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1. Point-free topology

What? Subtle topos theory ...
How? ... but unobtrusively.
Why? Generalized spaces; bundles; fresh insights

2. Example: Fundamental Theorem of Calculus



Point-free topology: What?

Topology point-set

Space = set X of points + topology τ ⊆ PX (open subsets)

Topology point-free

Space = logical theory describing points
Point = model of theory

Theory = Signature

Set of propositional symbols
� generates formulae (using ∧,

∨
)

� they correspond to opens

+ axioms
formula ` formula
If left hand formula is true in a
model, then so is right hand.

Model �

I Assign truth value to each propositional symbol.

I Extends to all formulae.

I For each axiom φ ` ψ, if φ true then require ψ true.

2 / 28



Example: real line R
Signature

For each rational q ∈ Q: two propositional symbols [· < q] and
[q < ·].

Axioms � eg

[· < q] `
∨
q′<q

[· < q′]

[· < q] ∧ [q < ·] ` ⊥
> ` [q < ·] ∨ [· < r ] (if q < r)

Model:
Specify which rationals are bigger, which are smaller.

That's a real number described as a Dedekind cut.
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Point-free topology: How?

Think of maps f : R→ R in a style of programming languages.

Let x :R
:
:

f (x):R := · · ·
:

Declare formal parameter x .
Do some auxiliary calulations.
De�ne result f (x) as model:

I specify truth values [f (x) < q], [q < f (x)],

I prove that axioms hold.

eg absolute value | · | : R→ R

Let x :R

[|x | < q] := [x < q] ∧ [−q < x ]
[q < |x |] := [q < x ] ∨ [x < −q]
... and prove axioms
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Inside the box, in scope of x , is a di�erent mathematics!

1. Lots of non-standard truth values
[x < q], [q < x ] (for each rational q)

They don't express whether something is true, rather where (ie for
which models x) it is true.

2. Continuity = di�erent logic

Continuity: inverse image of open is open

f −1([x < q]) = [f (x) < q] is made from truth values of form
[x < r ] and [s < x ] using ∧ and

∨
.

Similarly for [q < f (x)].

We want continuity, therefore restrict mathematics inside box to
limit how we construct f (x).
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Geometric mathematics

Mathematics of sets highly restricted

I �nite limits

I colimits

I includes natural numbers N, Q, free algebras

Function spaces Y X , powersets PX , the real line R are not sets!

They must be dealt with as (point-free) spaces.

Corresponding logic:

∧,
∨
, =, ∃. Not ¬, →, ∀, except implicitly in logical axioms:

φ `q ψ meaning ∀q(φ(q)→ ψ(q)).

In�nite
∨

can often be avoided by using ∃ with an in�nite set. eg

[· < q] `q:Q (∃q′:Q)(q′ < q∧[· < q′]) instead of [· < q] `
∨
q′<q

[· < q′].
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Technicalities

I The �maths inside the box� is the geometric fragment of the
internal mathematics of the classifying topos S[X ].
�Map� = geometric morphism.

I �Classifying topos� is slippery constructively � depends on
choice of a base topos S. To avoid that dependency, work
without in�nite disjunctions. [Vic17]

[Vic99] shows the technique in action in domain theory.
[Vic07] explains how standard topos results arrive at this point of
view.
[Vic22] gives a more up-to-date discussion.
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Point-free topology: Why?

I: Generalized spaces

Can use �rst-order geometric theories to de�ne spaces more general
than those in point-set topology.

Then many proper classes can be expressed as point-free spaces: eg
space of sets, space of groups
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Point-free topology: Why?

II: Bundles as continuously indexed families of spaces

No natural way to do this point-set!

Using I: de�ne spaces of presentations of geometric theories
� eg space of sites.
Presentation itself de�nes a space.
Suppose you do de�nition in the box for x :X . Can see it two ways.

As bundle
Map from X to a �space
of spaces�.
Each x :X maps to the
�bre over x .

As forgetful map to X

Use presentation to extend theory of
X . Models are pairs (x , y) with x :X
and y in �bre.
Extended theory gives its own space,
with map to X that forgets y .

[SVW14] uses geometric techniques to study some bundles
appearing in quantum structure.
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Point-free real analysis

Typical techniques

I One-sided reals: half of a Dedekind section

I Hyperspaces: spaces of subspaces
Also, analogous spaces of measures.

Example: Fundamental Theorem of Calculus (FTC)

Need to deal with both �

I Integration: lower and upper integrals [Vic08]; see also[CS09].

I Di�erentiation: in a Carathéodory style, using existence of
continuous slope maps. [Vic09] proves Rolle's Theorem.

Real-valued maps (including work with Ming Ng)

I Exponentiation and logarithms [NV22].

I FTC, applied to calculus of exp and log [Vic23].
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One-sided reals

Topologies of semicontinuity ...

... separate out opens [q < ·] (lower semicontinuity) and [· < q]
(upper).

Write
−→
R and

←−
R for the spaces of lower and upper reals.

Note:
−→
R includes ∞,

←−
R includes −∞

Then a Dedekind real x is a pair (x , x):
−→
R ×

←−
R , satisfying axioms

[x < q] ∧ [q < x ] ` ⊥
> ` [q < x ] ∨ [x < r ] (if q < r)

x and x show how x is approximated by rationals from below and
from above.
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A useful strategy for real analysis

1. Deal separately with lower and upper parts � they are simpler
in geometric mathematics.

2. Show that they �t together by proving the two axioms.

Limitation: All maps
−→
R →

−→
R must be monotone

Simple consequence of continuity. Similarly for
←−
R .

Hence,

I No subtraction x − y � antitone in y .

I Can't multiply xy unless both non-negative.

Works �ne for exponentiation and logs [NV22]

More generally � often need to separate out signed parts by more
combinatorial means (example: integration).

12 / 28



Hyperspace:1 space of (some) subspaces of another space

eg Vietoris hyperspace VX , a space of certain compact subspaces
of X . Vietoris topology already known point-set.
Making this work point-free is not straightforward [Vic04], but once
in place it can be intuitive to use.

eg Heine-Borel Theorem

... expressed as map HBC (x , y):VR for reals x ≤ y [Vic09].
This shows that the closed interval [x , y ] (is compact and) depends
continuously on x and y .

Tautologous bundle

Each point of VX is a space, so get a bundle over VX .
Each point of the bundle space is a pair (K , x) where K is a
(certain kind of) compact subspace of X , and x is in K .

1Point-free hyperspaces have historically been called powerlocales
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Integration

Lower/upper integrals are approximated from below/above:
suggests using lower/upper reals �rst, then glue together.

Lower integrals
∫
X
fdµ

f , µ both valued as lower reals.
Multiplying: hence must both be non-negative.

f : X →
−−−→
[0,∞].

µ is a valuation on X � like a measure de�ned on opens

µU:
−−−→
[0,∞], µ(∅) = 0, µU + µV = µ(U ∧ V ) + µ(U ∨ V )

Continuous (preserves directed joins) �

µ(
∨
i∈I

Ui ) = sup
I0⊆�nI

µ(
∨
i∈I0

Ui )
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Integration � one-sided results from [Vic08]

Evaluating lower integral
∫

X
fdµ

Not completely obvious � more like Choquet integral than
Lebesgue.

Upper integrals
∫

X
fdν

f : X →
←−−−
[0,∞)

ν a covaluation � νU is measure of closed complement X − U.

Valuation space VX

= space of valuations on X
� analogous to Giry monad for measurable spaces.
Similarly CX for covaluations.
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Integration � 2-sided results from [Vic23]

∫
X
fdµ, with f : X → [0,∞)

µ still a valuation, but must be ��nite� � µX is Dedekind.
Then it has a complementary covaluation ¬µ, (¬µ)U = µX − µU.

Theorem � Hardest calculation in paper!

If X is compact, then
∫
X
fdµ and

∫
X fd(¬µ) together make a

Dedekind real.
Thus we have de�ned

∫
X fdµ:R.

Signed f : X → R
Split f as f+ − f−, where f+ = max(f , 0) etc., then de�ne∫

X
fdµ =

∫
X
f+dµ−

∫
X
f−dµ
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Riemann integrals
∫ y

x f (t)dt

1. De�ne Lebesgue valuation λ:VR.
Su�ces to de�ne λ(q, r) = r − q for rationals q < r , and
check some conditions.

2. If x ≤ y it induces λxy :V([x , y ]).
Can now de�ne

∫ y
x f (t)dt =

∫
[x ,y ] fdλxy .

3. For general x , y , de�ne
∫ y
x f (t)dt = ±

∫ max(x ,y)
min(x ,y) f (t)dt, where

± depends on order of x , y .
Care needed for this geometrically! Can't just do a classical
case split.

4. Prove ∫ z

x
f (t)dt =

∫ y

x
f (t)dt +

∫ z

y
f (t)dt.

That sets us up for integration in FTC.
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Di�erentiation à la Carathéodory

f : R→ R di�erentiable if �
� there is a (continuous) slope map f 〈1〉 : R2 → R satisfying

f (y)− f (x) = (y − x)f 〈1〉(x , y).

Then derivative f ′ de�ned by

f ′(x) = f 〈1〉(x , x).

Question geometrically: How do you de�ne slope maps?

FTC: integrals are really useful.
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FTC

Let f be de�ned on some real open interval by

f (x) =

∫ x

x0

g(t)dt.

Then f is di�erentiable, with derivative f ′ = g .

What is slope map?

If x < y (and y < x easily reduced to this), then

f 〈1〉(x , y) =

∫ y
x g(t)dt

y − x
=

∫
[x ,y ]

gd
λxy
y − x

=

∫
[x ,y ]

gdυxy ,

where υxy is the uniform probability valuation (total mass = 1) on
[x , y ].
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Uniform probability valuation υxy

... makes sense even when x = y , so [x , y ] ∼= 1.

Then
∫
[x ,x] gdυxx = g(x).

Geometrically �

I Can de�ne υxy in a way that covers all cases x ≤ y .

I Geometricity ensures that everything varies continuously with
x and y . That includes domain of integration [x , y ] and
valuation υxy .

I Hence f 〈1〉 varies continuusly with x , y even at x = y .

This completes the proof of FTC

Note how existence of integrals was used to give an explicit slope
map.
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Converse of FTC

If f is di�erentiable, then∫ y

x
f ′(t)dt = f (y)− f (x).

Proof (more or less standard)

1. Fixing x0, de�ne gx0(x) =
∫ x
x0
f ′(t)dt.

2. By FTC, g ′x0 = f ′, so (f − gx0)
′ = 0.

3. Using Rolle's Theorem [Vic09], f − gx0 is constant, f (x0).
QED
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Application: logγ is di�erentiable

Proof

1. De�ne

ln x =

∫ x

1

dt

t
.

2. ln is a homomorphism from ((0,∞), ·) to (R,+).

3. Lemma: if f is such a homomorphism then f (γy ) = yf (γ).
Use algebraic laws to show for y rational, then density of
rationals in reals.

4. Hence f (x) = (logγ x)f (γ).

5. For ln, get logγ x = (ln x)/(ln γ), an integral: now use FTC.

Corollary: Using chain rule, γy is di�erentiable in y .

Slope maps are de�ned using integrals! Don't have to �nd
independent de�nition of γy/y as map, continuous at 0.
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Point-free topology � Why? Fresh insights

Ming Ng [Ng22, NV] and number theory

He studied Ostrowski's Theorem: number-theoretic result
concerning absolute values on Q, maps Q→ R analogous to
ordinary | · |.
There's an extra family of p-adic absolute values, one for each
prime p.

Geometric reasoning invites us to consider using one-sided reals.

With upper reals, this automatically brings fresh insight by
including �multiplicative seminorms�, with unexpected connections
to the Berkovich spectrum.
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Point-free topology � Why? Fresh insights

Vickers: One-sided Minkowski space-time

Usual topology on space-time R4 can be split into two parts,
analogous to lower and upper for reals.

In each one, the specialization order of the topology matches the
causal order of physics (or its opposite).

You also �nd in�nite points arising, just as (eg) lower reals have to
include +∞. It turns out that they match the ideal points already
identi�ed by Geroch-Kronheimer-Penrose [GKP72].

I'm exploring these spaces to see how much else of their intrinsic
structure has physical signi�cance.
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