Some applications of polynomial functors

David I. Spivak

TOPOS
 I NSTITUTE

University of Pisa, Computer Science Department 2022 April 06

Outline

1 Introduction
■ Why Poly?
■ Today's talk

2 Functional programming

3 Dynamical systems

4 Databases

5 Conclusion

All roads lead to Rome; what did Rome have??

The Polynomial Functors workshops were a confluence of researchers.
■ Marcelo Fiore, Steve Awodey, Thorsten Altenkirsch: type theory
■ Fred Norvall, Exequiel Rivas, Paul Taylor: programming languages
■ David Spivak: database theory and dynamical systems
■ Eric Finster, PL Curien, Kristina Sojakova, David Gepner: ∞-caty's
■ Todd Trimble, André Joyal, Tarmo Uustalu: new theory about Poly
■ Helle Hvid Hansen, Sean Moss, Bart Jacobs: Logic
■ Brandon Shapiro, Michael Batanin: polynomial monads for formal CT
■ And many more... Ross Street, etc., etc.
What do these fields have in common?
■ What are polynomial functors about?
■ What makes polynomial functors a center for this kind of convergence?

Why Poly?

"Why" does Poly have such centrality within category theory?
■ I don't know why it applies to so many things.

- But I do know that categorically, it is incredibly rich and well-behaved:
- Coproducts and products that agree with usual polynomial arithmetic;
- All limits and colimits;
- At least three orthogonal factorization systems;
- A symmetric monoidal structure \otimes distributing over + ;
- A cartesian closure q^{p} and monoidal closure $[p, q]$ for \otimes;
- Another nonsymmetric monoidal structure \triangleleft that's duoidal with \otimes;
- A left \triangleleft-coclosure $\left[\begin{array}{c}- \\ -\end{array}\right]$, meaning $\operatorname{Poly}(p, q \triangleleft r) \cong \operatorname{Poly}\left(\left[\begin{array}{l}r \\ p\end{array}\right], q\right)$;
- An indexed right \triangleleft-coclosure (Myers?), i.e. $\operatorname{Poly}(p, q \triangleleft r) \cong \sum_{f: p(1) \rightarrow q(1)} \operatorname{Poly}(p \stackrel{f}{\neg} q, r)$;
- An indexed right \otimes-coclosure (Niu?), i.e. $\operatorname{Poly}(p, q \otimes r) \cong \sum_{f: p(1) \rightarrow q(1)} \operatorname{Poly}\left(p^{f} \not \subset q, r\right)$;
- At least eight monoidal structures in total;
- \triangleleft-monoids generalize Σ-free operads;
- \triangleleft-comonoids are exactly categories; bicomodules are data migrations. This is Cat ${ }^{\sharp}$.

■ See "A reference for categ'ical structures on Poly", arXiv: 2202.00534

Getting to know Poly: the lens pattern

We'll begin with the subject of a lot of recent ACT attention: lenses.

Definition

There is a category Lens whose objects are pairs of sets

$$
\mathrm{Ob}(\text { Lens }):=\mathrm{Ob}(\text { Set } \times \text { Set }), \quad \text { denoted }\left[\begin{array}{c}
A^{\prime} \\
A
\end{array}\right]
$$

and for which a morphism $\left[\begin{array}{c}A^{\prime} \\ A\end{array}\right] \rightarrow\left[\begin{array}{c}B^{\prime} \\ B\end{array}\right]$ consists of a pair $\left(f, f^{\prime}\right)$ where

i.e. $f: A \rightarrow B$ and $f^{\prime}: A \times B^{\prime} \rightarrow A^{\prime}$. Composition is:

Understanding the lens pattern

There are many examples of the lens pattern: namely in
■ functional programming, \checkmark
■ open dynamical systems, \checkmark
■ wiring diagrams, \checkmark

- deep learning, no time today
- open games, no time today and

■ databases. \checkmark
We can understand $\operatorname{Lens}\left(\left[\begin{array}{c}A^{\prime} \\ A\end{array}\right],\left[\begin{array}{c}B^{\prime} \\ B\end{array}\right]\right)$ in terms of polynomial functors.

Polynomial functors

A functor p : Set \rightarrow Set is polynomial if it is a coproduct of representables.
■ Taking all natural transformations as maps, we get a category Poly.
■ I denote objects in it like this: $p:=y^{5}+3 y^{2}+7$.
■ For example, $p(0) \cong 7, p(1) \cong 11$, and $p(2) \cong 51$.
■ Let's call p a monomial if it is of the form $p \cong A y^{A^{\prime}}$, e.g. $5 y^{73}$.

Theorem

There is an isomorphism of categories

$$
\text { Lens } \cong \text { Poly }_{\text {Monomial }}
$$

where Poly Monomial is the full subcategory spanned by the monomials.
In other words, a Poly map $A y^{A^{\prime}} \rightarrow B y^{B^{\prime}}$ is a Lens map $\left[\begin{array}{c}A^{\prime} \\ A\end{array}\right] \rightarrow\left[\begin{array}{c}B^{\prime} \\ B\end{array}\right]$.

Today: introduce Poly in terms of its applications

Davide asked me to speak mainly about the applications of Poly.

- There are many, including to pure math.

■ I'll focus on a few: programming, dynamical systems, databases.
■ I'll introduce structures of Poly as we go.

Outline

1 Introduction

2 Functional programming

- Polymorphic data types

■ Deeper look at Poly

- Algebraic datatypes

3 Dynamical systems

4 Databases

5 Conclusion

Polymorphic data types and maps

In functional languages such as Haskell, you often see things like this:
data Foo y = Bar y y y | Baz y y | Qux | Quux data Maybe y = Just y | Nothing

■ These are polynomials: $\mathrm{y}^{3}+\mathrm{y}^{2}+2$ and $\mathrm{y}+1$ respectively.
■ They're "polymorphic" in that

- they act on any Haskell type Y in place of the variable y , and

■ for any map f : Y1 -> Y2 there's a map Foo Y1 -> Foo Y2
What is a natural transformation Corge: Foo \rightsquigarrow Maybe?
■ To each type constructor (Bar, Baz, Qux, Quux) in Foo ...
■ ... it assigns a type constructor (Just or Nothing) in Maybe,...
■ ... and a way to grab as many y's as Maybe needs from Foo's term.
There are $12=6+3+2+1$ ways to do it. Three examples:

```
Corge (Bar a b c)=Just a; Corge (Baz a b)=Just a; Corge Qux=Nothing; Corge Quux=Nothing
Corge (Bar a b c)=Just b; Corge (Baz a b)=Just a; Corge Qux=Nothing; Corge Quux=Nothing
Corge (Bar a b c)=Nothing; Corge (Baz a b)=Just b; Corge Qux=Nothing; Corge Quux=Nothing
```


Deeper look at objects and morphisms in Poly

Let's slow down and understand Poly a little better.

- A representable functor Set \rightarrow Set is one of the form

$$
y^{A}:=\operatorname{Set}(A,-)
$$

for example y^{2} takes any set Y to $Y \times Y$.

- y^{1} is isomorphic to the identity, and y^{0} is constant 1 .
- A polynomial functor is a coproduct of representables

$$
p:=\sum_{i \in I} y^{p[i]}
$$

Note that $I \cong p(1)$, so we write $p:=\sum_{i \in p(1)} y^{p[i]}$.
Maps $p \rightarrow q$ are computed using Yoneda and univ. property of coproducts.

$$
\begin{aligned}
\operatorname{Poly}(p, q) & =\operatorname{Poly}\left(\sum_{i \in p(1)} y^{p[i]}, \sum_{j \in q(1)} y^{q[j]}\right) \\
& \cong \prod_{i \in p(1)} \sum_{j \in q(1)} \operatorname{Set}(q[j], p[i])
\end{aligned}
$$

Unpacking in the Haskell case

That might be daunting, but it's pretty easy when you get used to it.
■ Let's see another example of a natural transformation.
■ Here are two polynomial datatypes, $p:=y^{3}+y$ and $q:=2 y^{2}+1$.

$$
\begin{aligned}
& \text { data } \mathrm{p} y=\mathrm{pFoo} y \mathrm{y} \text { y | pBar y } \\
& \text { data } q \text { y }=q \text { Foo y y | qBar y y | qBaz }
\end{aligned}
$$

■ What's a natural transformation Corge: $p \rightsquigarrow q$?
This crazy formula $\operatorname{Poly}(p, q)=\prod_{i \in p(1)} \sum_{j \in q(1)} \operatorname{Set}(q[j], p[i])$ says:
■ For each $i \in p(1)$, namely pFoo and pBar , we need to ...
■ ... choose $j \in q(1)$, namely either qFoo, qBar, or qBaz and then ...
■ ... for each variable there in q, choose one of the variables in p.
Corge : forall y. p y \rightarrow q y
Corge pFoo (a b c) = qBar (b a) -- Corge is one of
Corge pBar (a) \quad qFoo (a a), --57 possible maps.

Algebraic datatypes

Another thing you see in Haskell is something like this:
List a = Nil | Cons a (List a)

For some type a, e.g. a = Int. What is going on here?

- This is called an algebraic data type.

■ It looks like List a is being defined recursively, in terms of itself.

- But we can break it into two pieces: a functor and its fixed points.
ListF a y = Nil | Cons a y

This is the polynomial $p_{A}:=1+A y$ for some set $A \in$ Set. (Ilike my sets capitalized.)
■ Polynomial functors have initial algebras and final coalgebras.
■ That is, there is an initial $S \in$ Set equipped with $p(S) \rightarrow S$.
■ And there is a final $T \in$ Set equipped with $T \rightarrow p(T)$.

- The initial algebra of p_{A} is carried by $\sum_{n \in \mathbb{N}} A^{n}$, classic lists.
- The terminal coalgebra of p_{A} is carried by $A^{\mathbb{N}}+\sum_{n \in \mathbb{N}} A^{n}$, streams.

Outline

1 Introduction

2 Functional programming

3 Dynamical systems

- Wiring diagrams and interaction patterns

4 Databases

5 Conclusion

Various notions of dynamical system

Moving on, there are many reasonable definitions of dynamical system.
$■$ Fix a monoid $(T, 0,+)$. Then a T-Dyn. Sys. is a T-action on $S \in$ Set.
■ For example, an action $\mathbb{R} \times S \rightarrow S$ let's you evolve s by any $t \in \mathbb{R}$.
■ We'll briefly return to this sort later, but it's not quite satisfactory.
■ I want open dynamical systems, ones that can interact with others.

$$
A=B
$$

Let A, B be sets or spaces. Notions of (A, B)-dynamical systems include:
■ System of ODEs, parameterized by A and reading out B 's.

- Moore machine: a set S and functions $r: S \rightarrow B$ and $u: A \times S \rightarrow S$.
- Mealy machine: a set S and a function $f: A \times S \rightarrow S \times B$.

Dynamical systems in terms of Poly

Let's discuss each of these (saving the monoid action for later).
■ For any manifold M, let $T M$ be its tangent bundle.
■ At every point $m \in M$, we have a tangent space $T_{m} M$.
■ For example, if $M=\mathbb{R}^{n}$ then $T M \cong \mathbb{R}^{n} \times \mathbb{R}^{n}$ and $T_{m} M \cong \mathbb{R}^{n}$.
■ Then an A-parameterized system of ODEs reading out B^{\prime} s is a map:

$$
\varphi: \sum_{m \in M} y^{T_{m} M} \rightarrow B y^{A}
$$

Let's think of M as the state space. Then
■ for each $m \in M$, we get a readout $\varphi_{1}(m)$ and \ldots
$■$ for each $a \in A$, we get a tangent vector $\varphi^{\sharp}(m, a) \in T_{m} M$.
(A, B)-Moore machines are easier.
■ A set S and functions $r: S \rightarrow B$ and $u: S \times A \rightarrow S$?

- That's the same data a map of polynomials $S y^{S} \rightarrow B y^{A}$.
- It's also the same as a $B y^{A}$ coalgebra: $S \rightarrow B S^{A}$.

Mealy machines

The difference between Moore and Mealy machines involves instantaneity.
■ An (A, B)-Moore machine is $S \rightarrow B$ and $A \times S \rightarrow S$.

- An (A, B)-Mealy machine is $A \times S \rightarrow B$ and $A \times S \rightarrow S$.

■ In Mealy, the input A can immediately affect the output B.

- A Moore machine can be regarded as a Mealy machine ($\operatorname{drop} A$).

It took me a long time to realize that the converse is also true.

- An (A, B)-Mealy machine is an $\left(A, B^{A}\right)$-Moore machine.
- Indeed, that's $S \rightarrow B^{A}$ and $A \times S \rightarrow S$.

■ A Mealy machine is a Moore machine that outputs functions.
The transformation isn't out of the blue: it comes from monoidal closure.

Monoidal closure of Poly

Poly has a monoidal closed structure $(y, \otimes,[-,-])$.

- Let $p:=\sum_{i \in p(1)} y^{p[i]}$ and $q:=\sum_{j \in q(1)} y^{q[j]}$
- The Dirichlet product $p \otimes q$ has monoidal unit y and is given by:

$$
p \otimes q:=\sum_{(i, j) \in p(1) \times q(1)} y^{p[i] \times q[j]}
$$

We'll use that on the next slide.
■ It has an internal hom $[p, q]$, given by

$$
[p, q]:=\sum_{\varphi: p \rightarrow q} y^{\sum_{i \in p(1)} q\left[\varphi_{1} i\right]}
$$

That's a lot to take in, so let's try it for $p:=A y^{B}$ and $q:=y$.
■ First, a map $\varphi: A y^{B} \rightarrow y$ is just a function $A \rightarrow B$.
■ Since $p(1)=A$ and $q[!]=1$, we have $\left[A y^{B}, y\right]=B^{A} y^{A} \cong(B y)^{A}$. So an $\left[A y^{B}, y\right]$-coalgebra $S \rightarrow(B S)^{A}$ is an (A, B)-Mealy machine.

Wiring diagrams

Let's depict monomials $B y^{A}$ as boxes with A-inputs and B-outputs:

$$
B y^{A} \text { is depicted } \quad A-\square-B
$$

Here's a picture of a kind of interaction pattern called a wiring diagram:

It has two inner boxes and one outer box, and represents a map

$$
\varphi: C y^{A D} \otimes D E F y^{B C} \rightarrow E y^{A B}
$$

In other words the picture tells us about two functions:

$$
C(D E F) \rightarrow E \quad \text { and } \quad C(D E F)(A B) \rightarrow(A D)(B C)
$$

Wiring diagrams allow projection, splitting, and permuting variables.

More general interfaces

A polynomial $p=\sum_{i \in p(1)} y^{p[i]}$ can be understood as an interface that
■ outputs "positions" $i \in p(1)$ and
■ inputs "directions" $d \in p[i]$ that can depend on its position.

- So $B y^{A}$ can output elements of B and input elements of A.

■ But $y^{2}+y$ is like an eyeball: its positions are open and closed and...
■ ... when it's open it receives a bit; when it's closed it receives no bits.
An clocked interaction pattern of interfaces $p_{1}, \ldots p_{k}$ inside p^{\prime} is a map

$$
\varphi: p_{1} \otimes \cdots \otimes p_{k} \rightarrow p^{\prime}
$$

A wiring diagram is a very special case. For example, there is only one WD

$$
2 y^{3} \otimes 3 y^{5} \rightarrow 2 y^{5}
$$

but there are $2^{6} * 15^{30} \approx 10^{37}$ clocked interaction patterns.

Composition in Poly: removing the clock

Composing polynomials is a monoidal operation \triangleleft : Poly \times Poly \rightarrow Poly.

- I denote this functor by \triangleleft, leaving \circ for composition of morphisms.
$■$ It is straightforward, e.g. $y^{2} \triangleleft(y+1) \cong y^{2}+2 y+1$. The unit is y.
You can use this to make dynamical systems run faster.
- Any map $S y^{S} \rightarrow p$ induces $S y^{S} \rightarrow p^{\triangleleft n}$ for any n.

■ Because there's a certain semi-monad structure on $A y^{B}, \ldots$
■ ...we can run interior boxes at n-times speed for any $n \geq 1$.

Outline

1 Introduction

2 Functional programming

3 Dynamical systems

4 Databases

5 Conclusion

Categorical databases

A database is a collection of tables whose columns can refer to other tables.
■ One way to conceptualize this is as a category \mathcal{C}, "the schema"...
■ ... together with a functor (copresheaf) $D: C \rightarrow \mathbf{S e t}$, "the keys"...
■ ... and one of many possible ways to categorically handle "attributes".
■ This approach to databases has been implemented several times.
The two things one does with databases are: migrate and aggregate.

- Data migration means moving data from one schema to another.
- It includes querying: asking for all matches for a certain pattern.

■ Aggregation means accumulating attribute values over a column...
■ ... where we assume that the attribute has a comm. monoid structure.
All of this fits nicely into the Poly ecosystem.

Comonoids and bicomodules in Poly

By a theorem of Shulman, comonoids in (Poly, y, \triangleleft) form an equipment.
■ By theorems of Ahman-Uustalu and Garner, it has relevant semantics.
■ Its objects are exactly categories, so I call it Cat ${ }^{\sharp}$.
■ Its horizontal maps generalize both copresheaves and data migration.
■ The subcategory carried by linear polynomials is exactly $\mathbb{S p a n}$.
■ It contains Gambino-Kock's PolyFun Set as a full sub equipment.
■ It's got local monoidal closed structures, and tons of other structure.
You can define not only data migration but also aggregation in this setting.

- To do so requires all the structures we've discussed so far.

■ For example, it turns out that the operation of transposing a span...
■ ... can be split up into two more primitive universal operations.
Finally, keeping an old promise...

- The vertical maps are in Cat $^{\sharp}$ are called cofunctors.
- If y^{T} is a monoid, then a cofunctor $S y^{S} \rightarrow y^{T}$ is a T-action on S.

■ Using cofree comonoids, dyn. systems are subsumed as "databases"

Outline

1 Introduction

2 Functional programming

3 Dynamical systems

4 Databases

5 Conclusion
■ Summary

Summary

The polynomial ecosystem is very rich.
■ It's got an abundance of structure; that's difficult to over-state.
■ I now know of eight different monoidal structures on Poly.

- How many structures are we still missing?

■ Poly offers a single setting in which lots of ACT subjects live.
■ Programming, dynam'l systems, databases, deep learning, games.
■ But how do they come together? How should they interact?
There's ton's to do; please join in the fun!
Thanks! Comments and questions welcome...

Adaptive interaction patterns

We want to remove the fixed nature of interaction patterns.

- That is, we want wiring pattern itself to change through time.

■ We might call this "adapting"; we'll briefly consider "goals" on p. 22. Given interfaces p_{1}, \ldots, p_{k} and p^{\prime}, we want a changing interaction pattern.

■ Let $p:=p_{1} \otimes \cdots \otimes p_{k}$ and recall the internal hom

$$
\left[p, p^{\prime}\right] \cong \sum_{\varphi: p \rightarrow p^{\prime}} y^{\sum_{i \in p(1)} p^{\prime}\left[\varphi_{1} i\right]}
$$

■ Its positions are interaction patterns $\varphi: p_{1} \otimes \cdots \otimes p_{k} \rightarrow p^{\prime}$!
■ And a direction at φ is "the data flowing on all the wires".
■ For example if $p_{i}=B_{i} y^{A_{i}}$ then direction set is always $B_{1} \cdots B_{k} A^{\prime}$.
So a $\left[p, p^{\prime}\right]$-coalgebra is a Moore machine:
■ it outputs interaction patterns and updates based on what's flowing.
■ Define a category-enriched operad $\mathbb{O} \mathbf{r g}$ with objects $\mathrm{Ob}($ Poly $)$ and...
■ ... hom-caty's $\left[p_{1} \otimes \cdots \otimes p_{k}, p^{\prime}\right]$-Coalg, or $\left[\mathfrak{c}_{p_{1}} \otimes \cdots \otimes \mathfrak{c}_{p_{k}}, p^{\prime}\right]$-Coalg.
■ This is the subject of a paper called Learners' languages.

Deep learning falls out

Artificial neural networks are adaptive organizations in the above sense.
$■$ Let $t:=\sum_{x \in \mathbb{R}} y^{T_{x} \mathbb{R}}$ be the tangent bundle; note $t^{\otimes n} \cong \sum_{x \in \mathbb{R}^{n}} y^{T_{x} \mathbb{R}^{n}}$.
$■$ A $\left[t^{\otimes n}, t\right]$-coalgebra is just a Moore machine with a fancy interface.
■ Let $P:=\mathbb{R}^{n+1}$; think of $\left(b, w_{1}, \ldots, w_{n}\right) \in P$ as bias \& weights.

- Then an artificial neuron is a coalgebra $P \rightarrow\left[t^{\otimes n}, t\right] \triangleleft P$.

■ For every parameter, we get both a map $\mathbb{R}^{n} \rightarrow \mathbb{R}$ and ...

- ... a way to convert any tangent vector on \mathbb{R} (loss)...

■ ... to a tangent vector on \mathbb{R}^{n} (back propagation) ...
■ ... as well as a new parameter (by gradient descent).
■ The composite of coalgebras in $\mathbb{O} r g$ runs the DNN as usual.

- Weight tying (as in convolution, recurrent, etc.) is as in Backprop AF.

