All concepts are $\mathbb{C}at^{\sharp}$

Owen Lynch Brandon Shapiro David I. Spivak

Applied Category Theory 2023 2023 / 08 / 04

1 Introduction

- Why am I here?
- All concepts?
- Plan for talk

2 Poly and Cat[#]

- **3** Three homes for categories in $\mathbb{C}at^{\sharp}$
- **4** \mathbb{C} at[#] includes multivariate polynomials and \mathbb{P} oly₆
- **5** Dynamic arrangments in Cat[#]

Why am I here?

For 15 years, I've wanted CT to help humanity make sense of its world.

- Data migration: differently-organized systems exchanging info.
- Operadic compositionality: new things built from arrangements of old.
- Interacting dynamical systems: how collectives act in concert.

Why math?

- I think of mathematical fields as *accounting systems*.
- We account for quantities, likelihoods, physics observ'ns, reasoning...
- ...using arithmetic, probability, Hilbert spaces, logic.
- Math's universality and fine-tuned language lead to impressive coord'n.

Why category theory?

- CT is even more fine-tuned. The language and principles are elegant.
- As constructive, it is more amenable to tool-building, applications.
- It's a microcosm of math: sitting within it and reflecting its structure.

Almost the same story repeats at another level, within CT.

All concepts?

Categories Work has a section titled "All concepts are Kan extensions.

- This is an exaggeration: Lots of CT ideas are not Kan extensions.
- But Kan ext'ns are so far-reaching, e.g. adjoints, Yoneda, (co)limits,...
- ...that the exaggeration is worthwhile.
- The double category $\mathbb{C}\mathbf{at}^{\sharp}$ is similarly far-reaching.
 - It includes categories, (co)functors, profunctors, and natural transf'ns.
 - It includes all copresheaf categories, elements, and pra-functors.
 - It internally constructs nerves of categories and higher categories.
 - It includes \mathbb{P} **oly**_{\mathcal{E}} for any category \mathcal{E} with pullbacks, e.g. multivariate.
 - It models dynamic organizational structures (Org) as in deep learning.
- And many other app'ns (effect handlers, rewriting, data migration, etc)
 Elegant, applicable, and far-reaching, it's an important part of ACT.

Plan for the talk

In this talk I will:

- Introduce **Poly** and **Cat**[‡],
- Show three homes for categories in ℂat[♯],
- Explain how multivariate polynomials and Poly_& fit in,
- Discuss nerves of categories and higher categories^{oops, this is ACT},
- Recall dynamic arrangements and show how they embed, and
- Conclude.

1 Introduction

2 Poly and $\mathbb{C}at^{\sharp}$

- Recalling Poly
- Introducing Cat[♯]

3 Three homes for categories in Cat[‡]

- **4** \mathbb{C} at[#] includes multivariate polynomials and \mathbb{P} oly₆
- **5** Dynamic arrangments in $\mathbb{C}at^{\sharp}$

What is Poly?

There are many equivalent ways to get **Poly**, e.g.

- The free completely distributive category ($\Pi\Sigma\to\Sigma\Pi)$ on one object.
- The full subcat'y of functors $\mathbf{Set} \rightarrow \mathbf{Set}$ on coprod's of representables.

The full subcat'y of functors $\textbf{Set} \rightarrow \textbf{Set}$ preserving connected limits. Let's bring it down to earth.

- A representable functor is one of the form $X \mapsto X^A$. Denote it y^A .
- Coproducts of such things—objects of **Poly**—are denoted $\sum_{i:I} y^{A_i}$.
- Maps between these things are easy, by UP of coproducts and Yoneda:

$$\mathsf{Poly}\Big(\sum_{i:I} y^{\mathcal{A}_i}, \sum_{j:J} y^{\mathcal{B}_j}\Big) \cong \prod_{i:I} \sum_{j:J} \mathsf{Set}(\mathcal{B}_j, \mathcal{A}_i).$$

The category **Poly** has an unprecedented amount of structure.¹

- All limits and colimits, left Kan ext'ns, three factorization systems.
- Infinitely many monoidal closed structures.
- Free monads, cofree comonads, and lawful interactions between them.

It has many applications in functional, imperative, automata programming.

¹See arxiv.org/abs/2202.00534 for a compressed reference on **Poly**'s structure.4/15

Polynomial comonads are categories

Polynomial functors can be composed; this operation is a monoidal product.

- Considering polynomials as objects, we write $p \triangleleft q$ rather than $p \circ q$.
- It's just like composing polynomials normally: $y^2 \triangleleft (y+1) \cong y^2 + 2y + 1$.
- So one can ask: what are monoids and comonoids in (Poly, y, \triangleleft)?
- \blacksquare As functors $\textbf{Set} \rightarrow \textbf{Set},$ these are called poly'l monads and comonads.
- Let's just work with comonads. How can you think about them?²
 - Amazing fact: polynomial comonads are exactly categories!
 - Morphisms between them are not functors; they're called *cofunctors*.
 - A polynomial comonad is a tuple (c, ϵ, δ) , where c: **Poly** and

 $\epsilon \colon \mathbf{c} \to y \qquad \text{and} \qquad \delta \colon \mathbf{c} \to \mathbf{c} \triangleleft \mathbf{c}$

How do we think of this like a category? Let $\ensuremath{\mathcal{C}}$ be a category.

- For each object $A : Ob(\mathcal{C})$, let $\mathcal{C}[A] := \sum_{B:Ob(\mathcal{C})} \mathcal{C}(A, B)$, "maps out"
- Then the associated polynomial is $\sum_{A:Ob(C)} y^{C[A]}$.
- Counit ϵ supplies id's; comult δ supplies codomains and composites.

²These results are due to Ahman-Uustalu.

What is $\mathbb{C}at^{\sharp}$?

In Framed Bicategories, Shulman defines the $\mathbb{M}\mathbf{od}$ construction.

- If a double cat'y \mathbb{D} has nice local coequalizers, you can form $\mathbb{M}\mathbf{od}(\mathbb{D})$.
- Similarly, if \mathbb{P} has nice local equalizers, you can form \mathbb{C} **omod**(\mathbb{P}).
- Any monoidal cat'y is a vertically trivial double category.
- Let \mathbb{P} be the one-object double cat'y associated to (**Poly**, y, \triangleleft).
- It has nice (\triangleleft -preserved) local equalizers: $e \rightarrow p \rightrightarrows q$.

■ So we can form Comod(P). I refer to this double category as Cat[‡]. Why do I call it Cat[‡]?

- By Ahman-Uustalu, its objects are precisely all small categories.
- But verticals in Cat[#] are a little *sharp*; they are *co*functors.
- Garner³ explained that its horizontals $c \triangleleft d$ are very cool things.
- They're parametric right adjoint (pra) functors d-Set $\rightarrow c$ -Set.
- These are exactly data migrations from *d*-databases to *c*-databases.
- They generalize profunctors: they're *C*-indexed sums of profunctors.

³See Garner's HoTTEST video: https://www.youtube.com/watch?v=tW6HYnqn6eI

1 Introduction

2 Poly and Cat[‡]

3 Three homes for categories in $\mathbb{C}at^{\sharp}$

- Categories as polynomial comonads
- Categories as monads in Span
- Categories as *path*-algebras on **Grph**

4 Cat^{\ddagger} includes multivariate polynomials and Poly_{ε}

■ Dynamic arrangments in Cat[#]

Three homes for categories

 $\mathbb{C}\textbf{at}^{\sharp}$ is the equipment of comonoids in the distributive completion of 1.

- Why do we care about distributive completions or comonoids?
- You might not guess this was cool, a priori.
- All you'd know is that it has a very short description in CT language.
- That's often a good sign, e.g.

 \mathbb{C} omod(Set, 1, \times) \cong \mathbb{S} pan and \mathbb{M} od(\mathbb{S} pan) \cong \mathbb{P} rof \mathbb{C} at.

But there's a lot more to say about $\mathbb{C}\mathbf{at}^{\sharp} = \mathbb{C}\mathbf{omod}(\mathbf{Poly}, y, \triangleleft)$.

Our first goal is to bring you some feeling of familiarity with $\mathbb{C}\mathbf{at}^{\sharp}$.

- We'll find three different homes for categories in Cat[‡].
- First is the least familiar but most top of mind:...
- Categories are the comonoids in **Poly**, so they're the objects of Cat^{\$\pmu\$}.
- You can find functors in this home, but tucked away, hardly relevant.

• Every functor $\mathcal{C} \to \mathcal{D}$ shows up as an adjunction $c \Leftrightarrow_{\square}^{\Delta_F} d$

They constitute the left class of a factorization system on left adjoints. There are better homes if you want to hang out with ordinary cat'ies.

Span lives inside $\mathbb{C}at^{\sharp}$ as the linears

We never said what a horizontal morphism in $\mathbb{C}\mathbf{at}^{\sharp}$ is. It's a *bicomodule*.

 $c \triangleleft p \leftarrow p \rightarrow p \triangleleft d$ satisfying laws w.r.t. $\epsilon \colon c \rightarrow y$, etc.

I'm still astounded that these are precisely prafunctors d-Set $\rightarrow c$ -Set.

- A single poly'l (plus two lawful maps) governs the data migration.
- Example: if d = 0, one can show that p must be a set, $p = Py^0 = P$.
- Bicomodules $c \triangleleft \stackrel{P}{\longrightarrow} 0$ can be identified with functors $c \rightarrow \mathbf{Set}$. So what would you get if you only looked at linear polynomials?
 - Take as objects only linear comonoids c = Cy for some C: **Set**.
 - Take as verticals all maps, and as horizontals linear bicomodules

$$Cy \triangleleft^{Py} \triangleleft Dy$$

• The result is exactly \mathbb{S} pan $\cong \mathbb{C}$ omod(LinPoly, y, \triangleleft).

It's well-known that monads in \mathbb{S} pan are categories, \mathbb{M} od $(\mathbb{S}$ pan $) \cong \mathbb{C}$ at.

- If you're new to this, it's worth thinking about/asking someone.
- Anyway, the second home: monads in the linear subcat'y of $\mathbb{C}\mathbf{at}^{\sharp}$.

The most familiar: path-algebras

While objects in $\mathbb{C}at^{\sharp}$ are cat'ies, they act like copresheaf cat'ies.

- ...and in general, bicomodules $c \triangleleft d$ are praf'rs d-Set $\rightarrow c$ -Set.
- Can we find categories in terms of copresheaves?
- Let $\mathcal{G} := \bullet^{E} \Rightarrow \bullet^{V}$. The corresponding polynomial is $g \coloneqq y^{3} + y$.
 - The cat'y of \mathcal{G} -sets, i.e. bicomodules $g \triangleleft 0$, is g-Set \cong Grph.
 - A bicomodule $g \triangleleft g$ is a prafunctor g-Set $\rightarrow g$ -Set.
 - Prafunctors may be new to you, but they're a really nice, general class.
 - Here's a good one: $g \triangleleft^{path} g$. It sends a graph $g \triangleleft^{G} 0$ to...

• ... $g \triangleleft^{path} g \triangleleft^{G} 0$, which is the graph of all paths in G.

It's well-known that *path* is a monad; its category of algebras is **Cat**!

- So categories are graphs G equipped with a map $path \triangleleft_g G \rightarrow G...$
- ...satisfying the monad algebra axioms.
- Cat's home as the path-complete graphs is probably most familiar.

1 Introduction

- **2** Poly and $\mathbb{C}at^{\sharp}$
- **3** Three homes for categories in Cat[#]
- **4** $\mathbb{C}at^{\sharp}$ includes multivariate polynomials and $\mathbb{P}oly_{\&}$
 - Common complaints
 - Solutions to common complaints
- **5** Dynamic arrangments in $\mathbb{C}at^{\sharp}$

Common complaints about Poly

Everyone recognizes that **Poly** is overflowing with structure.

- Limits, colimits, infinitely many monoidal closed structures, etc.
- Have you ever heard of four monoidal structures interacting like this?
 - $(p_1 \triangleleft p_2 \triangleleft p_3) \times (q_1 \triangleleft q_2 \triangleleft q_3)
 ightarrow (p_1 \otimes q_1) \triangleleft (p_2 \times q_2) \triangleleft (p_3 + q_3)$
- This map is actually surprisingly useful, but I digress.

But people naturally want more. Here are the two most common asks:

- "I want multivariate polynomials; you only care about univariate y."
- "I want polynomials in &; you only care about Set."

Let's consider both of those at once.

- N. Gambino and J. Kock wrote a beautiful paper about polynomials.
- For any locally cartesian closed category &, they define...
- ...an equipment \mathbb{P} **oly** $_{\mathcal{E}}$ of multivariate polynomials in \mathcal{E} .

Multisorted polynomials over arbitrary &

If \mathcal{E} is a category with pullbacks, one can define a double category \mathbb{P} **oly** $_{\mathcal{E}}$.

- Univariate polynomials are exponentiable maps $E \rightarrow B$ in \mathcal{E} .
- Multivariate polynomials are "bridge diagrams" in &:

$$I \leftarrow E \rightarrow B \rightarrow J$$

For example if $\mathcal{E} = \mathbf{Set}$ then this is *J*-many poly's in *I*-many variables. Let's find $\mathbb{P}\mathbf{oly}_{\mathcal{E}}$ inside $\mathbb{C}\mathbf{at}^{\sharp}$.

- First, find any full dense subcategory $\mathcal{A}^{op} \subseteq \mathcal{E}$, e.g. $\mathcal{A}^{op} = \mathcal{E}$.
- The cat'y of univariate polys in & embeds fully faithfully...
- ...and strong monoidally into the bicomodule category $\mathbb{C}\mathbf{at}^{\sharp}(\mathcal{A},\mathcal{A})$.
- The multivariate double category \mathbb{P} **oly**_{\mathcal{E}} embeds into \mathbb{C} **at**^{\sharp} by...
- ...sending $I : \mathcal{E}$ to the slice category \mathcal{A}/I and a bridge diagram...
- ...as above to a certain bicomodule $\mathcal{A}/I \triangleright \longrightarrow \mathcal{A}/J$.

In particular, if you just want multivariate polynomials in Set:

- \blacksquare Note that $1\subseteq \textbf{Set}$ is dense. The double category $\mathbb{P}\textbf{oly}_{\textbf{Set}}$ is...
- ...the full sub double cat'y of $\mathbb{C}\mathbf{at}^{\sharp}$ spanned by the discrete categories.

1 Introduction

- **2** Poly and $\mathbb{C}at^{\sharp}$
- **3** Three homes for categories in Cat[#]
- **4** $\mathbb{C}at^{\sharp}$ includes multivariate polynomials and $\mathbb{P}oly_{\&}$
- **5** Dynamic arrangments in $\mathbb{C}at^{\sharp}$
 - Dynamic arrangements in **Poly**
 - Org lives in Cat[#]

Dynamic functions

Let's get to applications. People often refer to functions as machines.

- A function $f: A \rightarrow B$ takes in A's and spits out B's.
- It is automatic, deterministic, total, unchanging through use.

In real life, machines change as you use them.

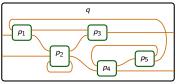
- An over-used key on your keyboard might have a faded letter.
- Your shoes wear down according to how you walk.
- Similarly for your baseball glove, your brain, your home.
- Automatic, deterministic, total, but they change based on usage. I want to call such a thing a dynamic function $A \rightarrow B$.
 - They're modeled by Mealy machines, i.e...

• ...a set S of "states" and a function $f: S \times A \rightarrow B \times S$. These are exactly [Ay, By]-coalgebras.

- **[**p,q**]** is the inner hom for a monoidal structure denoted \otimes .
- We have $[Ay, By] \cong (By)^A$. So a coalgebra $S \to [Ay, By](S)$...
- ... is a function $S \to (BS)^A$, which curries to $S \times A \to B \times S$.

Dynamic arrangements

Everything above also works for **Poly** maps, e.g. wiring diagrams



 $\varphi: [p_1 \otimes \cdots \otimes p_5, q](1)$

Mealy machines are [Ay, By]-coalgebras; what are [p, q]-coalgebras?

- Poly maps are arrangements, like the above. Set $p := p_1 \otimes \cdots \otimes p_5$.
- A [p, q]-coalgebra is a dynamic arr'nt, updating based on what flows.

■ Arr'nts are much more general than WDs, e.g. parameters in ANNs. We can package all this in a monoidal double category called **Org**.

- Its vertical category is **Poly**, e.g. Ob(Org) := Ob(Poly).
- For any p, q: **Poly** its category of horizontal morphisms is:

 \mathbb{O} rg $(p,q) \coloneqq [p,q]$ -coalg

So a horizontal map $p \rightarrow q$ is a dynamic arrangement of p in q.

• A machine outputting maps $p \rightarrow q$ and updating based on what flows p_{15}

\mathbb{O} rg too lives in \mathbb{C} at^{\sharp}

There is a fully faithful double functor $\mathbb{O}\mathbf{rg} \to \mathbb{C}\mathbf{at}^{\sharp}$.

- It sends each object p: **Poly** to the *cofree comonoid* c_p on p.
- Think of this as the cat'y of states and updates for a "p-machine".
- It sends each vertical map $p \xrightarrow{f} q$ to $\mathfrak{c}_p \xrightarrow{\mathfrak{c}_f} \mathfrak{c}_q$.

What does this functor do to a [p, q]-coalgebra $S \xrightarrow{\varphi} [p, q](S)$?

- The functor -coalg: Poly → Cat is lax monoidal.
- In particular, we have a map p-coalg \times [p, q]-coalg \rightarrow q-coalg.
- So given our [p, q]-coalgebra φ , we get a map p-coalg $\rightarrow q$ -coalg.
- This turns out to preserve connected limits, hence be a bicomodule.
- Finally, there's an equivalence of categories p-coalg $\cong c_p$ -Set.

So dynamic arrangements (rewiring diagrams) live in $\mathbb{C}at^{\sharp}$.

- Thus $\mathbb{C}at^{\sharp}$ includes the ANN and prediction market stories.
- And $\mathbb{C}\mathbf{at}^{\sharp}$ is in some sense just the story of data migration.

- **1** Introduction
- **2** Poly and Cat[#]
- **3** Three homes for categories in $\mathbb{C}at^{\sharp}$
- **4** $\mathbb{C}at^{\sharp}$ includes multivariate polynomials and $\mathbb{P}oly_{\&}$
- **5** Dynamic arrangments in $\mathbb{C}at^{\sharp}$

6 Conclusion

Summary

Summary

Poly is an incredibly rich category, and $\mathbb{C}at^{\sharp}$ is its comonoids.

Poly is both cartesian closed and monoidal closed; need we say more?
 Comonoids in (Poly, y, ⊲) are exactly categories.

■ The comonoid maps and bicomodules make up the equipment Cat[♯].

Having unified & ready-made notation, terminology, and techniques is nice.

- That's one thing CT does for math, though it doesn't get everything.
- It is similarly something that $\mathbb{C}\mathbf{at}^{\sharp}$ does for (A)CT, same caveat.
- Categories, functors, profunctors, cofunctors, pra-functors, dynamic...
- ...arrangements, plus more: nerves of higher categories, rewriting, etc.
- It's a setting in which to do formal CT and ACT alike.

Thanks! Comments and questions welcome...