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Two perspectives on information

Shannon “justifies” the entropy S1(p1, ...,ps) = −
∑s

i=1 pi lnpi in two different ways.

1 Algebraic: up to a factor, only continuous function that satisfies a certain
recursive property, the chain rule.

S1(p1,p2,p3) =

S1(p1 + p2,p3) + (p1 + p2)S1
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2 Probabilistically: if words are generated by an i.i.d. process of discrete
variables with law (p1, ...,ps), when n large there are roughly exp(nH) “typical”
words, all roughly equiprobable.



A new algebraic perspective

According to the information cohomology first introduced by Baudot and
Bennequin in 2015 [1], Shannon entropy represents a cohomology class: an
invariant associated with a category of discrete observables.

Information structure: pair (S, E) where

1 S conditional meet semilattice: poset + conditional existence of products
(when there’s a common lower bound). Objects represent observables.

2 E : S → Sets: functor of possible outcomes; E(X → Y ) surjection;
E(X ∧ Y ) ⊂ E(X )× E(Y ).

Π covariant functor of probabilities on E , such that Π(X → Y ) is marginalization.

Real-valued functions of probabilities define a contravariant one.



Information cohomology: Definition

For X ∈ ObS, SX := ({Y : X → Y },∧) monoid, multiplication (Y ,Z ) 7→ Y ∧ Z is
’joint variable’.

X 7→ SX presheaf, and also X 7→ AX := R[SX ].

Category Mod(A) of A-modules is abelian ⇒ Derived functors
D•HomA(R,−) =: Ext•(R,−).

Definition
The information cohomology with coefficients in an A-module M is

H•(S,M) := Ext•(R,M).

Bar resolution B• → R gives differential complex (Nat(B•,M), δ) whose
cohomology is H•(S,M).

1-cocycle condition: mZ [XY ] = X .mZ [Y ] + mZ [X ], an equation in M(Z ), for every
Z ∈ ObS and X ,Y ∈ SZ .
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Probabilistic functionals

(S, E) information structure. We assume that each E(X ) is finite.
S(X ) := ({Y : X → Y },∧).
Define F(X ) = Meas(Π(X ),R), a vector space. The monoid S(X ) acts on it: for
Y ∈ S(X ) and ϕ ∈ F(X ),

(Y .ϕ)(P) =
∑

y∈E(Y ),P(Y=y) ̸=0

P(Y = y)ϕ(PX |Y=y ). (1)

Proposition (Baudot-Bennequin, 2015, [1])
When S is connected and nondegenerate, every 1-cocycle is given by a multiple of
S1[X ] = −

∑
x∈E(X) P(x) logP(x).

In the nonconnected case H1(S,F) ∼= R|π0(S\{⊤})|.

By functoriality, for any 1-cochain, ϕZ [X ](P) = ϕX [X ](P). Above S1[X ] = (S1)X [X ].



Probabilistic functionals II

More general action: for Y ∈ S(X ) and ϕ ∈ F(X ),

(Y .ϕ)(P) =
∑

y∈E(Y ),P(Y=y )̸=0

P(Y = y)αϕ(PX |Y=y ). (2)

Proposition (V. 2017; cf. [5])
When S is connected and nondegenerate, every 1-cocycle is given by a multiple of
S1[X ] =

∑
x∈E(X) P(x)α − 1.

In the nonconnected case H1(S,F) ∼= R|π0(S\{⊤})|−1.

Under nondegeneracy assumption, the problem locally reduces to considering four
possible partitions of a three point set, and the 1-cocycle can be reduced to solving

f (x) + (1 − x)αf
(

y
1 − x

)
= f (y) + (1 − y)αf

(
x

1 − y

)
.



Combinatorial functionals

C : S → Sets given by C(X ) = { ν : E(X ) → N : ∥ν∥ :=
∑

x∈E(X) ν(x) > 0 }
(frequencies).
π∗ = C(X → Y ) marginalization: π∗ν(y) =

∑
x∈π−1(y) ν(x).

G(X ): multiplicative abelian group of measurable (0,∞)-valued functions on
C(X ). Induces contravariant functor G on S.

For each Y ∈ S(X ) and ϕ ∈ G(X ), define

(Y .ϕ)(ν) =
∏

y∈E(Y )
ν(Y=y )̸=0

ϕ(ν|Y=yi ). (3)

where ν|Y=yi is a restriction.



Computing H•(S,G)

Proposition (V. 2019; cf. [7])

1 H0(S,G) has dimension 1 and is generated by the exponential function.
2 The 1-cocycles are generalized (Fontené-Ward) multinomial coefficients:

ϕ[Y ](ν) =
[∥ν∥]D!∏

y∈E(Y )[ν(y)]D!

where [0]D! = 1 and [n]D! = DnDn−1 · · ·D1, for any sequence {Di}i≥1 such
that D1 = 1.

The 0-cocycle condition reads: φ(∥ν∥) = φ(ν1)φ(ν2) · · ·φ(νs).
The 1-cocycle confition reads: ϕ[XY ] = (X .ϕ[Y ])ϕ[X ] e.g.

( n
k1,k2,k3

)
=
( n

k1+k2,k3

)(k1+k2
k1,k2

)
Dn = n: usual multinomial coefficients; Dn = qn−1

q−1 : the q-multinomial coefficients.
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Coincidence?

Example:

• 0-cocycles: the exponential exp(k ∥ν∥) is a combinatorial 0-cocycle, the
constant k is a probabilistic 0-cocycle.

• 1-cocycles: (
n

p1n, ...,psn

)
= exp(nS1(p1, ...,ps) + o(n))

and (cf. V., IEEE ToIT, 2019)[
n

p1n, ...,psn

]
q
= exp(n2 lnq

2
S2(p1, ...,ps) + o(n2)).



Multiplicative relations imply additive relations

The combinatorial identity(
n

p1n,p2n,p3n

)
=

(
n

(p1 + p2)n,p3n

)(
(p1 + p2)n
p1n,p2n

)

becomes asymptotically

exp(nS1(p1,p2,p3) + o(n)) =

exp

(
n
{

S1(p1 + p2,p3) + (p1 + p2)S1

(
p1

p1 + p2
,

p2

p1 + p2

)}
+ o(n)

)
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Asymptotic relation

Proposition (V. 2019; cf. [7])
Let ϕ be a combinatorial 1-cocycle. Suppose that, for every variable X, there
exists a measurable function ψ[X ] : ∆(X ) → R with the following property: for
every sequence of counting functions {νn}n≥1 ⊂ C(X ) such that νn(x) ∼ P(x)n
the asymptotic formula

ϕ[X ](νn) = exp(nαψ[X ](P) + o(∥νn∥α))

holds. Then ψ is a 1-cocycle of type α, i.e. ψ ∈ Z 1(S,Fα).



Vector-valued observables

Let E be a f.d. euclidean space, and S a category of subspaces of E , with arrows
corresponding to inclusions.
Conditionally closed under intersections: if Z ,V ,W are objects of S such that
Z ⊂ V and Z ⊂ W , then V ∩ W ∈ ObS.

Let E be the functor V 7→ EV := V⊥ ∼= E/V , sending V ⊂ W to the canonical
projection πWV : EV → EW .

P(X ): gaussian probability laws on EX or some affine subspace of it (“supports”
N ). Defines covariant functor P.

F : presheaf of functionals of probability laws, with polynomial growth in the mean,
with Shannon’s action: for V ⊂ W , and φ ∈ FV ,

(W .φ)(ρ) :=

∫
πWV (A(ρ))

φ(ρ|XW=w )dπ
WV
∗ ρ(w), (4)





Dimension is a cocycle

If A is the support of ρ ∈ PV , then πWV (A) is the support of the marginal law
πWV
∗ ρ ∈ PW , and (πWV )−1(w) is the support of ρ|XW=w . One has the equality:

dim(A) = dim(πWV (A)) +
∫
πWV (A)

dim((πWV )−1(w))dπWV
∗ ρ(w)

= dim(imπWV |A) + dim(ker πWV |A).



Cohomology of gaussian laws

Differential entropy S(ρ) = −
∫

A(ρ)
dρ
dλ ln dρ

dλ dλ is not invariant under change of
Lebesgue measure (changes in the ambient Euclidean metric). One introduces a
extension X of F that takes this variations into account.

Theorem (V. 2019, [4])
Provided (S, E ,N ) is sufficiently rich (“enough supports”), for every 1-cocycle φ
with coefficients in X , there are real constants a and c such that, for every
X ∈ ObS and nondegenerate gaussian law ρ on EX ,

φX [X ](ρ, λ) = adetλ(Cov(ρ)) + c. dim(supp ρ). (5)

φ is completely determined by its behavior on nondegenerate laws.

For gaussian probabilities, the 1-cocycle condition for differential entropy is

Schur’s determinantal formula det

(
A B
C D

)
= det(A) det(D − BA−1C).



Cohomology of general laws

A similar result holds if we allow ourselves to mix discrete and continuous
variables: (Sd , Ed)× (Sc , Ec).

The key tool is the approximation of any density by a convex combination of
gaussian densities (cf. kernel estimates) in the L1-norm. Equivalently: of the
corresponding measures in the total variation norm.

Theorem (V. GSI 2021, [6])
Provided (Sc , Ec ,N ) is sufficiently rich, for every 1-cocycle φ with coefficients in
Xcontinuous, there are real constants a and c such that, for every X ∈ ObSc and
“good” law ρ on EX ,

φX [X ](ρ, λ) = aS1(ρ, λ) + c. dim(supp ρ). (6)
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Symmetry and entropy

The uniform distribution on a finite set E has maximum symmetry (under
permutations of E) and maximum entropy. But this correlation breaks under any
small perturbation.

We have to change perspective: thinks about long words with empirical law ρ. The
group Sn acts on En. If ρ ≈ ρ′, then the stabilizers of the corresponding words are
similar.(

n
p1n, ...,psn

)
= |Sn/(Sp1n × · · ·Sp1n)| = exp(nS1(p1, ...,ps) + o(n)).



New formulae

1 V., IEEE ToIT, 2019 [3]:[
n

p1n, ...,psn

]
q
= |GLn(Fq)/P| = exp(n2S2(p1, ...,ps) + o(n2)),

where P is a parabolic subgroup: it stabilizes a flag V1 ⊂ V2 ⊂ · · · ⊂ Vn = Fn
q

such that dimVi =
∑i

j=1 pin.
2 Leal and V., to appear: when n → ∞,

1
n
ln |W/P| ∼ H(p1, ...,ps)+(1−ps) ln2,

1
n2 logq |G/P| ∼ 1

2
H2(p1, ...,ps)+(1−p2

s),

where W is a reflection group of type B, C or D; G = Sp2n(Fq) (the On(Fq)
case is similar), and P stands for a suitable parabolic subgroup, stabilizer of a
flag of type (p1n, ...,psn).
Are these cocycles in information cohomology? For which module?



Dimension

Renyi’s information dimension generalizes the vector-space dimension discussed
above.

For a probability measure ρ on Rd , ρn is a discretization obtained by partitioning
Rd into cubes of size 1/n. If

S1(ρn) = D lnn + h + o(1),

D is called the information dimension of ρ.

Conjecture: It is also a 1-cocycle, but for more general laws (not necessarily vector
valued).

We have shown (IEEE ToIT, 2023, [8]) there is W (n) ⊂ (Rd)n such that
ρ⊗n(W (n)) ≥ 1 − ε and W (n) =

⋃
k∈[Dn−

√
n ln n,DN+

√
n ln n] Wk with Wk rectifiable of

Hausdorff dimension k .



Homogeneous spaces

S category of subgroups of a locally compact topological group G.

E(N) = G/N: associated outcome space.
N ⊂ N ′ implies G/N → G/N ′ surjection.

Introduce again the probabilistic functionals F . They form an A-module: the proof
in the Euclidean case only depends on Weil’s disintegration formula).

What are the cocycles in this case? They might capture more topological
invariants than just the dimension. E.g. for an orientable fibration

ln |χ(G)| = ln |χ(G/N)|+ ln |χ(N)|.



Entropy of categories

The magnitude is a categorical generalization cardinality. Entropy extends
cardinality probabilistically. What is categorical entropy?

Chen and V., GSI 2023 [2]: akin to log-diversity of metric spaces,

H(A,p, θ) = −
∑

a∈ObA

p(a) ln

( ∑
b∈ObA

θ(a,b)p(b)

)
.

Here A is a finite category, p a probability on ObA and θ(a,a′) a function of pairs
of objects that vanishes when Hom(a′,a) = ∅. Several good properties.

Algebraic characterization?
F ((A,p, θ) → (B,q, ϕ)) = H(A,p, θ)−H(B,q, ϕ) defines a convex and continuous
functor to the reals in the sense of Baez-Fritz-Leinster, but here this does not
suffice to characterize. Problem: whereas every finite probability space is a convex
combination of singletons, this does not hold for a categorical triple (A,p, θ).
How about an homological characterization?
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