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Abstract

Whitman's theory of free lattices can be extended to lattices
enriched over a quantale, to bicomplet categories, and also to

bicomplete oo-categories. It has applications to the semantic of
linear logic [HJ1][HJ2].

My goal here is to introduce a few basic ideas of the theory of free
bicomplete categories.



Apology

For 25 years, | have been promising to many people a draft of my
paper on free bicompletion of categories. | apologise for been so
late delivering. | am presently writing that draft, and | plan to
finish it this Spring.
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Whitman's theory of free lattices

A lattice is a poset L with binary infima (denoted x A y and binary
suprema (denoted x V y). The notion of lattice is algebraic.

A lattice L has two operations, A,V : L x L — L and the following
axioms hold:
P associativity:
xAN(yANz)=(xANy)Az, xV(yVz)=(xVy)Vz
> commutativity:
XNy =y AKX, xVy=yVx
> idempotence:
XAX =X, XVXx=x
» absorbtion:
XA (xVy)=x xV(xANy)=x



Whitman's theory of free lattices

Let us denote by Pos the category of posets and order preserving
maps, and by Lat the category of lattices. Then the forgetful
functor Lat — Pos has a left adjoint £ : Pos — Lat which takes a
poset P to the free lattice L(P) generated by P. Let i : P — L(P)
be the canonical order preserving map.

Theorem
(Whitman) For every u,v,x,y € L(P) and a,b € P,
> ifx ANy <uVv then
XAy <u o xNy<v o xZuVv or y<uVyv;
» ifi(a) <uVvtheni(a) <uori(a)<v;
> if x Ay < i(b) then x < i(b) ory < i(b);
» ifi(a) <i(b) then a < b.
Conversely, if L is a lattice and i : P — L is an order preserving

map satisfying the conditions above, and if L is generated by i(P),
then L = L(P).



a-complete lattices

Let a-be a regular cardinal.

Definition

We say that a lattice L is a-complete if every subset S C L of
cardinality < a has a supremum \/ S € L and an infimum A S € L.

Let us denote by “Lat the category of a-complete lattices. The
forgetful functor “*Cat — Pos has a left adjoint °L : Pos — “Lat
which takes a poset P to the a-complete lattice “L(P) freely
generated by P.



Indecomposable elements

Let E be an a-complete lattice.

Definition

An element a € E is said to be a-indecomposable if the following

conditions hold for every subset S C E of cardinality < a:
1.a<VS = a<x forsomex € S;

2. NS<a = x<aforsomexé€S.

Lemma
(Whitman) The map i : P — *L(P) induces an isomorphism
between P and the poset of a-indecomposable elements of “L(P).



Whitman's theory for a-complete lattices

Definition
We say that an a-complete lattice L is a-soft, if the following
implication holds

s<\/ T forsomeseS$S

AS<VT = {or (1)

AS<t forsomete T

for every pair of subsets S, T C L of cardinality < a.

Theorem
(Whitman) An a-complete lattice L is free if an only if it is a-soft
and generated by its a-indecomposable elements.



Complete, cocomplete and bicomplete categories

Recall that a (locally small) category C is said to be complete
(resp. cocomplete) if every diagram D : | — C has a limit

Iiﬁ D € C (resp. a colimit I|_>m D € C). We say that a category C is
bicomplete if it is complete and cocomplete

Recall that a functor between complete (resp. cocomplete)
categories F : C — D is said to be continuous (resp. cocontinuous)
if it preserves limits (resp. colimits). We say that a functor
between bicomplete categories is bicontinuous if it continuous and
cocontinuous.



Free completion, cocompletion and bicompletion

Every locally small category KU admits a locally small
» free cocompletion o : K — X(K)
» free completion 7 : K — I(K)
> free bicompletion A : I — A(K)

It is far from obvious that A(K) is locally small when K is locally
small.



The cocompletion X ()

The category ¥ (K) is cocomplete and the functor
o Fun““(¥X(K),&) — Fun(K,€)

is an equivalence of categories for any cocomplete category &£.

When K is small, £(K) is the presheaf category
Psh(KC) = Fun(K°P, Set)

When K is locally small, £(K) is the category of presentable
presheaves K°P — Set.

By definition, a presheaf F : K°P — Set is presentable if it it the
colimit

of a diagram of representables A: | — K.



o-atomic objects

We say that an object A in a cocomplete category C is o-atomic if
the functor
C(A,—):C — Set

is cocontinuous.
A retract of a o-atomic object is o-atomic.

If o: K — X(K), then an object A € X(K) is o-atomic if and only
if it is a retract of an object o(K) for some K € K.

Theorem
A cocomplete category C is free if and only it is generated (under
colimits) by o-atomic objects.



The free completion 7 : L — T(K)

The category MN(K) is complete and the functor
7 Fun (N(K), ) — Fun(K,E)

is an equivalence of categories for any complete category &.

The category N(K) is the opposite of the category ¥ (K°P), and
the functor 7 : I — T(K) is the opposite of the functor

o K — Y(K°P).

When K is small, M(K) = Fun(K, Set)°P and the functor 7 is the
opposite of the Yoneda functor y : K°P — Fun(IC, Set).



m-atomic objects

We say that an object A in a complete category C is m-atomic if
the functor
C(—,A):C% — Set

is cocontinuous.

An object A € C is w-atomic if and only if the opposite object
A°P € C° is g-atomic.
A retract of a m-atomic object is m-atomic.

If 7 : K — N(K), then object A € MK is m-atomic if and only if it
is a retract of an object 7(K) for some K € K.

Theorem
A complete category C is free if and only it is generated (under
limits) by m-atomic objects.



Side remarks on completely distributive categories

Completely distributive categories are bicomplete but not free (as
bicomplete categories).

Lemma
[Day-Lack| The category ¥C is complete if C is complete.
We say that a bicomplete category C is completely distributive if

the colimit functor “ﬂ : 2C — C is continuous.

Let o : K — ZT(K) be the composite

>(m)

K—7=%K—%3¥NK

Theorem
[Marmolejo, Rosebrugh, Wood| The functor p : KK — £I(K)
exhibits the completely distributive category freely generated by K.



The free bicompletion A : K — AK

The category A(K) is bicomplete and the functor
M2 FunP(AN(K), ) — Fun(K, &)

is an equivalence of categories for any bicomplete category €.

We say that an object in a bicomplete category C is atomic if it is
both o- and m-atomic.

If X: K — A(K), then an object A € A(K) is atomic if and only if
it is a retract of an object A\(K) for some K € K.

Theorem
A bicomplete category C is free if and only it is soft and generated
(under limits and colimits) by atomic objects.

We next define the notion of soft category.



Soft categories

Definition
If C, D and £ are cocomplete categories, we say that a functor of
two variables F : C x D — & is soft if the following square of

canonical maps

lim limy F(A, B) —— lim F(A, lim B) (2)

l |

lim F (lim A, B) — F(lim A, lim B).

is a pushout for every pair of diagrams A: /| —C and B: J— D.



Soft categories

Definition
We say that a bicomplete category C is soft if the functor

Hom : C°P x C — Set (3)

is soft.
By definition, C is soft if the following square of canonical maps

lim lim Hom(A, B)—>I|_m> Hom(A,Il_m>B) (4)

O |

lim Hom(Qm A B)—— Hom(Lin_1 A, lim B).

is a pushout for every pair of diagrams A:/ —C and B : J — C.



Exact natural transformations

Definition

If C and D are complete categories, we say that a natural
transformation u: F — G : C — D is exact if the following square
of canonical maps is a pullback,

<_
il'm uA

u(tjm A)
A) — limGA.

F(ljmA) — limFA
m —

G(I<|_
for any diagram A: | — C.

Remark: If T is the terminal functor C — D, then the natural
transformation F — T is exact iff the functor F is continuous.



Coexact natural transformations

Definition

If C and D are cocomplete categories, we say that a natural
transformation v : F — G : C — D is coexact if the following
square of canonical maps is a pushout

lim FA —— F(limA)

HEUA\L lu(lﬂ A)
limGA —— G(limA).

for any diagram A: | — C.

Remark: If L is the initial functor C — D, then the natural
transformation L. — G is coexact iff the functor G is cocontinuous.



Two factorisations

Let A : K — A(K) the free bicompletion of a category K.

If S is a category, we say that a natural transformation
f:F— G:NK)— Sisa A\equivalence if the natural
transformation A*(f) = foA: Fo X — G o \is invertible.

Lemma
If the category S is bicomplete, then every natural transformation
f:F— G:NK)— S admits a unique factorisation

Ff ¢

N A

E

with u : F — E a coexact A-equivalence and v : E — G an exact
transformation. There is a dual factorisation with u a coexact
transformation and v an exact A-equivalence.



Factorisation systems

Definition
A pair (A, B) of classes of maps in a category £ is called a
factorisation system if the following conditions hold:
» the classes A and B contain the isomorphisms and are closed
under composition;
» every map f : A — B admits a unique factorisation
f=vw:A— E— Bwith ue Aand v € B (the factorisation
is unique up to unique iso).

It follows from these conditions that if v € A and f € B, then
every commutative square

A

B

B

— X.

X
f
Y

_—
4
_—

has a unique diagonal filler



Rigid model structures

Definition

Let £ be a category with finite limits and finite colimits. A rigid
model structure on £ is a triple (C, W, F) of classes of maps in £
satisfying the following conditions:

1. the class W contains the isomorphisms and has the 3-for-2
property;

2. the pair (CNW, F) and the pair (C, W N F) are factorisation
systems.

A map in W is said to be a weak-equivalence.

A map in F is said to be a fibration. An object X € £ is said to be
fibrant if the map X — T is a fibration. A map in F N W is said
to be a trivial fibration.

A map in C is said to be a cofibration. An object X € & is said to
be cofibrant if the map L. — X is a cofibration. A mapinCNW is
said to be a trivial cofibration.



The homotopy category of a rigid model category

The subcategory & of fibrant objects (resp. & of cofibrant
objects) of a rigid model model category & is reflective (resp.
coreflective).

The intersection £ = £F N E. is coreflective in &f and reflective in
Eec.

Moreover, the following square commutes:

&

coreflecy \eﬂector

Ec Er

refleck\ /oreflector

& fc



A rigid model structures on Fun(A(K),S)

Let A : K — A(K) be the bicompletion of a category K.

Theorem

If S is a bicomplete category, then the category Fun(A(K),S)
admits a rigid model structure in which a weak equivalence is an
A-equivalence, a fibration is an exact natural transformation and a
cofibration is a coexact natural transformation.

A fibrant (resp. cofibrant) object is a continuous (resp.
cocontinuous) functor A(K) — S

A fibrant-cofibrant object is a bicontinuous functor A(K) — S

The category of bicontinuous functor A(K) — S is equivalent to
the category Fun(K,S)



Fibrant objects in a rigid model structure

Let £ be a category equipped with a rigid model structure
(C, W, F).

The fibrant replacement A — Ar of an object A € £ is obtained by
factoring the map A — T as a trivial cofibration A — A followed
by a fibration Ar — T.

A map r: A — B is reflecting the object A into & if and only if
the following two conditions hold:
1. B is fibrant

2. ris a trivial cofibration.



Best continuous approximation

Let A : £ — A(K) the bicompletion of a category K.

Corollary
The subcategory Fun®(A(K),S) of continuous functors N(K) — S
is reflective.

For every functor F : A(K) — S there exists a best approximation
r: F — F€ by a continuous functor F¢: A(K) — S.

Corollary
The natural transformation r : F — F€ is a coexact \-equivalence.



An example
For any diagram A: | — A(K), the map

Ii_m>Hom(A, X) — Hom(I'Ln A, X)

is a natural transformation r(X) : F(X) — Hom(L, X), where
F(X) = limHom(A, X) and L = imA.

Lemma

The natural transformation r : F — Hom(L, —) is coexact.

Proof.

It suffices to show that r : F — Hom(L, —) exhibits the best
approximation of F by a continuous functor. Let us show that the
map Nat(r, G) : Nat(Hom(L,—), G) — Nat(F, G) is invertible for
every continuous functor G : A(K) — Set. We have

Nat(F, G) = limNat(Hom(A, —), G) = limGA (5)

= G(limA) = G(L) = Nat(Hom(L,—),G)  (6)

since the functor G is continuous. ]



A(K) is soft

We saw that the natural transformation
Ii_m>Hom(A,X) — Hom(Ii(_m A, X)

is coexact for any diagram A : | — A(K). Hence the following
square is a pushout

3

lim lim HomAB)—>I| Hom(A, i

O |

lim Hom(;A B)*>Hom(ll A, lim B).

B) (7)

15

for every diagram B : J — A(K).



Conclusions

We saw that Whitman's theory of free lattices can be extended to
free bicomplete categories. It can also be extended to

> free bicomplete enriched categories,
» free bicomplete co-categories,
> free bicomplete enriched oo-categories.

and the proof are essentially the same. The theory can also be
extended to categories that are simultaneously closed under a class
« of limits and a class /3 of colimits
([AK][KP][ABLR][KS][LG][Rezk 1,2]). The («, [3)-bicompletion

A K — A@B)(K)

of a category K is («, 3)-soft.

The theory of bicompletion appears to be a fundamental aspect of
general category theory.



Applications to linear logic

Free bicomplete lattices have a game theoretic interpretation
related to Lorenzen's game theoretic interpretation of logic [Bla]
[J3]. The category of coherence spaces of Girard is pointed and
soft with respect to product and coproducts [HJ1] [HJ2]; it can be
used to construct free pointed category with products and
coproducts. The category A(1) is star-autonomous, but an explicit
combinatorial construction is still missing.
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Thank you for your attention!



