
Applications of multivariate polynomials

David Spivak

March 1, 2024

Abstract

Coalgebras on one-variable polynomials ? correspond to generalized Moore ma-
chines. But what happens when you pass to the double categoryCat♯ of comonoids and
bicomodules in Poly? It has a full subcategory whose objects are sets � , � : Set and for
which a horizontalmorphism is a systemof �-many polynomials in �-many variables. I’ll
explain how multivariable polynomials give rise to “indexed types”, mode-dependent
dynamics, and mutually-recursive data types.

One thing we spent some time on, especially in the second week of the Poly@Work
workshop, was bicomodules. The comonoids in (Poly, y, ⊳) are categories, the comonoid
homomorphisms are cofunctors, and the bicomodules

2

⊲ ⊳
?

3 (1)

are “data migration functors”. Our conversations helped me recall some ideas I’d had a few
years ago, fill in somemissing details, get a sense of what theymight be useful for, and learn
more about computer science applications and names, such as Generalized Algebraic Data
Types, and indexed types.

In this note, I’ll explain how multivariate polynomials really bake in mode-dependence,
a kind of typing discipline, for Moore machines. I’ll also explain how they allow for
mutually-recursive data types (the language generated by a context-free grammar).

Thanks to Harrison Grodin, Reed Mullanix, Nelson Niu, Nate Osgood, and everyone
else at the Poly workshop for helpful and fun conversations!

Systems of multivariate polynomials as bicomodules

Given polynomial comonoids (categories) 2 and 3, a bicomodule (1) between them consists
of a polynomial ? together with maps

2 ⊳ ?
�←− ?

�
−→ ? ⊳ 3

satisfying five equations: unitality and associativity on each side, as well as a compatibility
equation. As alluded to above, they correspond to functors 3-Set → 2-Set, and generalize
profunctors.

1

But they are a lot of data, and sometimes difficult to think about. Luckily, they simplify
a great deal when 2, 3 are discrete categories, i.e. comonoids of the form 2 = �y and
3 = �y. Then a bicomodule ? as above can be identified with �-many polynomials in
�-many variables. For example, if � = 2 and � = 3, then we can think of ? as somehow
decomposable as

?1 = y4
1y

3
2 + 17y1y

2y3 + 2y9
3

?2 = y7
2y

3
3 + 6

(2)

This decomposition is encoded by the bicomodule structure maps

2y ⊳ ?
�←−− ?

�
−−→ ? ⊳ 3y.

Indeed, the map � encodes a sum-decomposition of positions ?(1) = ?1(1) + ?2(1), and
for each position % : ?(1), the map � encodes a splitting up of exponents into ?[%] =
?[%]1 + ?[%]2 + ?[%]3. So the bicomodule corresponding to the polynomials from (2) would
be of the form

2y ⊲ ⊳
y7+17y4+2y9+y10+6 3y

One interesting fact1 is that a comonad in Cat♯, i.e. a bicomodule 2 ⊲ ⊳3
2 equipped

with maps

2 2

⊲ ⊳
3

⊲ ⊳
2

&
2 2

2

⊲ ⊳3

⊲

⊳3

⊲ ⊳
3

� (3)

satisfying counitality and comultiplication can be identified with a cofunctor 3 9 2. That
is, it looks complicated, but it’s pretty easy.

So, for example, if we have a comonad of the form 3y ⊲ ⊳3 3y, then it is the same thing
as a category 3 equipped with a cofunctor to the three object category 3, which is the same
as a way of labeling each object in 3 with an element in the set {′1′, ′2′, ′3′}.

Moore machines

Moore machines are ways of taking inputs and producing outputs, all while keeping an
internal state. For example, a machine that takes in a stream of integers and produces a
running total is a kind of Moore machine. We can wire together Moore machines to get new
Moore machines.

?1

?2

?3

?4

?5

(4)

An uninitialized Moore machine with input type � and output type � consists of a set (,
called the set of states, and a coalgebra

(→ �y� ⊳ (= � × (�
1This results from general theory about the comonoids-and-bicomodules construction: Taking Comod of

Comod always has this sort of behavior.

2

This could also be written as a polynomial map

(y(→ �y�.

To understandwhat it means, we unfold it into two functions A : (→ �, whichwe call the
readout, and D : (×�→ (, which we call the update. Choosing an initial state B0 : 1→ (and
a list [00 , . . . , 0=], one obtains a list of outputs [10 , . . . , 1=] by B8+1 B D(08 , B8) and 18 B A(18).

Sometimes one doesn’t care about the states themselves, one only cares about the behavior
of the machine, i.e. the flow chart that says what the machine is outputting now, as well as
for every possible input, a new flow chart. These are the elements of the terminal coalgebra,
which is also the set of positions of the cofree comonad c? on ?.

This is great, but it’s pretty undisciplined. Given an input 0 : �, the current state can go
to any new state. What if we want to be more disciplined and decompose our set (of states
into various bins, called modes. Then we could specify which outputs were possible in any
given mode, as well as specify the mode resulting from receiving any given input.

So let" be a set, elements of which we’ll call “modes”, and suppose we have a function
< : (→ ". As we saw in (3), this is the same thing as a comonad carried by a bicomodule

of the form "y

⊲ ⊳
(y(

"y. Then a Moore machine (y(→ ? can be upgraded to a mode
dependent one by realizing it as underlying a map of the form

"y "y

⊲ ⊳
(y(

⊲ ⊳
?

Suppose we have a bicomodule 3y ⊲ ⊳
?

3y:

?1 = y4
1y

3
2 + 17y1y

2y3 + 2y9
3

?2 = y7
2y

4
3 + 6

?3 = y4
3

The idea now is that each B : (is in some mode <(B) : " = {′1′, ′2′, ′3′}. It must be sent
by 1 to some position in ?<(B)(1). Then that position has some directions on each variable.
An input is given by picking one of those directions. Once we do, we’ll have in hand the
variable (and hence mode) that it was a direction on, and the map ♯

B will send it back to a
state B in that mode.

So for example, if we had a state B in mode <(B) = 2, it will be sent by 1 to one of the
7 positions in ?2. If it is sent to the position labeled y7

2y
3
3 , then an input is one of 11 things,

each of which will result in a state update. The new state will be in mode <(♯
B(3) = 2 if 3

is in the first seven directions, and will be in model 3 if 3 is in the second four directions.
In general, rather than thinking about (y(, one can think about any comonad 3 in its

place and studyingmaps of bicomodules 3→ ?. But doing so, one realizes thatwhat they’re
actually studying the cofree comonad c? on ?, but this time where the symbol c refers to the
comonad taken in the category of ("y, "y) bicomodules.

It would be interesting to think about wiring diagrams as in (4) in this setting.

3

Indexed types, context free grammars, and mutually recursive data
types

A context free grammar has some set (of symbols, and for each B : (, some set ?B of
production rules, each of which involving various symbols. This can all be encoded into a
multivariable polynomial of the form

(y

⊲ ⊳
?

(y.

Thanks to Reed and Harrison, I know that these are strongly related to indexed types and
GADTs (generalized algebraic datatypes). The idea is to form the free monad m? on this
data. For any set of literals ! : (→ Set for each symbol, one can take m?((), which in the
case of context free grammars will be the resulting language. The initial algebra on ? is
m?(0), which we can think of as a mutually recursive data type.

Other cofree comonads and free monads in bicomodules?

We also thought about bicomodules of the form c?1

⊲ ⊳ @c?2 . For example, when ?1 =

?2 = y, these are bicomodules of the form

yN

⊲ ⊳
@

yN

The positions of @ form a closed dynamical system, and for each & : @(1), the directions
@[&] also form a dynamical system. For any state and next state &1 ↦→ &2, there is a map
@[&1] ← @[&2], which we see pointing in the backwards direction. One can think of this as
a kind of refinement: every state in &1 is refined into several (or no) states in &2.

How should one think about—i.e. what are applications of—cofree comonads or free
monads for other bicomodules of the form 2

⊲ ⊳
?

2? You tell me!

4

