Some applications of polynomial functors

David I. Spivak

University of Pisa, Computer Science Department 2022 April 06

Outline

1 Introduction

- Why **Poly**?
- Today's talk

2 Functional programming

- **3** Dynamical systems
- 4 Databases

5 Conclusion

All roads lead to Rome; what did Rome have??

The Polynomial Functors workshops were a confluence of researchers.

- Marcelo Fiore, Steve Awodey, Thorsten Altenkirsch: type theory
- Fred Norvall, Exequiel Rivas, Paul Taylor: programming languages
- David Spivak: database theory and dynamical systems
- Eric Finster, PL Curien, Kristina Sojakova, David Gepner: ∞-caty's
- Todd Trimble, André Joyal, Tarmo Uustalu: new theory about Poly
- Helle Hvid Hansen, Sean Moss, Bart Jacobs: Logic
- Brandon Shapiro, Michael Batanin: polynomial monads for formal CT
- And many more... Ross Street, etc., etc.

What do these fields have in common?

- What are polynomial functors about?
- What makes polynomial functors a center for this kind of convergence?

Why Poly?

"Why" does Poly have such centrality within category theory?

- I don't know why it applies to so many things.
- But I do know that categorically, it is incredibly rich and well-behaved:
 - Coproducts and products that agree with usual polynomial arithmetic;
 - All limits and colimits;
 - At least three orthogonal factorization systems;
 - A symmetric monoidal structure ⊗ distributing over +;
 - A cartesian closure q^p and monoidal closure [p, q] for \otimes ;
 - Another nonsymmetric monoidal structure \triangleleft that's duoidal with \otimes ;
 - A left <-coclosure $\begin{bmatrix} -\\ \end{bmatrix}$, meaning $\operatorname{Poly}(p,q \triangleleft r) \cong \operatorname{Poly}(\begin{bmatrix} r\\ p \end{bmatrix},q)$;
 - An indexed right \triangleleft -coclosure (Myers?), i.e. $\operatorname{Poly}(p, q \triangleleft r) \cong \sum_{f: p(1) \rightarrow q(1)} \operatorname{Poly}(p \frown q, r);$
 - An indexed right \otimes -coclosure (Niu?), i.e. $\operatorname{Poly}(p, q \otimes r) \cong \sum_{f: p(1) \to q(1)} \operatorname{Poly}(p \nearrow q, r);$
 - At least eight monoidal structures in total;
 - ⊲-monoids generalize Σ-free operads;
 - \triangleleft -comonoids are exactly categories; bicomodules are data migrations. This is $\mathbb{C}at^{\sharp}$.

See "A reference for categ'ical structures on **Poly**", arXiv: 2202.00534

Getting to know Poly: the lens pattern

We'll begin with the subject of a lot of recent ACT attention: lenses.

Definition

There is a category Lens whose objects are pairs of sets

$$\operatorname{Ob}(\operatorname{\mathsf{Lens}})\coloneqq\operatorname{Ob}(\operatorname{\mathsf{Set}}\times\operatorname{\mathsf{Set}}),\quad\operatorname{denoted}\left[egin{array}{c} A'\ A\end{array}
ight]$$

and for which a morphism $\begin{bmatrix} A'\\ A \end{bmatrix} \rightarrow \begin{bmatrix} B'\\ B \end{bmatrix}$ consists of a pair (f, f') where

i.e. $f: A \rightarrow B$ and $f': A \times B' \rightarrow A'$. Composition is:

3/20

Understanding the lens pattern

There are many examples of the lens pattern: namely in

- functional programming, \checkmark
- open dynamical systems,
- wiring diagrams,
- deep learning, no time today
- open games, no time today and
- 🗖 databases. 🗸

We can understand Lens $\left(\begin{bmatrix} A' \\ A \end{bmatrix}, \begin{bmatrix} B' \\ B \end{bmatrix} \right)$ in terms of *polynomial functors*.

Polynomial functors

A functor $p: \mathbf{Set} \to \mathbf{Set}$ is *polynomial* if it is a coproduct of representables.

- Taking all natural transformations as maps, we get a category **Poly**.
- I denote objects in it like this: $p := y^5 + 3y^2 + 7$.
- For example, $p(0) \cong 7$, $p(1) \cong 11$, and $p(2) \cong 51$.
- Let's call p a monomial if it is of the form $p \cong Ay^{A'}$, e.g. $5y^{73}$.

Theorem

There is an isomorphism of categories

 $\mathbf{Lens}\cong\mathbf{Poly}_{\mathit{Monomial}}$

where **Poly**_{Monomial} is the full subcategory spanned by the monomials.

In other words, a **Poly** map $Ay^{A'} \to By^{B'}$ is a **Lens** map $\begin{bmatrix} A'\\ A \end{bmatrix} \to \begin{bmatrix} B'\\ B \end{bmatrix}$.

Today: introduce Poly in terms of its applications

Davide asked me to speak mainly about the applications of **Poly**.

- There are many, including to pure math.
- I'll focus on a few: programming, dynamical systems, databases.
- I'll introduce structures of **Poly** as we go.

Outline

1 Introduction

2 Functional programming

- Polymorphic data types
- Deeper look at Poly
- Algebraic datatypes

3 Dynamical systems

4 Databases

5 Conclusion

Polymorphic data types and maps

In functional languages such as Haskell, you often see things like this:

data Foo y = Bar y y y | Baz y y | Qux | Quux data Maybe y = Just y | Nothing

• These are polynomials: $y^3 + y^2 + 2$ and y + 1 respectively.

- They're "polymorphic" in that
 - they act on any Haskell type Y in place of the variable y, and
 - for any map f : Y1 -> Y2 there's a map Foo Y1 -> Foo Y2

What is a natural transformation Corge: Foo \rightsquigarrow Maybe?

- To each type constructor (Bar, Baz, Qux, Quux) in Foo ...
- ... it assigns a type constructor (Just or Nothing) in Maybe,...

• ... and a way to grab as many y's as Maybe needs from Foo's term. There are 12=6+3+2+1 ways to do it. Three examples:

Corge (Bar a b c)=Just a; Corge (Baz a b)=Just a; Corge Qux=Nothing; Corge Quux=Nothing Corge (Bar a b c)=Just b; Corge (Baz a b)=Just a; Corge Qux=Nothing; Corge Quux=Nothing Corge (Bar a b c)=Nothing; Corge (Baz a b)=Just b; Corge Qux=Nothing; Corge Quux=Nothing

Deeper look at objects and morphisms in Poly

Let's slow down and understand **Poly** a little better.

 \blacksquare A representable functor $\textbf{Set} \rightarrow \textbf{Set}$ is one of the form

$$y^{\mathcal{A}} \coloneqq \mathsf{Set}(\mathcal{A}, -)$$

for example y^2 takes any set Y to $Y \times Y$.

- y^1 is isomorphic to the identity, and y^0 is constant 1.
- A polynomial functor is a coproduct of representables

$$p := \sum_{i \in I} y^{p[i]}$$

Note that $I \cong p(1)$, so we write $p \coloneqq \sum_{i \in p(1)} y^{p[i]}$.

Maps $p \rightarrow q$ are computed using Yoneda and univ. property of coproducts.

$$\begin{aligned} \mathsf{Poly}(p,q) &= \mathsf{Poly}\Big(\sum_{i \in p(1)} y^{p[i]}, \sum_{j \in q(1)} y^{q[j]}\Big) \\ &\cong \prod_{i \in p(1)} \sum_{j \in q(1)} \mathsf{Set}(q[j], p[i]) \end{aligned}$$

8 / 20

Unpacking in the Haskell case

That might be daunting, but it's pretty easy when you get used to it.

- Let's see another example of a natural transformation.
- Here are two polynomial datatypes, $p := y^3 + y$ and $q := 2y^2 + 1$.

data p y = pFoo y y y | pBar y data q y = qFoo y y | qBar y y | qBaz

• What's a natural transformation Corge: $p \rightsquigarrow q$? This crazy formula $Poly(p,q) = \prod_{i \in p(1)} \sum_{j \in q(1)} Set(q[j], p[i])$ says:

- For each $i \in p(1)$, namely pFoo and pBar, we need to ...
- $lacksymbol{ extbf{ e$
- ... for each variable there in q, choose one of the variables in p.
 Corge : forall y. p y -> q y
 Corge pFoo (a b c) = qBar (b a) -- Corge is one of
 Corge pBar (a) = qFoo (a a), -- 57 possible maps.

Algebraic datatypes

Another thing you see in Haskell is something like this:

List a = Nil | Cons a (List a)

For some type a, e.g. a = Int. What is going on here?

- This is called an *algebraic data type*.
- It looks like List a is being defined recursively, in terms of itself.
- But we can break it into two pieces: a functor and its fixed points. ListF a y = Nil | Cons a y

This is the polynomial $p_A \coloneqq 1 + Ay$ for some set $A \in$ **Set**. (1 like my sets capitalized.)

- Polynomial functors have initial algebras and final coalgebras.
 - That is, there is an initial $S \in \mathbf{Set}$ equipped with $p(S) \to S$.
 - And there is a final $T \in \mathbf{Set}$ equipped with $T \to p(T)$.
- The initial algebra of p_A is carried by $\sum_{n \in \mathbb{N}} A^n$, classic lists.
- The terminal coalgebra of p_A is carried by $A^{\mathbb{N}} + \sum_{n \in \mathbb{N}} A^n$, streams.

Outline

1 Introduction

2 Functional programming

3 Dynamical systems

Wiring diagrams and interaction patterns

4 Databases

5 Conclusion

Various notions of dynamical system

Moving on, there are many reasonable definitions of dynamical system.

- Fix a monoid (T, 0, +). Then a *T*-Dyn. Sys. is a *T*-action on $S \in$ **Set**.
- For example, an action $\mathbb{R} \times S \to S$ let's you evolve s by any $t \in \mathbb{R}$.
- We'll briefly return to this sort later, but it's not quite satisfactory.
- I want open dynamical systems, ones that can interact with others.

Let A, B be sets or spaces. Notions of (A, B)-dynamical systems include:

- System of ODEs, parameterized by A and reading out B's.
- Moore machine: a set S and functions $r: S \to B$ and $u: A \times S \to S$.
- Mealy machine: a set S and a function $f: A \times S \rightarrow S \times B$.

Dynamical systems in terms of Poly

Let's discuss each of these (saving the monoid action for later).

- For any manifold *M*, let *TM* be its tangent bundle.
 - At every point $m \in M$, we have a tangent space $T_m M$.
 - For example, if $M = \mathbb{R}^n$ then $TM \cong \mathbb{R}^n \times \mathbb{R}^n$ and $T_m M \cong \mathbb{R}^n$.
- Then an *A*-parameterized system of ODEs reading out *B*'s is a map:

$$\varphi\colon \sum_{m\in M} y^{T_mM} \to By^A$$

Let's think of M as the state space. Then

• for each $m \in M$, we get a readout $\varphi_1(m)$ and ...

for each $a \in A$, we get a tangent vector $\varphi^{\sharp}(m, a) \in T_m M$. (A, B)-Moore machines are easier.

• A set S and functions $r: S \to B$ and $u: S \times A \to S$?

- That's the same data a map of polynomials $Sy^S \rightarrow By^A$.
- It's also the same as a By^A coalgebra: $S \to BS^A$.

Mealy machines

The difference between Moore and Mealy machines involves instantaneity.

- An (A, B)-Moore machine is $S \rightarrow B$ and $A \times S \rightarrow S$.
- An (A, B)-Mealy machine is $A \times S \rightarrow B$ and $A \times S \rightarrow S$.
 - In Mealy, the input A can immediately affect the output B.
 - A Moore machine can be regarded as a Mealy machine (drop A).

It took me a long time to realize that the converse is also true.

- An (A, B)-Mealy machine is an (A, B^A) -Moore machine.
- Indeed, that's $S \to B^A$ and $A \times S \to S$.
- A Mealy machine is a Moore machine that outputs functions.

The transformation isn't out of the blue: it comes from monoidal closure.

Monoidal closure of Poly

Poly has a monoidal closed structure $(y, \otimes, [-, -])$.

- Let $p := \sum_{i \in p(1)} y^{p[i]}$ and $q := \sum_{j \in q(1)} y^{q[j]}$
- The Dirichlet product $p \otimes q$ has monoidal unit y and is given by:

$$p \otimes q \coloneqq \sum_{(i,j) \in p(1) \times q(1)} y^{p[i] \times q[j]}$$

We'll use that on the next slide.

It has an internal hom [p, q], given by

$$[\mathbf{p}, \mathbf{q}] \coloneqq \sum_{\varphi: \mathbf{p} \to \mathbf{q}} y^{\sum_{i \in \mathbf{p}(1)} \mathbf{q}[\varphi_1 i]}$$

That's a lot to take in, so let's try it for $p := Ay^B$ and q := y. First, a map $\varphi : Ay^B \to y$ is just a function $A \to B$. Since p(1) = A and q[!] = 1, we have $[Ay^B, y] = B^A y^A \cong (By)^A$. So an $[Ay^B, y]$ -coalgebra $S \to (BS)^A$ is an (A, B)-Mealy machine.

Wiring diagrams

Let's depict monomials By^A as boxes with A-inputs and B-outputs:

 By^A is depicted $A - \square - B$

Here's a picture of a kind of *interaction pattern* called a wiring diagram:

It has two inner boxes and one outer box, and represents a map

$$\varphi \colon Cy^{AD} \otimes DEFy^{BC} \to Ey^{AB}$$

In other words the picture tells us about two functions:

$$C(DEF) \rightarrow E$$
 and $C(DEF)(AB) \rightarrow (AD)(BC)$

Wiring diagrams allow projection, splitting, and permuting variables.

More general interfaces

A polynomial $p = \sum_{i \in p(1)} y^{p[i]}$ can be understood as an interface that

- outputs "positions" $i \in p(1)$ and
- inputs "directions" $d \in p[i]$ that can depend on its position.
- So By^A can output elements of B and input elements of A.
- But $y^2 + y$ is like an eyeball: its positions are open and closed and...
- ... when it's open it receives a bit; when it's closed it receives no bits.

An clocked interaction pattern of interfaces p_1, \ldots, p_k inside p' is a map

$$\varphi\colon p_1\otimes\cdots\otimes p_k\to p'$$

A wiring diagram is a very special case. For example, there is only one WD

$$2y^3 \otimes 3y^5 \rightarrow 2y^5$$

but there are $2^6 * 15^{30} \approx 10^{37}$ clocked interaction patterns.

Composition in Poly: removing the clock

Composing polynomials is a monoidal operation \triangleleft : **Poly** \times **Poly** \rightarrow **Poly**.

- I denote this functor by \triangleleft , leaving \circ for composition of morphisms.
- It is straightforward, e.g. $y^2 \triangleleft (y+1) \cong y^2 + 2y + 1$. The unit is y.

You can use this to make dynamical systems run faster.

- Any map $Sy^S \to p$ induces $Sy^S \to p^{\triangleleft n}$ for any n.
- Because there's a certain semi-monad structure on Ay^B, ...
- ...we can run interior boxes at *n*-times speed for any $n \ge 1$.

Outline

- **1** Introduction
- **2** Functional programming
- **3** Dynamical systems
- 4 Databases
- **5** Conclusion

Categorical databases

A database is a collection of tables whose columns can refer to other tables.

- One way to conceptualize this is as a category *C*, "the schema"...
- ... together with a functor (copresheaf) $D: C \rightarrow \mathbf{Set}$, "the keys"...
- and one of many possible ways to categorically handle "attributes".
- This approach to databases has been implemented several times.

The two things one does with databases are: migrate and aggregate.

- Data migration means moving data from one schema to another.
- It includes querying: asking for all matches for a certain pattern.
- Aggregation means accumulating attribute values over a column...
- ... where we assume that the attribute has a comm. monoid structure.

All of this fits nicely into the **Poly** ecosystem.

Comonoids and bicomodules in Poly

By a theorem of Shulman, comonoids in $(\mathbf{Poly}, y, \triangleleft)$ form an equipment.

- By theorems of Ahman-Uustalu and Garner, it has relevant semantics.
- Its objects are exactly categories, so I call it Cat[♯].
- Its horizontal maps generalize both copresheaves and data migration.
- The subcategory carried by linear polynomials is exactly Span.
- It contains Gambino-Kock's **PolyFun_{Set}** as a full sub equipment.
- It's got local monoidal closed structures, and tons of other structure.

You can define not only data migration but also aggregation in this setting.

- To do so requires all the structures we've discussed so far.
- For example, it turns out that the operation of transposing a span...
- ... can be split up into two more primitive universal operations.

Finally, keeping an old promise...

- The vertical maps are in $\mathbb{C}\mathbf{at}^{\sharp}$ are called cofunctors.
- If y^T is a monoid, then a cofunctor $Sy^S \to y^T$ is a *T*-action on *S*.
- Using cofree comonoids, dyn. systems are subsumed as "databases"

Outline

- **1** Introduction
- **2** Functional programming
- **3** Dynamical systems
- 4 Databases

5 Conclusion Summary

Summary

The polynomial ecosystem is very rich.

- It's got an abundance of structure; that's difficult to over-state.
 - I now know of eight different monoidal structures on **Poly**.
 - How many structures are we still missing?

Poly offers a single setting in which lots of ACT subjects live.

- Programming, dynam'l systems, databases, deep learning, games.
- But how do they come together? How should they interact?

There's ton's to do; please join in the fun!

Thanks! Comments and questions welcome...

Adaptive interaction patterns

We want to remove the fixed nature of interaction patterns.

That is, we want wiring pattern itself to change through time.

• We might call this "adapting"; we'll briefly consider "goals" on p. 22. Given interfaces p_1, \ldots, p_k and p', we want a changing interaction pattern.

• Let $p := p_1 \otimes \cdots \otimes p_k$ and recall the internal hom

$$[p,p'] \cong \sum_{\varphi: p \to p'} y^{\sum_{i \in p(1)} p'[\varphi_1 i]}.$$

- Its positions are interaction patterns $\varphi \colon p_1 \otimes \cdots \otimes p_k \to p'!$
- And a direction at φ is "the data flowing on all the wires".
- For example if $p_i = B_i y^{A_i}$ then direction set is always $B_1 \cdots B_k A'$.
- So a [p, p']-coalgebra is a Moore machine:
 - it outputs interaction patterns and updates based on what's flowing.
 - Define a category-enriched operad \mathbb{O} **rg** with objects Ob(**Poly**) and...

• ... hom-caty's $[p_1 \otimes \cdots \otimes p_k, p']$ -Coalg, or $[\mathfrak{c}_{p_1} \otimes \cdots \otimes \mathfrak{c}_{p_k}, p']$ -Coalg.

This is the subject of a paper called Learners' languages.

Deep learning

Deep learning falls out

Artificial neural networks are adaptive organizations in the above sense.

- Let t := ∑_{x∈ℝ} y^{T_xℝ} be the tangent bundle; note t^{⊗n} ≃ ∑_{x∈ℝⁿ} y^{T_xℝⁿ}.
 A [t^{⊗n}, t]-coalgebra is just a Moore machine with a fancy interface.
 - Let $P \coloneqq \mathbb{R}^{n+1}$; think of $(b, w_1, \dots, w_n) \in P$ as bias & weights.
 - Then an artificial neuron is a coalgebra $P \rightarrow [t^{\otimes n}, t] \triangleleft P$.
 - \blacksquare For every parameter, we get both a map $\mathbb{R}^n \to \mathbb{R}$ and ...
 - \blacksquare ... a way to convert any tangent vector on $\mathbb R$ (loss)...
 - ... to a tangent vector on \mathbb{R}^n (back propagation) ...
 - ... as well as a new parameter (by gradient descent).
- The composite of coalgebras in \mathbb{O} *rg* runs the DNN as usual.
- Weight tying (as in convolution, recurrent, etc.) is as in Backprop AF.