
Exploring Poly through Catlab’s Poly.jl
Lauresa Stilling

Working together with Thomas using CatLab’s Poly.jl codebase and GraphViz we
implemented a corolla esc representation of a FinPoly object. We explored how to
implement a mapping between p → q where p and q are two FinPoly objects. The
mapping requires a user to specify for each position of p a corresponding position in q
and for each direction in q based upon the position of p a mapping back to directions in
p. The ◁ tri operator (product composition) has been implemented between two FinPoly
objects.

Corolla esc representation of y3+ y2+ 1

Creating a Moore Machine based upon set States, a Polynomial and and a
Poly Map

Using the “Polynomial functors in Catlab” slideshow by Angeline Aguinaldo, ,
Kris Brown, and Marco Perin from ACT Conference 2021 I explored how to translate a
SyS —> p model to a Finite State Automata (FSA) representation of the system based
upon a set S number of states (n), and a mapping between states to a polynomial. By
setting S = n, and creating n nodes, where each node is named based upon the output
in p that it would be mapped to. For each state the transitions between the states are
based upon the directions of the polynomial back to the updated state it would map
back to. Either labeling the arrows by the original position and the updated position or
by context of the system described (example of the latter below). To identify the initial
state one can double circle it.

Example: “Happy Refrigerator"
Within the slide show example we have a refrigerator that based upon the

contents of the refrigerator will allow a user to do varying actions. Described below are
the “Modes” (positions) of the refrigerator; “Add”, “Take”, “Add or Take”, based on these
modes we have corresponding behaviours (directions) that will impact the state of our
refrigerator the behaviours are “Add drink” (+), “Don’t add drink” (0), “Take drink” (-),
“Don’t take drink” (0), “Add drink, don’t take” (+), “Don’t add, take drink” (-), “Add drink,
take drink” (swp), and “Do nothing” (0).

The polynomial is:🙂yAT +😭yA +🙂yT OR🙂y4 +😭y2 +🙂y2

In PolyDynam the presenters create an instance of the dynamical system having 5
states.
The describing the position mapping for each state as an array
𝜑1: Initial Position |--> Position in Polynomial

1 |--> 2, 2 |--> 1, 3 |--> 1, 4 |--> 1, 5 |--> 3
𝜑i

♯: Initial Position: Direction in p |--> New State in System
1: + |--> 2

0 |--> 1
2: + |--> 3

- |--> 1
swp |--> 2
0 |--> 2

3: + |--> 4
- |--> 2

swp |--> 3
0 |--> 3

4: + |--> 5
- |--> 3

swp |--> 4
0 |--> 4

5: - |-->4
0 |--> 5

The machine represents what the states will be based upon the chosen direction.

