Polynomials in Action ${ }^{1}$

Nelson Niu

March 1, 2024

We review several examples of how polynomials interact with monoid and category actions. Written at the 2024 Poly at Work Workshop at the Topos Institute.

1 Dynamical systems with actions

To discuss continuous-time dynamics in Poly, we need some notion of an \mathbb{R}-action. More generally, we would like to consider how dynamical systems in Poly may be equipped with the action of a monoid $(M, e, *)$ (in Set), another polynomial, or perhaps any category. Here are several ways we may model such a concept with polynomials.

1. We could consider cofunctors $\mathbb{S} \nrightarrow y^{M} \otimes \mathbb{C}_{p}$, where y^{M} is the carrier of the polynomial comonad corresponding to M viewed as a 1-object category, while \mathbb{C}_{p} is the cofree comonad on a polynomial functor p. We could replace y^{M} with an arbitrary category. We could also take an appropriate subcategory of $y^{M} \otimes \mathbb{C}_{p}$, associating morphisms in \mathbb{C}_{p} (tuples of directions in p) with appropriate time values in M.
2. We could consider lenses $\varphi: S y^{S} \rightarrow[M y, p]$ such that, for every section $\gamma: p \rightarrow y$, composing φ with $[M y, \gamma]$ yields a cofunctor $S y^{S} \nrightarrow[M y, y] \cong y^{M}$. ${ }^{2}$ We could also consider lenses $S y^{S} \otimes M y \rightarrow$ p that become cofunctors when composed with any section $p \rightarrow y$.
3. We could consider p-coalgebras for polynomial endofunctors p on [$\left.y^{M}, \mathbf{S e t}\right]$. See the next section for more exposition on this.
4. We could consider the category of $\left(y^{M}, y^{M}\right)$-bicomodules, the category of $\left(\mathbb{C}_{p}, \mathbb{C}_{p}\right)$-bicomodules, or perhaps most generally the category of (\mathbb{C}, \mathbb{C})-bicomodules; and the morphisms there whose domain is a comonoid. It turns out that a (\mathbb{C}, \mathbb{C})-bicomodules comonad carried by a polynomial \mathbb{D} corresponds to a cofunctor $\mathbb{D} \nrightarrow \mathbb{C}$ (in particular, \mathbb{D} itself must be a polynomial comonad).
5. Let S be a smooth manifold and $f: \mathbb{R} \rightarrow S$ be a smooth map. In the thin double category whose objects are polynomials, vertical arrows are lenses, and horizontal arrows are charts, ${ }^{3}$ we can
${ }^{1}$ Inspired by conversations with Matteo Capucci, Harrison Grodin, Sophie Libkind, Toby Smithe, and David Spivak.
${ }^{2}$ This idea comes from Smithe's Open Dynamical Systems as Coalgebras for Polynomial Functors, with Application to Predictive Processing (2022), Definition 2.1.

[^0]consider squares

The right lens is our open dynamical system with state space S and interface p. The left lens is vertical and picks out unit tangent vectors on directions. The bottom chart can be considered a trajectory of position and direction pairs in $p .4$

2 Polynomial functors over sets with monoid actions

Let ($M, e, *$) be a monoid (in Set). Its associated 1-object category, viewed as a comonoid object in (Poly, $y, \triangleleft)$, is carried by the polynomial y^{M}, which we will use to denote this category. Then an M-set is a functor $X: y^{M} \rightarrow$ Set, or a set X with an M-action $\cdot: M \times X \rightarrow X$ respecting e and $*$. A morphism of M-sets $X \rightarrow Y$ is a natural transformation from X to Y as functors $y^{M} \rightarrow$ Set, or an M-equivariant map $f: X \rightarrow Y$, satisfying $f(m \cdot x)=m \cdot f(x)$ for all $m \in M$ and $x \in X$. In other words, the category of M-sets and M-equivariant maps can be identified with the functor category $\left[y^{M}\right.$, Set $]$.

Following Gambino-Kock, we characterize polynomial endofunctors on $\left[y^{M}, \mathbf{S e t}\right] .5^{5}$ As a presheaf category, $\left[y^{M}, \mathbf{S e t}\right]$ is a topos. In particular, it is complete and locally cartesian closed: given an M equivariant map $p: E \rightarrow B$, the functor between slice categories

$$
\Delta_{p}:\left[y^{M}, \mathbf{S e t}\right] / B \rightarrow\left[y^{M}, \mathbf{S e t}\right] / E
$$

induced by pullback along p has a right adjoint

$$
\Pi_{p}:\left[y^{M}, \mathbf{S e t}\right] / E \rightarrow\left[y^{M}, \mathbf{S e t}\right] / B .
$$

Composing this on one side with the product functor $\Delta_{!}:\left[y^{M}, \operatorname{Set}\right] \rightarrow$ $\left[y^{M}, \mathbf{S e t}\right] / E$ sending $X \mapsto(E \times X \xrightarrow{\pi} X)$ and on the other with the forgetful functor $\Sigma_{!}:\left[y^{M}, \mathbf{S e t}\right] / B \rightarrow\left[y^{M}, \mathbf{S e t}\right]$ sending $(Y \rightarrow B) \mapsto Y$ yields the polynomial functor corresponding to $p: E \rightarrow B$:

$$
\Sigma_{!} \Pi_{p} \Delta_{!}:\left[y^{M}, \mathbf{S e t}\right] \rightarrow\left[y^{M}, \mathbf{S e t}\right]
$$

which we will also denote by p. Then the category of polynomial endofunctors on $\left[y^{M}\right.$, Set $]$, denoted $\operatorname{Poly}{ }_{\left[y^{M}, \text { Set }\right]}$, has these polynomial objects as functors and all natural transformations ${ }^{6}$ between them as morphisms. Equivalently (and we will freely switch between the two characterizations), it is the category where
${ }^{4}$ I learned this from Matteo Capucci.
${ }^{5}$ See Polynomial Functors and Polynomial Monads (2009) by Gambino and Kock; we follow their notation. All this can be generalized to an arbitrary locally cartesian closed category (with a terminal object and pullbacks).

[^1]- an object is an M-equivariant map $p: E \rightarrow B$;
- a morphism φ from $p: E \rightarrow B$ to $p^{\prime}: E^{\prime} \rightarrow B^{\prime}$ consists of
- an M-equivariant $\operatorname{map} \varphi_{1}: B \rightarrow B^{\prime}$;
- an M-equivariant $\operatorname{map} \varphi^{\sharp}: E^{\prime} \times_{B^{\prime}} B \rightarrow E$, whose domain is the pullback of p^{\prime} along φ_{1}.

There is a functor Poly $\rightarrow \operatorname{Poly}_{\left[y^{M}, \text { Set }\right]}$ induced by the functor Set $\rightarrow\left[y^{M}\right.$, Set $]$ that sends every set to its constant presheaf, i.e. the same set with a trivial action. There is also a functor $\operatorname{Poly}_{\left[y^{M}, \mathrm{Set}\right]} \rightarrow$ Poly that forgets M-actions. Each polynomial in $\operatorname{Poly}_{\left[y^{M}, \mathbf{S e t}\right]}$ therefore has an underlying polynomial $\sum_{i \in I} \prod_{a \in A_{i}} y$, along with an M action on I and a compatible M-action on $\sum_{i \in I} A_{i} .7$

We can lift many ${ }^{8}$ of the usual structures on Poly to this setting. In particular, given $p \in \operatorname{Poly}_{\left[y^{M}, \mathbf{S e t}\right]}$, we can consider p-coalgebras $S \rightarrow p(S)$ for $S \in\left[y^{M}, \mathbf{S e t}\right]$, or perhaps ${ }^{9}$ equivalently morphisms from $S \times S \rightarrow S$ to p in Poly ${ }_{\left[y^{M}, \mathbf{S e t}\right]}$. In Poly, these are our open dynamical systems. Taking $M:=\mathbb{R}$ may then be a way to discuss open dynamical systems with some notion of time $t \in \mathbb{R}$.
${ }^{7}$ Given $i \in I$ and $a \in A_{i}$, the M-action must send (i, a) to $(m \cdot i, b)$ for some $b \in A_{m \cdot i}$.
${ }^{8}$ It would be interesting to verify precisely which structures on Poly generalize and which do not.
${ }^{9}$ This needs verification (or perhaps it simply isn't immediately obvious to me).

[^0]: ${ }^{3}$ Introduced by David Jaz Myers in Double Categories of Open Dynamical Systems (2020).

[^1]: ${ }^{6}$ Gambino-Kock consider only the cartesian natural transformations, but we would like to consider all of them.

