Dynamic Interfaces and Arrangements: An algebraic framework for interacting systems

David I. Spivak

Active Inference Institute 2022 / 09 / 13

Outline

- 1 Introduction
 - Applied category theory in living form
 - Morphogenesis of healthy systems
 - Today's talk
- 2 The current dynamic arrangement
- Algebraic theory of interfaces and arrangements
- 4 Applications: Circuits, deep learning, and biology
- 5 Conclusion

Why am I here?

I'm here seeking a valuable exchange of ideas.

- Active inference offers a compelling but unusual worldview.
- But it meshes quite well with my own intuition,...
- ...which I've gotten from applied category theory.
- I think there's still a lot we can each learn from one another.

Why am I here?

I'm here seeking a valuable exchange of ideas.

- Active inference offers a compelling but unusual worldview.
- But it meshes quite well with my own intuition,...
- ...which I've gotten from applied category theory.
- I think there's still a lot we can each learn from one another.

Applied CT emphasizes structure rather than quantitative analysis.

- Most math and science reduce experience to plays of quantity.
- Category theory emphasizes structure: relations and coherence.
- Applied category theory aims to bring math to relational disciplines.

Why am I here?

I'm here seeking a valuable exchange of ideas.

- Active inference offers a compelling but unusual worldview.
- But it meshes quite well with my own intuition,...
- ...which I've gotten from applied category theory.
- I think there's still a lot we can each learn from one another.

Applied CT emphasizes structure rather than quantitative analysis.

- Most math and science reduce experience to plays of quantity.
- Category theory emphasizes structure: relations and coherence.
- Applied category theory aims to bring math to relational disciplines.

Today I want to tell you about ACT, specifically in reference to interfaces.

- We interact through our interfaces (Markov blankets?).
- What sort of algebra could support us in thinking about this?

Mathematical fields as accounting systems

I think of mathematical fields as accounting systems.

- Arithmetic accounts for the flow of quantities, as in finance.
- Hilbert spaces account for the states of elementary particles, as in QM.
- Probability distributions account for likelihoods, as in game theory.

Mathematical fields as accounting systems

I think of mathematical fields as accounting systems.

- Arithmetic accounts for the flow of quantities, as in finance.
- Hilbert spaces account for the states of elementary particles, as in QM.
- Probability distributions account for likelihoods, as in game theory.

An account of phenomena needs to be written in high-fidelity language.

- To understand the phenomena requires that certain aspects be tracked.
- The language must articulate the relevant type-differences ...
- ... and provide operations that correspond with their interactions.

Mathematical fields as accounting systems

I think of mathematical fields as accounting systems.

- Arithmetic accounts for the flow of quantities, as in finance.
- Hilbert spaces account for the states of elementary particles, as in QM.
- Probability distributions account for likelihoods, as in game theory.

An account of phenomena needs to be written in high-fidelity language.

- To understand the phenomena requires that certain aspects be tracked.
- The language must articulate the relevant type-differences ...
- and provide operations that correspond with their interactions.

Category theory is the accounting system for coherent structures.

- It makes analogies—similarities of structure—into formal objects.
- It's been useful in math, CS, physics, materials science, linguistics, etc
- What sort of system accounts for dynamic interaction?

Driving question: what do we have here?

What I want to account for is the incredible world we have.

- On earth we have amazing forms of life, from cells to humans.
- We have the built world, from transportation systems to computers.
- We have language and a systematic presentation of knowledge.
- We have morality, rules of thumb for living a good life.
- Each of these evolved through the push and pull and struggle of living.

Driving question: what do we have here?

What I want to account for is the incredible world we have.

- On earth we have amazing forms of life, from cells to humans.
- We have the built world, from transportation systems to computers.
- We have language and a systematic presentation of knowledge.
- We have morality, rules of thumb for living a good life.
- Each of these evolved through the push and pull and struggle of living.

What are these systems and how do they develop?

- How can we talk cleanly about all these systems at once?
- What language is appropriate for giving accounts of it in action?
- Can we use the same language to engineer new systems?
- And what constitutes health, giving the system a sense of direction?

Driving question: what do we have here?

What I want to account for is the incredible world we have.

- On earth we have amazing forms of life, from cells to humans.
- We have the built world, from transportation systems to computers.
- We have language and a systematic presentation of knowledge.
- We have morality, rules of thumb for living a good life.
- Each of these evolved through the push and pull and struggle of living.

What are these systems and how do they develop?

- How can we talk cleanly about all these systems at once?
- What language is appropriate for giving accounts of it in action?
- Can we use the same language to engineer new systems?
- And what constitutes health, giving the system a sense of direction?

The only part of this I'll discuss today is a potential accounting system.

My subject today is dynamic interaction.

- Morphology and behavior are all about systems interacting.
- The interaction structure itself changes through time.
- I'll explain a mathematical language for working with such things.

My subject today is dynamic interaction.

- Morphology and behavior are all about systems interacting.
- The interaction structure itself changes through time.
- I'll explain a mathematical language for working with such things.

On some level much of this talk will be a case of its own subject-matter.

- I'm interested in the development of life's order.
- In the science system, this works through interaction between fields.
- So we can experience the development in realtime via this interaction.

My subject today is dynamic interaction.

- Morphology and behavior are all about systems interacting.
- The interaction structure itself changes through time.
- I'll explain a mathematical language for working with such things.

On some level much of this talk will be a case of its own subject-matter.

- I'm interested in the development of life's order.
- In the science system, this works through interaction between fields.
- So we can experience the development in realtime via this interaction.

I.e., the concepts discussed should describe the talk itself, qua interaction.

- Let me pause for feedback:
- Do you see how the math should be capable to describe this?

My subject today is dynamic interaction.

- Morphology and behavior are all about systems interacting.
- The interaction structure itself changes through time.
- I'll explain a mathematical language for working with such things.

On some level much of this talk will be a case of its own subject-matter.

- I'm interested in the development of life's order.
- In the science system, this works through interaction between fields.
- So we can experience the development in realtime via this interaction.

I.e., the concepts discussed should describe the talk itself, qua interaction.

- Let me pause for feedback:
- Do you see how the math should be capable to describe *this*?

We'll mostly ignore this self-reflective character, but it's hanging around.

Compressed theory and experimental feedback

I think compression and elaboration play a big role in the story.

- We compress our past into a form we can elaborate in a present.
- DNA compresses who died and who thrived into a language (ACGT).
- But theory is also a compression of past experience into language.
- Both are elaborated in the present, as I speak this theory here.
- The experience now gives feedback, selection pressure on theory.

Compressed theory and experimental feedback

I think compression and elaboration play a big role in the story.

- We compress our past into a form we can elaborate in a present.
- DNA compresses who died and who thrived into a language (ACGT).
- But theory is also a compression of past experience into language.
- Both are elaborated in the present, as I speak this theory here.
- The experience now gives feedback, selection pressure on theory.

Experiment and theory exist in both the biological and mathematical fields.

- Experimentation in math is attempts to articulate and compute.
- We value formalism F if it makes expression and computation *easy*.
- What is XIV * VI? 14 * 6 = (10 * 6) + (4 * 6) = 84. Ans: LXXXIV.
- Hindi-Arabic numerals are *empirically better* than Roman numerals.

Compressed theory and experimental feedback

I think compression and elaboration play a big role in the story.

- We compress our past into a form we can elaborate in a present.
- DNA compresses who died and who thrived into a language (ACGT).
- But theory is also a compression of past experience into language.
- Both are elaborated in the present, as I speak this theory here.
- The experience now gives feedback, selection pressure on theory.

Experiment and theory exist in both the biological and mathematical fields.

- Experimentation in math is attempts to articulate and compute.
- We value formalism F if it makes expression and computation *easy*.
- What is XIV * VI? 14 * 6 = (10 * 6) + (4 * 6) = 84. Ans: LXXXIV.
- Hindi-Arabic numerals are *empirically better* than Roman numerals.

That's the sort of value claim I'm making about what I'll discuss today.

Plan for today's talk

The rest of today's talk will be in four parts:

- Give a presently-available case of what I'm trying to model.
- Whirlwind tour of what the math actually looks like.
- Talk about existing applications and open questions.
- Conclude with a summary.

Outline

- Introduction
- 2 The current dynamic arrangement
 - Summary of dynamic arrangements
 - Interfaces
 - Arrangements
- Algebraic theory of interfaces and arrangements
- 4 Applications: Circuits, deep learning, and biology
- 5 Conclusion

This zoom call as a dynamic arrangement

We're here on a call together. How can we begin thinking about this?

- Let's break it into three structures: interfaces, dynamics, interaction.
- Each one of us has an interface: what we can express and take in.
- Each one of us has dynamics: our internal state and how it updates.
- Between us there is an interaction: how we affect each other.

This zoom call as a dynamic arrangement

We're here on a call together. How can we begin thinking about this?

- Let's break it into three structures: interfaces, dynamics, interaction.
- Each one of us has an interface: what we can express and take in.
- Each one of us has dynamics: our internal state and how it updates.
- Between us there is an interaction: how we affect each other.

We draw boundaries around stuff, modularizing by nested reference frames.

- We have littler systems interacting within larger systems.
- This can be said of atoms and molecules, organizations and societies.

The math here will not be numerical: it will be *structural*.

- As we move into the math, you'll see how it manages reference frames.
- Like geometry is about shapes, category theory is about structure.

This zoom call as a dynamic arrangement

We're here on a call together. How can we begin thinking about this?

- Let's break it into three structures: interfaces, dynamics, interaction.
- Each one of us has an interface: what we can express and take in.
- Each one of us has dynamics: our internal state and how it updates.
- Between us there is an interaction: how we affect each other.

We draw boundaries around stuff, modularizing by nested reference frames.

- We have littler systems interacting within larger systems.
- This can be said of atoms and molecules, organizations and societies.

The math here will not be numerical: it will be *structural*.

- As we move into the math, you'll see how it manages reference frames.
- Like geometry is about shapes, category theory is about structure.

But before the math, let's make sure we understand our principal subject.

Our interfaces

The math should describe things we work with: like cells, tadpoles, and us.

- Soon I'll define what I mean by *interface* as a mathematical object.
- But we need to ground this in something you can think about.
- Since I don't have any cells or tadpoles here, we're the subject.

Our interfaces

The math should describe things we work with: like cells, tadpoles, and us.

- Soon I'll define what I mean by *interface* as a mathematical object.
- But we need to ground this in something you can think about.
- Since I don't have any cells or tadpoles here, we're the subject.

So how do we think about ourselves here in this zoom call?

- Each of us can *do* certain things and *receive* certain things.
- What we can outwardly express and take in defines our *interface*.
- I'll call these *positions* and *forces*.
- Consider any expression, e.g. sound or attitude, as a kind of position.
- Your inner states are reflected outwardly as these positions.
- The world impinges on you, directs you, moves you by forces.

Our interfaces

The math should describe things we work with: like cells, tadpoles, and us.

- Soon I'll define what I mean by *interface* as a mathematical object.
- But we need to ground this in something you can think about.
- Since I don't have any cells or tadpoles here, we're the subject.

So how do we think about ourselves here in this zoom call?

- Each of us can do certain things and receive certain things.
- What we can outwardly express and take in defines our *interface*.
- I'll call these *positions* and *forces*.
- Consider any expression, e.g. sound or attitude, as a kind of position.
- Your inner states are reflected outwardly as these positions.
- The world impinges on you, directs you, moves you by forces.

What your body can receive in a moment depends on its position.

- When your eyes are open, your sensorium is bigger; more acts on you.
- When the car goes through a tunnel, the GPS stops receiving.

Our zoom arrangement and the enclosure

So here's the story so far: you output positions and receive forces.

- The force, sensation, input you receive changes your internal state, ...
- ...reflected outwardly as a new position, and a new sensorium opens.
- This loops repeatedly.

Our zoom arrangement and the enclosure

So here's the story so far: you output positions and receive forces.

- The force, sensation, input you receive changes your internal state, ...
- ...reflected outwardly as a new position, and a new sensorium opens.
- This loops repeatedly.

But where do these forces, these inputs, come from?

- They come from the interaction; the way we are arranged here.
- Zoom arranges us so that my outputs get to you as inputs.
- As you receive what I say, your body shifts, and that's your output.

Our zoom arrangement and the enclosure

So here's the story so far: you output positions and receive forces.

- The force, sensation, input you receive changes your internal state, ...
- ...reflected outwardly as a new position, and a new sensorium opens.
- This loops repeatedly.

But where do these forces, these inputs, come from?

- They come from the interaction; the way we are arranged here.
- Zoom arranges us so that my outputs get to you as inputs.
- As you receive what I say, your body shifts, and that's your output.

The way this works is based on the *arrangement* that we call zoom.

- This program arranges it so that we can input each others' outputs.
- Our interaction with the program may change the arrangement.
- E.g. spotlight, mute, etc., each changes how info is passed.

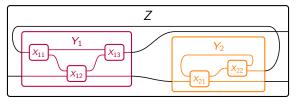
Outline

- 1 Introduction
- The current dynamic arrangement
- 3 Algebraic theory of interfaces and arrangements
 - Interfaces as polynomials
 - Arrangements and dynamics
- 4 Applications: Circuits, deep learning, and biology
- 5 Conclusion

Recalling all the keywords we'll use

Interfaces, positions, forces, states, arrangements, enclosures, nesting.

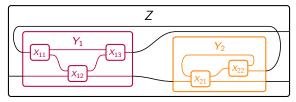
- We each have an *interface*; it's that through which we interact.
- Our interface allows us to express ourselves through our *position*.
- Given a position, our interfaces allows us to receive certain *forces*.
 Our *state* is changed by the received force; it's expressed as position.
- Multiple interfaces interact together via their current arrangement.
- Waterpre interfaces interact together via their current arrangemen
- We also interact with our *enclosure* which is another interface.
- These arrangements can be *nested* hierarchically.



Recalling all the keywords we'll use

Interfaces, positions, forces, states, arrangements, enclosures, nesting.

- We each have an *interface*; it's that through which we interact.
- Our interface allows us to express ourselves through our *position*.
- Given a position, our interfaces allows us to receive certain *forces*.
- Our state is changed by the received force; it's expressed as position.
- Multiple interfaces interact together via their current arrangement.
- We also interact with our *enclosure* which is another interface.
- These arrangements can be *nested* hierarchically.



Arrangements can change through time based on what flows within them.

As we said, an interface consists of two things.

- First, a set P of positions. Maybe $P = \{a, b, c\}$ or $P = \mathbb{R}^{44}$.
- Second, for each position $i \in P$, a set F[i] of forces.
- That is, F[i] is the sensorium, what can arrive, when the position is i.

As we said, an interface consists of two things.

- First, a set P of positions. Maybe $P = \{a, b, c\}$ or $P = \mathbb{R}^{44}$.
- Second, for each position $i \in P$, a set F[i] of forces.
- That is, F[i] is the sensorium, what can arrive, when the position is i. We'll encode this as a polynomial in y with nonnegative integer coefficients.
 - I know it's strange, but it works really well. It's a formal thing.
 - I know it s strange, but it works really well. It's a formal till
 - Don't freak out when you see the sum sign \sum ; I'll explain.
 - Here's the interface:

As we said, an interface consists of two things.

- First, a set P of positions. Maybe $P = \{a, b, c\}$ or $P = \mathbb{R}^{44}$.
- Second, for each position $i \in P$, a set F[i] of forces.
- That is, F[i] is the sensorium, what can arrive, when the position is i. We'll encode this as a polynomial in y with nonnegative integer coefficients.
 - I know it's strange, but it works really well. It's a formal thing.
 - Don't freak out when you see the sum sign \sum ; I'll explain.
 - Here's the interface:

$$Interface = \sum_{i \in P} y^{F[i]}$$

Positions are the sum indices $i \in P$; sensoria are the exponents F[i].

As we said, an interface consists of two things.

- First, a set P of positions. Maybe $P = \{a, b, c\}$ or $P = \mathbb{R}^{44}$.
- Second, for each position $i \in P$, a set F[i] of forces.
- That is, F[i] is the sensorium, what can arrive, when the position is i.

We'll encode this as a polynomial in \boldsymbol{y} with nonnegative integer coefficients.

- I know it's strange, but it works really well. It's a formal thing.
- Don't freak out when you see the sum sign \sum ; I'll explain.
- Here's the interface:

$$Interface = \sum_{i \in P} y^{F[i]}$$

Positions are the sum indices $i \in P$; sensoria are the exponents F[i].

- So imagine the interface is $y^5 + 62y^3 + 2y^0$. It has: ...
- ...1 pos'n with 5 possible inputs, 62 pos'ns with 3, and 2 with 0.
- What about $\mathbb{R}^3 y^{\mathbb{R}^{1,000,000}}$? It has \mathbb{R}^3 positions,...
- ...and in every one, its sensorium is $\mathbb{R}^{1,000,000}$.

Why polynomials?

So why do this craziness? Because the polynomial operations mean things.

- We have lots of operations: p + q, $p \times q$, $p \circ q$, $p \otimes q$, $p \vee q$, [p,q].
- You've heard of the first three, but probably not the second three.
- They all mean something in terms of things you can do to interfaces.

Why polynomials?

So why do this craziness? Because the polynomial operations mean things.

- We have lots of operations: p + q, $p \times q$, $p \circ q$, $p \otimes q$, $p \vee q$, [p,q].
- You've heard of the first three, but probably not the second three.
- They all mean something in terms of things you can do to interfaces.

$$\mathsf{Interface} = \sum_{i \in P} y^{F[i]}$$

Semantics of polynomial operations

Suppose p and q are polynomials representing interfaces. What's p + q?

- Well, p + q is another polynomial, so it represents a new interface.
- Namely: that which can output a position of p or of q.
- Its sensorium in a given position is that of p or q, whichever it used.
- **Example:** $p = 3y^5 + 2y^4$ and $q = 6y^5 + y^3 + y^0$. What's p + q?

Semantics of polynomial operations

Suppose p and q are polynomials representing interfaces. What's p + q?

- Well, p + q is another polynomial, so it represents a new interface.
- Namely: that which can output a position of p or of q.
- Its sensorium in a given position is that of p or q, whichever it used.
- **Example:** $p = 3y^5 + 2y^4$ and $q = 6y^5 + y^3 + y^0$. What's p + q?

What interface does the product $p \times q$ represent?

- It always outputs both a position $i \in p(1)$ and $j \in q(1)$, but...
- \blacksquare ...an input at (i,j) is either an input of p or of an input of q.
- **Example:** $p = 5y^4$ and $q = 6y^3$. Then $p \times q = 30y^7$.

Semantics of polynomial operations

Suppose p and q are polynomials representing interfaces. What's p + q?

- Well, p + q is another polynomial, so it represents a new interface.
- Namely: that which can output a position of p or of q.
- Its sensorium in a given position is that of p or q, whichever it used.
- **Example:** $p = 3y^5 + 2y^4$ and $q = 6y^5 + y^3 + y^0$. What's p + q?

What interface does the product $p \times q$ represent?

- It always outputs both a position $i \in p(1)$ and $j \in q(1)$, but...
- \blacksquare ...an input at (i,j) is either an input of p or of an input of q.
- **Example:** $p = 5y^4$ and $q = 6y^3$. Then $p \times q = 30y^7$.

All of the polynomial operations do something to interfaces.

- Composition $p \circ q$ runs p then q in series.
- Tensor $p \otimes q$ runs p and q in parallel.
- The Or-operation $p \lor q$ runs either p or q or both in parallel.
- The bracket [p, q] runs arrangements for wiring p in q. Remember?

Arrangements

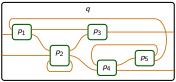
We can also formalize the notion of arrangement.

- Recall, we considered ourselves in this zoom call as an arrangement,...
- ...i.e., the way zoom lets my outputs be your inputs, and vice versa.
- Or think about cell-organs arranged in a cell or cells in a tissue.
- An arrangement is just how information passes between interfaces.

Arrangements

We can also formalize the notion of arrangement.

- Recall, we considered ourselves in this zoom call as an arrangement,...
- …i.e., the way zoom lets my outputs be your inputs, and vice versa.
- Or think about cell-organs arranged in a cell or cells in a tissue.
- An arrangement is just how information passes between interfaces.



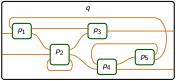
Two things about this will be generalized.

- The information sharing can be much messier (no perfect wires).
- The information sharing can change, e.g. as interfaces change shape.

Arrangements

We can also formalize the notion of arrangement.

- Recall, we considered ourselves in this zoom call as an arrangement,...
- ...i.e., the way zoom lets my outputs be your inputs, and vice versa.
- Or think about cell-organs arranged in a cell or cells in a tissue.
- An arrangement is just how information passes between interfaces.



Two things about this will be generalized.

- The information sharing can be much messier (no perfect wires).
- The information sharing can change, e.g. as interfaces change shape.

Formally, an arrangement is a natural transformation of polynomials.

- First take all the little interfaces p_1, \ldots, p_5 and tensor them.
- An arrangement is a natural transformation $p_1 \otimes \cdots \otimes p_5 \rightarrow q$.

What's happening in this talk

Brief interlude, for meta-stuff.

- I just told you that an arrangement is a *natural transformation*.
- That's a category theory word, but I'm not expecting you know CT.
- So what's up?

What's happening in this talk

Brief interlude, for meta-stuff.

- I just told you that an arrangement is a *natural transformation*.
- That's a category theory word, but I'm not expecting you know CT.
- So what's up?

I'm trying to say what the math looks like and what it's about.

- So much of math is quantitative. Or maybe it's geometry or topology.
- But this math is very different, so I want you to see it.
- What is this math about? What's it for?

What's happening in this talk

Brief interlude, for meta-stuff.

- I just told you that an arrangement is a *natural transformation*.
- That's a category theory word, but I'm not expecting you know CT.
- So what's up?

I'm trying to say what the math looks like and what it's about.

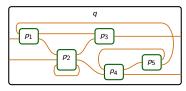
- So much of math is quantitative. Or maybe it's geometry or topology.
- But this math is very different, so I want you to see it.
- What is this math about? What's it for?

It's about interfaces: how you manipulate them, arrange them, nest them.

- Interfaces have outputs, and inputs that can depend on them.
- They're captured as polynomials, not as functions, but as structure.
- Then we can $+, \times, \circ...$ these poly's to make new interfaces from old.
- And arrangements (and dynamics next) come with the math too.

Dynamics

Look at the arrangement again:

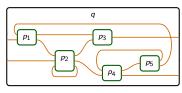


If each p_i had a dynamical system in it, then so would q.

- A dynamical system is a thing with states that evolve through time.
- It can be a system of ODEs, or just a high-level idea.
- You're in a state; this shows up as your position (or output).
- Any possible input that you get will make your state change; repeat.
- It can be discrete or continuous; the math works either way.

Dynamics

Look at the arrangement again:



If each p_i had a dynamical system in it, then so would q.

- A dynamical system is a thing with states that evolve through time.
- It can be a system of ODEs, or just a high-level idea.
- You're in a state; this shows up as your position (or output).
- Any possible input that you get will make your state change; repeat.
- It can be discrete or continuous; the math works either way.

Mathematically, a dynamical system on p is $Sy^S \rightarrow p$.

- Why am I telling you this?! Because all the math looks the same.
- Both arrangements and dynamics are *natural transformations*.
- We compose them to get q's dynamics from the p_i s'.

Dynamic arrangements

This is the last math slide. Let's think about dynamics a bit more.

- If you remember a few slides ago, I was talking about operations.
- A dynamical system on p + q can switch between p-mode and q-mode.
- A dyn'l system on $p \times q$ outputs both, receives from either.
- A dyn'l system on $p \otimes q$ outputs both, receives from both.
- A dyn'l system on $p \circ q$ does a serial protocol.
- What about [p, q]? We said it "runs arrangements for p in q".

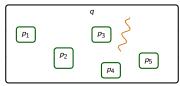
Dynamic arrangements

This is the last math slide. Let's think about dynamics a bit more.

- If you remember a few slides ago, I was talking about operations.
- A dynamical system on p + q can switch between p-mode and q-mode.
- A dyn'l system on $p \times q$ outputs both, receives from either.
- A dyn'l system on $p \otimes q$ outputs both, receives from both.
- A dyn'l system on $p \circ q$ does a serial protocol.
- What about [p, q]? We said it "runs arrangements for p in q".

In other words the operation [-,-] is an interface for arrangements.

- A dynamical system on $[p_1 \otimes \cdots \otimes p_5, q]$ outputs arrangements...
- ...and receives whatever flows within the system.



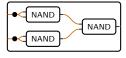
Outline

- Introduction
- The current dynamic arrangement
- Algebraic theory of interfaces and arrangements
- 4 Applications: Circuits, deep learning, and biology
 - Circuits, control systems, and deep learning
 - Dynamic organizational structures
 - Application to active inference
- 5 Conclusion

Digital circuits and control systems

Digital circuits and control systems fit neatly into this formalism.

- A computer is a nested arrangement of dynamical systems.
- Two transistors make up a NAND gate.
- You can get an OR gate by wiring together three NAND gates.



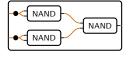
The arrangement and dynamics are very simple.

- The arrangement is fixed, unchanging, soldered in.
- The dynamics are simple: state is a function of input only.
- But with enough nesting, you get something amazing: a computer.

Digital circuits and control systems

Digital circuits and control systems fit neatly into this formalism.

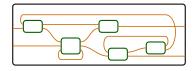
- A computer is a nested arrangement of dynamical systems.
- Two transistors make up a NAND gate.
- You can get an OR gate by wiring together three NAND gates.



The arrangement and dynamics are very simple.

- The arrangement is fixed, unchanging, soldered in.
- The dynamics are simple: state is a function of input only.
- But with enough nesting, you get something amazing: a computer.

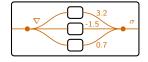
Control systems have complicated dynamics but fixed arrangement.



Deep learning

Deep learning also fits into this formalism in a different way.

- The interfaces are all the same: $\mathbb{R}y^{\mathbb{R}}$, outputting and inputting \mathbb{R} .
- And the arrangements are all very simple: activated weighted sums.

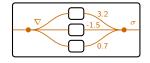


- The info flowing out of the inner boxes is the current "guesses".
- The current weighted sum is calculated and sent out as current guess.
- The info flowing into the big box is the "loss".
- It is distributed to the inner boxes according to the gradient.

Deep learning

Deep learning also fits into this formalism in a different way.

- The interfaces are all the same: $\mathbb{R}y^{\mathbb{R}}$, outputting and inputting \mathbb{R} .
- And the arrangements are all very simple: activated weighted sums.



- The info flowing out of the inner boxes is the current "guesses".
- The current weighted sum is calculated and sent out as current guess.
- The info flowing into the big box is the "loss".
- It is distributed to the inner boxes according to the gradient.

But here the arrangement is dynamic!

- The loss coming in is not only sent to the little boxes,...
- ...it also updates the arrangement, the collection of weights, itself.

Dynamic organizational structures

Deep neural networks is one of four examples of a certain structure.

- B. Shapiro and I call it a *dynamic organizational structure*.
- It is a fractal-like system of arrangements that change through time.
- The arrangement decides how information flows through the system.
- And yet the flowing information can change the arrangement.
- We formalize this using category theory.

Dynamic organizational structures

Deep neural networks is one of four examples of a certain structure.

- B. Shapiro and I call it a *dynamic organizational structure*.
- It is a fractal-like system of arrangements that change through time.
- The arrangement decides how information flows through the system.
- And yet the flowing information can change the arrangement.
- We formalize this using category theory.

The four examples we have so far are:

- Deep learning
- Prediction markets
- Hebbian learning (with Sophie Libkind), and
- Noncooperative strategic games

Dynamic organizational structures

Deep neural networks is one of four examples of a certain structure.

- B. Shapiro and I call it a *dynamic organizational structure*.
- It is a fractal-like system of arrangements that change through time.
- The arrangement decides how information flows through the system.
- And yet the flowing information can change the arrangement.
- We formalize this using category theory.

The four examples we have so far are:

- Deep learning
- Prediction markets
- Hebbian learning (with Sophie Libkind), and
- Noncooperative strategic games

I would guess that active inference can somehow be another one.

Articulate language to say... what?

Many people think of math as about number, but it's not.

- Each math subject is an accounting system to track certain things.
- What the work above lets you track is: dynamic arrangements.
- The math called *polynomial functors* is well-known and beloved.
- It beautifully accounts for interfaces, dynamics, and arrangements.
- It's about building up bigger systems from littler parts.
- It accounts for composing circuits&control and deep learning systems.
- For example, one could clearly articulate a new way to combine these.

Articulate language to say... what?

Many people think of math as about number, but it's not.

- Each math subject is an accounting system to track certain things.
- What the work above lets you track is: dynamic arrangements.
- The math called *polynomial functors* is well-known and beloved.
- It beautifully accounts for interfaces, dynamics, and arrangements.
- It's about building up bigger systems from littler parts.
- It accounts for composing circuits&control and deep learning systems.
- For example, one could clearly articulate a new way to combine these.

But I think this has particular value in active inference.

- It lets us talk coherently and precisely about these things:
- ...changing interfaces, dynamics, how things communicate,...
- ...and how that communication pattern changes as info is exchanged.

Active inference as dynamic organizational structure

The main work to make active inference into an example of a DOS¹ is to:

- specify all the interfaces we will use to house free energy minimizers,
- consider how free energy minimizers arrange themselves, and
- say how these arrangements constitute a larger-scale FEM.

¹One person suggested we use the term "Multi-Scale Dynamic Organizational Structure" in order to clarify our particular brand.

Active inference as dynamic organizational structure

The main work to make active inference into an example of a DOS¹ is to:

- specify all the interfaces we will use to house free energy minimizers,
- consider how free energy minimizers arrange themselves, and
- say how these arrangements constitute a larger-scale FEM.

As long as all this coheres nicely (in a formal way), we'll have a DOS.

¹One person suggested we use the term "Multi-Scale Dynamic Organizational Structure" in order to clarify our particular brand.

Outline

- 1 Introduction
- 2 The current dynamic arrangement
- 3 Algebraic theory of interfaces and arrangements
- 4 Applications: Circuits, deep learning, and biology
- 5 Conclusion
 - Summary

Summary

Applied category theory is math for tracking interlocking structures.

- It's not about how much there is, it's about how it's arranged.
- It applies in QM, CS, math, materials science, linguistics, physics...
- ...but it focuses on the structural questions in each one.

Summary

Applied category theory is math for tracking interlocking structures.

- It's not about how much there is, it's about how it's arranged.
- It applies in QM, CS, math, materials science, linguistics, physics...
- ...but it focuses on the structural questions in each one.

I'm interested in the structure of interacting dynamical systems.

- I want to account for how we interact, right here on zoom.
- How we can change how we're inputting (speaker off, disconnect),...
- ...how we're outputting (mute, camera off), and ...
- ...how all that affects what happens, how we change, what we learn.

Summary

Applied category theory is math for tracking interlocking structures.

- It's not about how much there is, it's about how it's arranged.
- It applies in QM, CS, math, materials science, linguistics, physics...
- ...but it focuses on the structural questions in each one.

I'm interested in the structure of interacting dynamical systems.

- I want to account for how we interact, right here on zoom.
- How we can change how we're inputting (speaker off, disconnect),...
- ...how we're outputting (mute, camera off), and ...
- ...how all that affects what happens, how we change, what we learn.

I don't have specifics, but I have the accounting system.

- The cat'y of polynomial functors accounts for dynamic arrangements.
- I think it may be helpful for thinking about active inference.

Thanks! Comments and questions welcome...