers?
	Training
	Warmup/touching
	Prediction/going

	It’s a morphism in Poly!
	Stronger mode-dependence
	Future work


