*Polynomials in Action*¹

Nelson Niu

March 1, 2024

We review several examples of how polynomials interact with monoid and category actions. Written at the 2024 Poly at Work Workshop at the Topos Institute.

1 Dynamical systems with actions

To discuss continuous-time dynamics in **Poly**, we need some notion of an \mathbb{R} -action. More generally, we would like to consider how dynamical systems in **Poly** may be equipped with the action of a monoid (M, e, *) (in **Set**), another polynomial, or perhaps any category. Here are several ways we may model such a concept with polynomials.

- 1. We could consider cofunctors $\mathbb{S} \rightarrow y^M \otimes \mathbb{C}_p$, where y^M is the carrier of the polynomial comonad corresponding to M viewed as a 1-object category, while \mathbb{C}_p is the cofree comonad on a polynomial functor p. We could replace y^M with an arbitrary category. We could also take an appropriate subcategory of $y^M \otimes \mathbb{C}_p$, associating morphisms in \mathbb{C}_p (tuples of directions in p) with appropriate time values in M.
- We could consider lenses φ: Sy^S → [My, p] such that, for every section γ: p → y, composing φ with [My, γ] yields a cofunctor Sy^S → [My, y] ≅ y^M.² We could also consider lenses Sy^S ⊗ My → p that become cofunctors when composed with any section p → y.
- 3. We could consider *p*-coalgebras for polynomial endofunctors *p* on $[y^M, \mathbf{Set}]$. See the next section for more exposition on this.
- 4. We could consider the category of (y^M, y^M)-bicomodules, the category of (C_p, C_p)-bicomodules, or perhaps most generally the category of (C, C)-bicomodules; and the morphisms there whose domain is a comonoid. It turns out that a (C, C)-bicomodules comonad carried by a polynomial D corresponds to a cofunctor D → C (in particular, D itself must be a polynomial comonad).
- 5. Let *S* be a smooth manifold and $f: \mathbb{R} \to S$ be a smooth map. In the thin double category whose objects are polynomials, vertical arrows are lenses, and horizontal arrows are charts,³ we can

¹ Inspired by conversations with Matteo Capucci, Harrison Grodin, Sophie Libkind, Toby Smithe, and David Spivak.

² This idea comes from Smithe's Open Dynamical Systems as Coalgebras for Polynomial Functors, with Application to Predictive Processing (2022), Definition 2.1.

³ Introduced by David Jaz Myers in Double Categories of Open Dynamical Systems (2020). consider squares

The right lens is our open dynamical system with state space S and interface p. The left lens is vertical and picks out unit tangent vectors on directions. The bottom chart can be considered a trajectory of position and direction pairs in p.⁴

2 Polynomial functors over sets with monoid actions

Let (M, e, *) be a monoid (in **Set**). Its associated 1-object category, viewed as a comonoid object in (**Poly**, y, \triangleleft), is carried by the polynomial y^M , which we will use to denote this category. Then an *M*-set is a functor $X: y^M \rightarrow$ **Set**, or a set X with an M-action $\cdot: M \times X \rightarrow X$ respecting e and *. A morphism of M-sets $X \rightarrow Y$ is a natural transformation from X to Y as functors $y^M \rightarrow$ **Set**, or an *M*-equivariant map $f: X \rightarrow Y$, satisfying $f(m \cdot x) = m \cdot f(x)$ for all $m \in M$ and $x \in X$. In other words, the category of M-sets and M-equivariant maps can be identified with the functor category $[y^M,$ **Set**].

Following Gambino-Kock, we characterize polynomial endofunctors on $[y^M, \mathbf{Set}]$.⁵ As a presheaf category, $[y^M, \mathbf{Set}]$ is a topos. In particular, it is complete and locally cartesian closed: given an *M*equivariant map $p: E \to B$, the functor between slice categories

$$\Delta_p: [y^M, \mathbf{Set}]/B \to [y^M, \mathbf{Set}]/E$$

induced by pullback along *p* has a right adjoint

$$\Pi_p: [y^M, \mathbf{Set}]/E \to [y^M, \mathbf{Set}]/B.$$

Composing this on one side with the product functor $\Delta_! : [y^M, \mathbf{Set}] \rightarrow [y^M, \mathbf{Set}]/E$ sending $X \mapsto (E \times X \xrightarrow{\pi} X)$ and on the other with the forgetful functor $\Sigma_! : [y^M, \mathbf{Set}]/B \rightarrow [y^M, \mathbf{Set}]$ sending $(Y \rightarrow B) \mapsto Y$ yields the polynomial functor corresponding to $p : E \rightarrow B$:

$$\Sigma_!\Pi_p\Delta_!\colon [y^M, \mathbf{Set}] \to [y^M, \mathbf{Set}],$$

which we will also denote by p. Then the category of polynomial endofunctors on $[y^M, \mathbf{Set}]$, denoted $\mathbf{Poly}_{[y^M, \mathbf{Set}]}$, has these polynomial objects as functors and all natural transformations⁶ between them as morphisms. Equivalently (and we will freely switch between the two characterizations), it is the category where ⁴ I learned this from Matteo Capucci.

⁵ See *Polynomial Functors and Polynomial Monads* (2009) by Gambino and Kock; we follow their notation. All this can be generalized to an arbitrary locally cartesian closed category (with a terminal object and pullbacks).

⁶ Gambino-Kock consider only the *cartesian* natural transformations, but we would like to consider all of them.

- an object is an *M*-equivariant map $p: E \rightarrow B$;
- a morphism φ from $p: E \to B$ to $p': E' \to B'$ consists of
 - an *M*-equivariant map $\varphi_1 \colon B \to B'$;
 - an *M*-equivariant map $\varphi^{\sharp} \colon E' \times_{B'} B \to E$, whose domain is the pullback of p' along φ_1 .

There is a functor $\operatorname{Poly} \to \operatorname{Poly}_{[y^M, \operatorname{Set}]}$ induced by the functor $\operatorname{Set} \to [y^M, \operatorname{Set}]$ that sends every set to its constant presheaf, i.e. the same set with a trivial action. There is also a functor $\operatorname{Poly}_{[y^M, \operatorname{Set}]} \to$ Poly that forgets *M*-actions. Each polynomial in $\operatorname{Poly}_{[y^M, \operatorname{Set}]}$ therefore has an underlying polynomial $\sum_{i \in I} \prod_{a \in A_i} y$, along with an *M*action on *I* and a compatible *M*-action on $\sum_{i \in I} A_i$.⁷

We can lift many⁸ of the usual structures on **Poly** to this setting. In particular, given $p \in \mathbf{Poly}_{[y^M, \mathbf{Set}]}$, we can consider *p*-coalgebras $S \to p(S)$ for $S \in [y^M, \mathbf{Set}]$, or perhaps⁹ equivalently morphisms from $S \times S \to S$ to *p* in $\mathbf{Poly}_{[y^M, \mathbf{Set}]}$. In **Poly**, these are our open dynamical systems. Taking $M := \mathbb{R}$ may then be a way to discuss open dynamical systems with some notion of time $t \in \mathbb{R}$. ⁷ Given $i \in I$ and $a \in A_i$, the *M*-action must send (i, a) to $(m \cdot i, b)$ for some $b \in A_{m \cdot i}$.

⁸ It would be interesting to verify precisely which structures on **Poly** generalize and which do not.
⁹ This needs verification (or perhaps it simply isn't immediately obvious to me).