Dynamic Interfaces and Arrangements:
 An algebraic framework for interacting systems

David I. Spivak

TOPOS
 I NSTITUTE

Category Theory for Consciousness Science

$$
\text { 2023 / } 04 \text { / } 16
$$

Outline

1 Introduction

- An introductory account
- Mathematics as accounting
- Plan for the talk

2 An account of sense-making and collective intelligence

3 Polynomial functors

4 Dynamic organizational systems

5 Conclusion

Why am I here?

I think this may be one of the fundamental questions of consciousness.
■ In order to flourish, I need to understand my role, how I fit.
■ What enabled me and persuaded me to be here?

- This question orients me to the situation and directs my work.

■ I'll give an answer below, but first let me reframe "consciousness".

Why am I here?

I think this may be one of the fundamental questions of consciousness.
■ In order to flourish, I need to understand my role, how I fit.
■ What enabled me and persuaded me to be here?

- This question orients me to the situation and directs my work.

■ I'll give an answer below, but first let me reframe "consciousness".
To me, consciousness is extended, not isolated within individuals.
■ I think of consciousness as that which brings senses into coherence.

- The structure of our brain brings our senses into coherence.

■ How much consciousness is in the built environment?
■ How much consciousness is in an organization's culture and policies?

Why am I here?

I think this may be one of the fundamental questions of consciousness.

- In order to flourish, I need to understand my role, how If fit.
- What enabled me and persuaded me to be here?
- This question orients me to the situation and directs my work.
- I'll give an answer below, but first let me reframe "consciousness".

To me, consciousness is extended, not isolated within individuals.

- I think of consciousness as that which brings senses into coherence.
- The structure of our brain brings our senses into coherence.
- How much consciousness is in the built environment?
- How much consciousness is in an organization's culture and policies?

I'm here because I want a systematic account of collective sense-making.

- How do different sense-makers form into a collective sense-maker?
- Neurons form brains, humans form organizations; we see it all around.
- The senses are not in a heap; they interact and inform each other.
- I want math with which to talk carefully about these ideas.

Accounting

We solve big problems together by coordinating our activity.
■ When my efforts and yours conflict, it causes friction and loss.
■ When we coordinate, we stop stepping on each others' toes.
■ To work collectively, our activities must align.
■ We give accounts. We explain our activity in terms of the collective.

Accounting

We solve big problems together by coordinating our activity.
■ When my efforts and yours conflict, it causes friction and loss.
■ When we coordinate, we stop stepping on each others' toes.
■ To work collectively, our activities must align.
■ We give accounts. We explain our activity in terms of the collective.
As the collective matures, its internal accounts become more systematic.

- There is friction every time I misinterpret your account of something.
- Or if your account hides key variables, externalities that I must handle.

■ Systematicity increases transparency, communic'n rate, and reliability.

- We become more systematic so that we can regulate each other.

Accounting

We solve big problems together by coordinating our activity.
■ When my efforts and yours conflict, it causes friction and loss.
■ When we coordinate, we stop stepping on each others' toes.
■ To work collectively, our activities must align.
■ We give accounts. We explain our activity in terms of the collective. As the collective matures, its internal accounts become more systematic.

- There is friction every time I misinterpret your account of something.
- Or if your account hides key variables, externalities that I must handle.

■ Systematicity increases transparency, communic'n rate, and reliability.

- We become more systematic so that we can regulate each other.

Note: regularity is different than predictability.
■ A chess game is regular (pawns don't move left), not predictable.
■ Regulation: "Hey, you can't move a pawn left"; "Oh, oops!".

Mathematical fields as accounting systems

I think of mathematical fields as crystalized accounting systems.

- Arithmetic accounts for the flow of quantities, as in finance.

■ Hilbert spaces account for the states of elementary particles, as in QM.

- Probability distributions account for likelihoods, as in game theory.
- Calculus accounts for relative rates of change.

Mathematical fields as accounting systems

I think of mathematical fields as crystalized accounting systems.

- Arithmetic accounts for the flow of quantities, as in finance.
$■$ Hilbert spaces account for the states of elementary particles, as in QM.
- Probability distributions account for likelihoods, as in game theory.
- Calculus accounts for relative rates of change.

We want systematic accounting for collective sense-making.
■ Math'ns like Newton, Pascal, Frege made new accounting systems.
■ Carefully track the phenomena, articulate the structure, systematize.
■ So we want to track and articulate the structure of sense-making.

Mathematical fields as accounting systems

I think of mathematical fields as crystalized accounting systems.
■ Arithmetic accounts for the flow of quantities, as in finance.
■ Hilbert spaces account for the states of elementary particles, as in QM.
■ Probability distributions account for likelihoods, as in game theory.

- Calculus accounts for relative rates of change.

We want systematic accounting for collective sense-making.
■ Math'ns like Newton, Pascal, Frege made new accounting systems.
■ Carefully track the phenomena, articulate the structure, systematize.
■ So we want to track and articulate the structure of sense-making.
Category theory (CT) is the accounting system for interlocking structures.
■ Mathematical definitions are composed of interlocking structures.
■ Category theory tracks the layers of structure and their connections.
■ This makes analogies-similarities of structure-into formal objects.

- It accounts for the fact that different accounting systems cohere.

Mathematical fields as accounting systems

I think of mathematical fields as crystalized accounting systems.
■ Arithmetic accounts for the flow of quantities, as in finance.
■ Hilbert spaces account for the states of elementary particles, as in QM.
■ Probability distributions account for likelihoods, as in game theory.

- Calculus accounts for relative rates of change.

We want systematic accounting for collective sense-making.
■ Math'ns like Newton, Pascal, Frege made new accounting systems.
■ Carefully track the phenomena, articulate the structure, systematize.
■ So we want to track and articulate the structure of sense-making.
Category theory (CT) is the accounting system for interlocking structures.
■ Mathematical definitions are composed of interlocking structures.
■ Category theory tracks the layers of structure and their connections.
■ This makes analogies-similarities of structure-into formal objects.
■ It accounts for the fact that different accounting systems cohere. Goal: use CT to articulate the structure of collective sense-making.

The morphology of collective sense-making

Collective sense-making-the product of culture-is all around us.
■ It's in our science, our technology, our governance, our morality.

- Each of these is the product of our work over millennia.

■ Each body is a collective of cells whose individual intelligences...
■ ... work harmoniously to create the intelligence at our level.

The morphology of collective sense-making

Collective sense-making-the product of culture-is all around us.
■ It's in our science, our technology, our governance, our morality.
■ Each of these is the product of our work over millennia.
■ Each body is a collective of cells whose individual intelligences...
■ ... work harmoniously to create the intelligence at our level.
I want a language and logic for the shape of collective sense-making.
■ In particular, I want to be able to talk about this leveling up.
■ Rather than understanding the lowest level physics...
■ ...and relying on "emergence" to get us to human intelligence, ...
■ ... I prefer to look for construction principles that are compositional.

The morphology of collective sense-making

Collective sense-making-the product of culture-is all around us.
■ It's in our science, our technology, our governance, our morality.
■ Each of these is the product of our work over millennia.

- Each body is a collective of cells whose individual intelligences...

■ ... work harmoniously to create the intelligence at our level.
I want a language and logic for the shape of collective sense-making.
■ In particular, I want to be able to talk about this leveling up.
■ Rather than understanding the lowest level physics...
■ ...and relying on "emergence" to get us to human intelligence, ...
■ ... I prefer to look for construction principles that are compositional.
Wanted: an algebra by which interacting sense-makers form a sense-maker.

Dynamic organizational systems

Any life-form is a collective, a dynamic organization of smaller parts.

- The organization provides an interaction pattern for the parts.
- The RNA interacts with the nucleus and the ribosome, etc.
- What occurs during these interactions can change the organization.

■ As an extreme example, death will allow the system to disintegrate.

- A CEO may see what's occurring and change the company org-chart.

Dynamic organizational systems

Any life-form is a collective, a dynamic organization of smaller parts.

- The organization provides an interaction pattern for the parts.
- The RNA interacts with the nucleus and the ribosome, etc.
- What occurs during these interactions can change the organization.

■ As an extreme example, death will allow the system to disintegrate.
■ A CEO may see what's occurring and change the company org-chart.
would like to provide an accounting system for the above idea.
■ Open dynamical systems that interact with each other...
■ ...according to some pattern: the type of signals/materials that flow.

- The interaction pattern itself can change based on what flows.

Dynamic organizational systems

Any life-form is a collective, a dynamic organization of smaller parts.

- The organization provides an interaction pattern for the parts.
- The RNA interacts with the nucleus and the ribosome, etc.
- What occurs during these interactions can change the organization.

■ As an extreme example, death will allow the system to disintegrate.
■ A CEO may see what's occurring and change the company org-chart.
I would like to provide an accounting system for the above idea.
■ Open dynamical systems that interact with each other...
■ ...according to some pattern: the type of signals/materials that flow.
■ The interaction pattern itself can change based on what flows.
The CT tool I think we can use is called a dynamic organizational system.

- It is based on the theory of polynomial functors.
- Training an ANN (deep learning) is an example of a DOS.

■ Other examples: prediction markets, Hebbian learning.
■ Can it be extended to collective sense-making? This is open.

Plan

Here is the plan for the rest of the talk.
■ Give an account of sense-making and collective intelligence,
■ Discuss polynomial functors,
■ Introduce dynamic organizational systems,
■ Conclude.

Outline

1 Introduction

2 An account of sense-making and collective intelligence

- Sense-making
- Settling accounts
- Fitness as the quality of fitting

3 Polynomial functors

4 Dynamic organizational systems

5 Conclusion

Sense-making: the pun that wasn't

We want to understand collective sense-making.

- But what is sense?

■ And what does it mean to make sense?

Sense-making: the pun that wasn't

We want to understand collective sense-making.

- But what is sense?
- And what does it mean to make sense?

By sense, I don't mean raw perception.
■ A spidey sense, a sense of danger or opportunity, a sense of direction.
■ These are not mere perception. They're tracking the right variables.
■ When we have a good sense of something, we navigate it with ease.

Sense-making: the pun that wasn't

We want to understand collective sense-making.

- But what is sense?

■ And what does it mean to make sense?
By sense, I don't mean raw perception.
■ A spidey sense, a sense of danger or opportunity, a sense of direction.
■ These are not mere perception. They're tracking the right variables.
■ When we have a good sense of something, we navigate it with ease.
Consider a snapshot of two math students, both wanting to succeed:
■ Student A is faithfully copies down what the teacher says.
■ Student B seems to be doing the opposite: ...
■ ...clearly frustrated, arguing with the teacher, "but then why XYZ??"
■ Suddenly student B says "Oh!! Is it because ABC??"
■ B relaxes, having made sense. Later: B does better than A on tests.

Sense-making: the pun that wasn't

We want to understand collective sense-making.

- But what is sense?

■ And what does it mean to make sense?
By sense, I don't mean raw perception.
■ A spidey sense, a sense of danger or opportunity, a sense of direction.
■ These are not mere perception. They're tracking the right variables.
■ When we have a good sense of something, we navigate it with ease.
Consider a snapshot of two math students, both wanting to succeed:
■ Student A is faithfully copies down what the teacher says.
■ Student B seems to be doing the opposite: ...
■ ...clearly frustrated, arguing with the teacher, "but then why XYZ??"
■ Suddenly student B says "Oh!! Is it because ABC??"
■ B relaxes, having made sense. Later: B does better than A on tests.
Making sense of things takes work, but it produces sense!
■ The work of trying to make things fit together results in new sense.
■ We can solve harder problems if we make better sense of things.

Settling accounts

How are our senses made? Our sense of danger, of sight?
■ Could past sense-making activity, installed into deep structures...
■ ... account for the senses we have today?
■ What could "sense-making" be such that the pun is accurate?

Settling accounts

How are our senses made? Our sense of danger, of sight?
■ Could past sense-making activity, installed into deep structures...
■ ... account for the senses we have today?
■ What could "sense-making" be such that the pun is accurate?
I hypothesize that sense-making has to do with proper accounting.
■ When we shake our head and say "that doesn't make sense"...
■ ... we're saying it doesn't settle the accounts. Something is left over.
■ We jiggle the pieces, try different arrangements until click.
■ Something settles. The energy level drops. Delightful!

Settling accounts

How are our senses made? Our sense of danger, of sight?
■ Could past sense-making activity, installed into deep structures...
■ ... account for the senses we have today?
■ What could "sense-making" be such that the pun is accurate?
I hypothesize that sense-making has to do with proper accounting.
■ When we shake our head and say "that doesn't make sense"...
■ ... we're saying it doesn't settle the accounts. Something is left over.
■ We jiggle the pieces, try different arrangements until click.
■ Something settles. The energy level drops. Delightful!
Once there's a click, things start to become regular.
■ We find an articulation that regularly captures relevant aspects.

- This is exactly the sort of thing we can write down.

■ More generally, we can install it into deeper structures.

Consciousness, sense-making, and fit

So far I have made various claims, which I now want to recall.
■ I think the question "why am I here?" is fundamental.

- I think of consciousness as that which brings senses into coherence.

■ The production of higher-level sense has to do with proper accounting.

Consciousness, sense-making, and fit

So far I have made various claims, which I now want to recall.
■ I think the question "why am I here?" is fundamental.
■ I think of consciousness as that which brings senses into coherence.
■ The production of higher-level sense has to do with proper accounting.
Soon we will be talking about math for dynamic organizations.
■ Different dynamic systems interacting within a sort of ecosystem.
■ We only have simple examples so far, e.g. ANNs.
■ I want help creating a dynamic organizational system of sense-makers.
■ If ANNs are optimizing a function, what should sense-makers do?

Consciousness, sense-making, and fit

So far I have made various claims, which I now want to recall.
■ I think the question "why am I here?" is fundamental.
■ I think of consciousness as that which brings senses into coherence.

- The production of higher-level sense has to do with proper accounting.

Soon we will be talking about math for dynamic organizations.
■ Different dynamic systems interacting within a sort of ecosystem.

- We only have simple examples so far, e.g. ANNs.

■ I want help creating a dynamic organizational system of sense-makers.
■ If ANNs are optimizing a function, what should sense-makers do?
If sense-makers want to cohere, they should understand their own fit.
■ Etymologically, fitness means "the quality of fitting".

- When the sense-maker understands math, they see how it all fits.

■ "Why am I here?" asks "how do I fit"? "What is my role?"
■ If each member of a collective has a good sense of their own fit,...
■ ...it creates coherence, establishing higher-order (collective) sense.

How the math fits in

I was trained as a mathematician, not as a philosopher.
■ My role here is not to philosophize all hour, but to present some math.

- The math is intended as an accounting system for something relevant.

■ Namely, it accounts for coherent interaction of dynamical systems.

How the math fits in

I was trained as a mathematician, not as a philosopher.
■ My role here is not to philosophize all hour, but to present some math.

- The math is intended as an accounting system for something relevant.

■ Namely, it accounts for coherent interaction of dynamical systems.
I'll next introduce the main tool: polynomial functors.
■ Polynomial functors-despite the boring name-are stunning.
■ They're the most highly structured and...
■ ...unreasonably effective abstraction l've ever seen.

How the math fits in

I was trained as a mathematician, not as a philosopher.
■ My role here is not to philosophize all hour, but to present some math.

- The math is intended as an accounting system for something relevant.

■ Namely, it accounts for coherent interaction of dynamical systems.
I'll next introduce the main tool: polynomial functors.
■ Polynomial functors-despite the boring name-are stunning.
■ They're the most highly structured and...
■ ...unreasonably effective abstraction I've ever seen.
Polynomial functors form the basis for dynamic organizational systems.
■ I'm going to explain polynomial functors at many levels simultaneously.
■ You may not understand certain ideas/words; just let them go.
■ I won't leave you long without something you can make sense of.

Outline

1 Introduction

2 An account of sense-making and collective intelligence

3 Polynomial functors

- Unreasonable effectiveness
- Definition and intuition

■ Open dynamical systems

4 Dynamic organizational systems

5 Conclusion

Unreasonable effectiveness

Wigner lauded math as unreasonably effective in the natural sciences.
■ Many of his assertions also affirm the effectiveness of CT in math.

- He mentions the miracle that is our ability to make sense of the world.

Unreasonable effectiveness

Wigner lauded math as unreasonably effective in the natural sciences.
■ Many of his assertions also affirm the effectiveness of CT in math.

- He mentions the miracle that is our ability to make sense of the world.

Probably the real miracle here is abstraction, a bi-directional thing:

- We can take a concrete situation and boil it down to an abstract one.

■ This first part can be imagined as a function $b: C \rightarrow A$.
■ Then we can take conclusions about the boiled down $b(c): A$ and...
■ ... transport them back to the concrete situation c we started with.

Unreasonable effectiveness

Wigner lauded math as unreasonably effective in the natural sciences.
■ Many of his assertions also affirm the effectiveness of CT in math.

- He mentions the miracle that is our ability to make sense of the world.

Probably the real miracle here is abstraction, a bi-directional thing:

- We can take a concrete situation and boil it down to an abstract one.

■ This first part can be imagined as a function $b: C \rightarrow A$.

- Then we can take conclusions about the boiled down $b(c): A$ and...

■ ... transport them back to the concrete situation c we started with.
I think Poly is similarly unreasonably effective for computer science.
■ The category Poly is strange but still pretty easy to think about.
■ In some sense it's all about plumbing abstractions.

- It's got tons of structure: limits, colimits, three orthogonal factorization systems, infinitely-many monoidal closed structures, various coclosures, its comonoids are categories, its monoids generalize operads, etc.
- But it also has tons of applications in CS: Moore machines and Mealy machines, databases and data migration, algebraic datatypes, bi-directional transformations, dependent type theory, effects handling, cellular automata, rewriting workflows, deep learning.

Unreasonable effectiveness

Wigner lauded math as unreasonably effective in the natural sciences.
■ Many of his assertions also affirm the effectiveness of CT in math.

- He mentions the miracle that is our ability to make sense of the world.

Probably the real miracle here is abstraction, a bi-directional thing:

- We can take a concrete situation and boil it down to an abstract one.

■ This first part can be imagined as a function $b: C \rightarrow A$.

- Then we can take conclusions about the boiled down $b(c): A$ and...

■ ... transport them back to the concrete situation c we started with.
I think Poly is similarly unreasonably effective for computer science.
■ The category Poly is strange but still pretty easy to think about.
■ In some sense it's all about plumbing abstractions.

- It's got tons of structure: limits, colimits, three orthogonal factorization systems, infinitely-many monoidal closed structures, various coclosures, its comonoids are categories, its monoids generalize operads, etc.
- But it also has tons of applications in CS: Moore machines and Mealy machines, databases and data migration, algebraic datatypes, bi-directional transformations, dependent type theory, effects handling, cellular automata, rewriting workflows, deep learning.
So what are polynomials?

Definition and intuition

A polynomial p is essentially a data structure. Here are three viewpoints:

Definition and intuition

A polynomial p is essentially a data structure. Here are three viewpoints:

Corolla forest

Cat. description: Poly $=$ "sums of representables functors Set \rightarrow Set".
$■$ For any set S, let $y^{S}:=\operatorname{Set}(S,-)$, the functor represented by S.

- Def: a polynomial is a sum $p=\sum_{i: I} y^{P_{i}}$ of representable functors.

■ Def: a morphism of polynomials is a natural transformation.
■ Note that $I=p(1)$; this is a convenient fact. Write $p[i]$ for P_{i}.

Definition and intuition

A polynomial p is essentially a data structure. Here are three viewpoints:

Corolla forest

Cat. description: Poly $=$ "sums of representables functors Set \rightarrow Set".
$■$ For any set S, let $y^{S}:=\operatorname{Set}(S,-)$, the functor represented by S.

- Def: a polynomial is a sum $p=\sum_{i: l} y^{P_{i}}$ of representable functors.

■ Def: a morphism of polynomials is a natural transformation.
$■$ Note that $I=p(1)$; this is a convenient fact. Write $p[i]$ for P_{i}.
Other ways to see a polynomial $p=\sum_{i: 1} y^{p[i]}$ as an interface:
■ A set I of types; each type $i: I$ has a set $p[i]$ of terms.
■ A set I of problems; each problem $i: I$ has a set $p[i]$ of solutions.
■ A set I of body positions; each pos'n $i: /$ has a set $p[i]$ of sensations.

Combinatorics of polynomial morphisms

Let $p:=y^{3}+2 y$ and $q:=y^{4}+y^{2}+2$

Combinatorics of polynomial morphisms

Let $p:=y^{3}+2 y$ and $q:=y^{4}+y^{2}+2$

A morphism $p \xrightarrow{\varphi} q$ delegates each p-position to a q-position, passing back directions:

Combinatorics of polynomial morphisms

Let $p:=y^{3}+2 y$ and $q:=y^{4}+y^{2}+2$

A morphism $p \xrightarrow{\varphi} q$ delegates each p-position to a q-position, passing back directions:

■ It's like we said about abstraction. $\varphi: p \rightarrow q$ means: ...
■ ... φ abstracts each problem in p to one in q, and...
■ ... φ then implements each q-solution as a p-solution.

Operations: $+, \times, \otimes, \triangleleft,[-,-]$

Given two interfaces p, q, there are many ways to get another interface.
■ For each we'll say the problems and solutions for resulting interface.
■ Sum $p+q$: problem is $i: p(1)$ or $j: q(1)$; solve it.

Operations: $+, \times, \otimes, \triangleleft,[-,-]$

Given two interfaces p, q, there are many ways to get another interface.
$■$ For each we'll say the problems and solutions for resulting interface.
■ Sum $p+q$: problem is $i: p(1)$ or $j: q(1)$; solve it.
\square Product $p \times q$: problem is pair $(i, j): p(1) \times q(1)$; solve either.

Operations: $+, \times, \otimes, \triangleleft,[-,-]$

Given two interfaces p, q, there are many ways to get another interface.
■ For each we'll say the problems and solutions for resulting interface.
■ Sum $p+q$: problem is $i: p(1)$ or $j: q(1)$; solve it.
■ Product $p \times q$: problem is pair $(i, j): p(1) \times q(1)$; solve either.
■ Dirichlet product $p \otimes q$: prob'm is pair $(i, j): p(1) \times q(1)$; solve both.

Operations: $+, \times, \otimes, \triangleleft,[-,-]$

Given two interfaces p, q, there are many ways to get another interface.
$■$ For each we'll say the problems and solutions for resulting interface.
■ Sum $p+q$: problem is $i: p(1)$ or $j: q(1)$; solve it.
■ Product $p \times q$: problem is pair $(i, j): p(1) \times q(1)$; solve either.

- Dirichlet product $p \otimes q$: prob'm is pair $(i, j): p(1) \times q(1)$; solve both.

■ Substitution product $p \triangleleft q$: prob'm is choice of $i: p(1)$ and...
■ ...for every solution a problem $j: q(1)$; solve first then second.

Operations: $+, \times, \otimes, \triangleleft,[-,-]$

Given two interfaces p, q, there are many ways to get another interface.
■ For each we'll say the problems and solutions for resulting interface.
■ Sum $p+q$: problem is $i: p(1)$ or $j: q(1)$; solve it.
■ Product $p \times q$: problem is pair $(i, j): p(1) \times q(1)$; solve either.

- Dirichlet product $p \otimes q$: prob'm is pair $(i, j): p(1) \times q(1)$; solve both.

■ Substitution product $p \triangleleft q$: prob'm is choice of $i: p(1)$ and...
■ ...for every solution a problem $j: q(1)$; solve first then second.
■ Internal hom $[p, q]$: problem is polynomial $\operatorname{map} \varphi: p \rightarrow q ; \ldots$
■ ...soln: problem $i: p(1)$ and solution to its image $\varphi_{1}(i): q(1)$.

Operations: $+, \times, \otimes, \triangleleft,[-,-]$

Given two interfaces p, q, there are many ways to get another interface.
■ For each we'll say the problems and solutions for resulting interface.
■ Sum $p+q$: problem is $i: p(1)$ or $j: q(1)$; solve it.
■ Product $p \times q$: problem is pair $(i, j): p(1) \times q(1)$; solve either.

- Dirichlet product $p \otimes q$: prob'm is pair $(i, j): p(1) \times q(1)$; solve both.

■ Substitution product $p \triangleleft q$: prob'm is choice of $i: p(1)$ and...
■ ...for every solution a problem $j: q(1)$; solve first then second.
■ Internal hom $[p, q]$: problem is polynomial map $\varphi: p \rightarrow q ; \ldots$
■ ...soln: problem $i: p(1)$ and solution to its image $\varphi_{1}(i): q(1)$.
Letting $p:=\sum_{i: p(1)} y^{p_{i}}$ and $q:=\sum_{j: q(1)} y^{q_{j}}$

$$
\begin{gathered}
p \times q=\sum_{(i, j)} y^{p[i]+q[j]} \quad p \otimes q=\sum_{(i, j)} y^{p[i] \times q[j]} \\
p \triangleleft q=\sum_{i: p(1)} \sum_{j: p[i] \rightarrow q(1)} y^{\sum_{x: p[i]} q[j x]} \quad[p, q]=\sum_{\varphi: p \rightarrow q} y^{\sum_{i: p(1)} q\left[\varphi_{1} i\right]}
\end{gathered}
$$

Open dynamical systems: Moore machines

We will be interested in open dynamical systems.

- An open dynamical system has an interface, which we draw as a box.

- A, B are sets, the set of things that can flow on the wire.
- The input ports are drawn on the left and output on the right.

Open dynamical systems: Moore machines

We will be interested in open dynamical systems.

- An open dynamical system has an interface, which we draw as a box.

■ A, B are sets, the set of things that can flow on the wire.

- The input ports are drawn on the left and output on the right.

An (A, B)-dynamical system has internal states, which govern its behavior.

- That is, it includes a set S : Set and two functions:

■ a function $\varphi^{\text {rdt }}: S \rightarrow B$ called readout and
■ a function $\varphi^{\text {upd }}: S \times A \rightarrow S$ called update.

Open dynamical systems: Moore machines

We will be interested in open dynamical systems.

- An open dynamical system has an interface, which we draw as a box.

- A, B are sets, the set of things that can flow on the wire.

■ The input ports are drawn on the left and output on the right.
An (A, B)-dynamical system has internal states, which govern its behavior.
■ That is, it includes a set S : Set and two functions:
■ a function $\varphi^{\text {rdt }}: S \rightarrow B$ called readout and

- a function $\varphi^{\text {upd }}: S \times A \rightarrow S$ called update.

All this is called a Moore machine and is nicely represented in Poly.
\square The interface is represented by the polynomial $B y^{A}$ or $B_{1} B_{2} B_{3} y^{A_{1} A_{2}}$.

- The readout and update are defined by a single polynomial map

$$
\varphi: S y^{S} \rightarrow B y^{A}
$$

Wiring diagrams

Here's a picture of a wiring diagram:

It includes three interfaces: Controller, Plant, and System.

$$
\text { Controller }=B y^{C} \quad \text { Plant }=C y^{A B} \quad \text { System }=C y^{A}
$$

Wiring diagrams

Here's a picture of a wiring diagram:

It includes three interfaces: Controller, Plant, and System.

$$
\text { Controller }=B y^{C} \quad \text { Plant }=C y^{A B} \quad \text { System }=C y^{A}
$$

The wiring diagram represents a map Controller \otimes Plant \rightarrow System.

$$
B y^{C} \otimes C y^{A B} \longrightarrow C y^{A}
$$

Moore machines and wiring diagrams as lenses

To summarize what we've said so far:
\square A wiring diagram (WD) is a map, e.g. $B y^{C} \otimes C y^{A B} \longrightarrow C y^{A}$.
■ Each Moore machine is a map, e.g. $S y^{S} \rightarrow B y^{C}$ and $T y^{T} \rightarrow C y^{A B}$.

Moore machines and wiring diagrams as lenses

To summarize what we've said so far:
\square A wiring diagram (WD) is a map, e.g. $B y^{C} \otimes C y^{A B} \longrightarrow C y^{A}$.
■ Each Moore machine is a map, e.g. $S y^{S} \rightarrow B y^{C}$ and $T y^{T} \rightarrow C y^{A B}$.
We can tensor the Moore machines and compose to obtain $S T y^{S T} \rightarrow C y^{A}$.

- So a wiring diagram is a formula for combining Moore machines.

■ The whole story is polynomials, through and through.

- So far, all the polynomials we've been using are monomials $A y^{B}$.

■ For "mode dependence" where interfaces can change, use gen'l polys.

Moore machines, Mealy machines, and coalgebras

There's a little more to say about open dynamical systems.
■ We just said that an (A, B)-Moore machine is a map $S y^{S} \rightarrow B y^{A}$.

- This is equivalent to a more common cat'ical approach: coalgebras.
- An (A, B)-Moore machine is equivalently a function $S \rightarrow B y^{A} \triangleleft S$.

Moore machines, Mealy machines, and coalgebras

There's a little more to say about open dynamical systems.
■ We just said that an (A, B)-Moore machine is a map $S y^{S} \rightarrow B y^{A}$.

- This is equivalent to a more common cat'ical approach: coalgebras.
- An (A, B)-Moore machine is equivalently a function $S \rightarrow B y^{A} \triangleleft S$.

There's another whole type of dynamical system: Mealy machines.
■ The two are actually inter-convertible, but they have different forms.

$$
\begin{array}{cr}
\text { Moore: } & S \rightarrow B, \quad S \times A \rightarrow S \\
& S y^{S} \rightarrow B y^{A}
\end{array} \quad \text { Mealy: } S \times A \rightarrow S \times B
$$

■ To get from input to output takes one step in Moore, instant in Mealy.
■ An (A, B)-Moore machine is a special (A, B)-Mealy machine.

- An (A, B)-Mealy machine is exactly an $\left(A, B^{A}\right)$-Moore machine.

Outline

1 Introduction

2 An account of sense-making and collective intelligence

3 Polynomial functors

4 Dynamic organizational systems
■ Categories where the morphisms are changing

- ANNs in terms of $\mathbb{O r g}$

■ Prediction markets in terms of $\mathbb{O r g}$
■ Dynamic organizational systems

Categories where the morphisms are changing

Imagine something like Set, except that morphisms are dynamic.

- For sets A, B, a morphism $f: A \rightarrow B$ is a machine with states S.

■ In its current state $s: S$, it outputs an actual function $f_{s}: A \rightarrow B$.
■ Given an input $a: A$, it not only tells you $f_{s}(a)$ but updates its state.
■ I want to call refer to a morphism f as a dynamic function.

Categories where the morphisms are changing

Imagine something like Set, except that morphisms are dynamic.

- For sets A, B, a morphism $f: A \rightarrow B$ is a machine with states S.

■ In its current state $s: S$, it outputs an actual function $f_{s}: A \rightarrow B$.
■ Given an input $a: A$, it not only tells you $f_{s}(a)$ but updates its state.
■ I want to call refer to a morphism f as a dynamic function.
We've actually already seen these: they're the (A, B)-Mealy machines.

- That is, they are the functions $f: S \times A \rightarrow S \times B$.
- This fits into a more general Poly story, namely using internal homs.

■ I'll spare you the details, but here's the basic idea:
■ For any p, q : Poly, a $[p, q]$-coalgebra is a dyn'l system that...
■ ...outputs interaction patterns $p \rightarrow q$ (e.g. any wiring diagram)...
■ ...and updates internal state based on what flows along the wires.
■ Again, in the case $p=A y$ and $q=B y$, you get Mealy machines.

Categories where the morphisms are changing

Imagine something like Set, except that morphisms are dynamic.

- For sets A, B, a morphism $f: A \rightarrow B$ is a machine with states S.

■ In its current state $s: S$, it outputs an actual function $f_{s}: A \rightarrow B$.
■ Given an input $a: A$, it not only tells you $f_{s}(a)$ but updates its state.
■ I want to call refer to a morphism f as a dynamic function.
We've actually already seen these: they're the (A, B)-Mealy machines.

- That is, they are the functions $f: S \times A \rightarrow S \times B$.

■ This fits into a more general Poly story, namely using internal homs.
■ I'll spare you the details, but here's the basic idea:
■ For any p, q : Poly, a $[p, q]$-coalgebra is a dyn'l system that...
■ ...outputs interaction patterns $p \rightarrow q$ (e.g. any wiring diagram)...
■ ...and updates internal state based on what flows along the wires.
■ Again, in the case $p=A y$ and $q=B y$, you get Mealy machines.
Two more technical slides.

Definition of $\mathbb{O r g}$

We can now define the bicategory $\mathbb{O} \mathbf{r g}$.
■ $\mathrm{Ob}(\mathbb{O r g}):=\mathrm{Ob}($ Poly $)$, objects are polynomials.
■ $\mathbb{O} \mathbf{r g}(p, q):=[p, q]$-coalg.
Example: suppose $p=B y^{C} \otimes C y^{A B}$ and $q=C y^{A}$.
■ Then for any state $s: S$ of a $[p, q]$-coalgebra (S, f), we have first...
■ ...a map $p \rightarrow q$. For example, we may have this one:

■ That is, we're outputting interaction patterns. We have second,...

Definition of $\mathbb{O r g}$

We can now define the bicategory $\mathbb{O} \mathbf{r g}$.
■ $\mathrm{Ob}(\mathbb{O r g}):=\mathrm{Ob}($ Poly $)$, objects are polynomials.
■ $\mathbb{O} \operatorname{rg}(p, q):=[p, q]$-coalg.
Example: suppose $p=B y^{C} \otimes C y^{A B}$ and $q=C y^{A}$.

- Then for any state $s: S$ of a $[p, q]$-coalgebra (S, f), we have first...

■ ...a map $p \rightarrow q$. For example, we may have this one:

■ That is, we're outputting interaction patterns. We have second,...
■ ...a state update function whose input is "what flows on the wires".
■ So (S, f) outputs interaction patterns and listens to what flows.

ANNs in terms of $\mathbb{O r g}$

We can now describe artificial neural networks in this language.
■ Let $t:=\sum_{x \in \mathbb{R}} y^{T_{x}^{*} \mathbb{R}} \cong \mathbb{R} y^{\mathbb{R}}$.
■ So "positions of t " $=$ points in \mathbb{R} and "directions" = gradients.
■ Note that $t \otimes t \cong \sum_{x \in \mathbb{R}^{2}} y^{T_{x}^{*} \mathbb{R}^{2}} \cong \mathbb{R}^{2} y^{\mathbb{R}^{2}}$ and similarly for any $t^{\otimes n}$.

ANNs in terms of \mathbb{O} rg

We can now describe artificial neural networks in this language.
$■$ Let $t:=\sum_{x \in \mathbb{R}} y^{T_{x}^{*} \mathbb{R}} \cong \mathbb{R} y^{\mathbb{R}}$.
■ So "positions of t " $=$ points in \mathbb{R} and "directions" = gradients.
■ Note that $t \otimes t \cong \sum_{x \in \mathbb{R}^{2}} y^{T_{x}^{*} \mathbb{R}^{2}} \cong \mathbb{R}^{2} y^{\mathbb{R}^{2}}$ and similarly for any $t^{\otimes n}$. $\mathrm{A}\left[t^{\otimes m}, t^{\otimes n}\right]$-coalgebra consists of:

■ A set S of states / parameters / weights\&biases, and for each $s: S \ldots$
■ ... a function $f_{s}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and \ldots

- ... a function $\left(x: \mathbb{R}^{m}\right) \times\left(y^{\prime}: T_{f_{s}(x)}^{*} \mathbb{R}^{n}\right) \rightarrow S \times T_{s}^{*} \mathbb{R}^{m}$.

ANNs in terms of $\mathbb{O} r g$

We can now describe artificial neural networks in this language.
$■$ Let $t:=\sum_{x \in \mathbb{R}} y^{T_{x}^{*} \mathbb{R}} \cong \mathbb{R} y^{\mathbb{R}}$.
\square So "positions of t " $=$ points in \mathbb{R} and "directions" = gradients.
■ Note that $t \otimes t \cong \sum_{x \in \mathbb{R}^{2}} y^{T_{x}^{*} \mathbb{R}^{2}} \cong \mathbb{R}^{2} y^{\mathbb{R}^{2}}$ and similarly for any $t^{\otimes n}$. $\mathrm{A}\left[t^{\otimes m}, t^{\otimes n}\right]$-coalgebra consists of:

■ A set S of states / parameters / weights\&biases, and for each $s: S \ldots$
■ ... a function $f_{s}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and \ldots
$\square \ldots$ a function $\left(x: \mathbb{R}^{m}\right) \times\left(y^{\prime}: T_{f_{s}(x)}^{*} \mathbb{R}^{n}\right) \rightarrow S \times T_{s}^{*} \mathbb{R}^{m}$.
This latter thing might be called "update and backprop".
■ It takes an input $x: \mathbb{R}^{m}$ and a gradient $y^{\prime}: T_{f(s)}^{*} \mathbb{R}^{n}$ and returns...
■ ...a new/updated state $s^{\prime}: S$ and a backprop'd gradient $x^{\prime}: T_{s}^{*} \mathbb{R}^{m}$.

ANNs in terms of $\mathbb{O} r g$

We can now describe artificial neural networks in this language.
$■$ Let $t:=\sum_{x \in \mathbb{R}} y^{T_{x}^{*} \mathbb{R}} \cong \mathbb{R} y^{\mathbb{R}}$.
■ So "positions of t " $=$ points in \mathbb{R} and "directions" = gradients.
■ Note that $t \otimes t \cong \sum_{x \in \mathbb{R}^{2}} y^{T_{x}^{*} \mathbb{R}^{2}} \cong \mathbb{R}^{2} y^{\mathbb{R}^{2}}$ and similarly for any $t^{\otimes n}$. $\mathrm{A}\left[t^{\otimes m}, t^{\otimes n}\right]$-coalgebra consists of:

■ A set S of states / parameters / weights\&biases, and for each $s: S \ldots$
■ ... a function $f_{s}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and \ldots
$\square \ldots$ a function $\left(x: \mathbb{R}^{m}\right) \times\left(y^{\prime}: T_{f_{s}(x)}^{*} \mathbb{R}^{n}\right) \rightarrow S \times T_{s}^{*} \mathbb{R}^{m}$.
This latter thing might be called "update and backprop".

- It takes an input $x: \mathbb{R}^{m}$ and a gradient $y^{\prime}: T_{f(s)}^{*} \mathbb{R}^{n}$ and returns...

■ ...a new/updated state $s^{\prime}: S$ and a backprop'd gradient $x^{\prime}: T_{s}^{*} \mathbb{R}^{m}$. There are many such $\left[t^{\otimes m}, t^{\otimes n}\right]$-coalgebras.

■ One has carrier $S:=\left\{P: \mathbb{N}, f: \mathbb{R}^{P} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}\right.$ diff'ntiable, $\left.p: \mathbb{R}^{P}\right\}$.

- The state (P, f, p) updated by training pair $\left(x: \mathbb{R}^{m}, y^{\prime}: T_{f(p, x)}^{*} \mathbb{R}^{n}\right)$
$■ \ldots$ is $\left(P, f, p^{\prime}\right)$ where $p^{\prime}:=p+\pi_{P}\left(D f_{(p, x)}^{\top} \cdot y^{\prime}\right)$.

Model of prediction markets

Let's consider a simple version of a prediction market. Suppose:
■ There is a fixed finite set X of outcomes.
■ Each participant can output a prediction $P: \Delta_{+}(X)$ where

$$
\Delta_{+}(X):=\left\{P: X \rightarrow(0,1] \mid 1=\sum_{x \in X} P(x)\right\}
$$

■ Each participant then receives the result, an element $x: X$.

Model of prediction markets

Let's consider a simple version of a prediction market. Suppose:
■ There is a fixed finite set X of outcomes.
■ Each participant can output a prediction $P: \Delta_{+}(X)$ where

$$
\Delta_{+}(X):=\left\{P: X \rightarrow(0,1] \mid 1=\sum_{x \in X} P(x)\right\}
$$

■ Each participant then receives the result, an element $x: X$. It's compositional if we assign predictors a relative "trust" / "wealth".
\square Let n be a finite set of predictors. A relative trust is $t: \Delta(n)$.
■ Given $n: \mathbb{N}, t: \Delta(n)$, and predictors $P_{1}, \ldots, P_{n}: \Delta_{+}(X), \ldots$
■ ...we get a new predictor $t \cdot P=t(1) * P_{1}+\cdots+t(n) * P_{n}$.
■ I.e., we multiply each prediction by how much we trust its predictor.

Prediction markets in terms of $\mathbb{O r g}$

Fix X : Fin. We use the polynomial $p:=\Delta_{+}(X) y^{X}$ to model a predictor.
$■$ It outputs a prediction $P: \Delta_{+}(X)$ and inputs an actual outcome $x: X$.

- Then $p^{\otimes n}$ outputs n predictions and receives n outcomes.

■ Consider the polynomial $\left[p^{\otimes n}, p\right]$. A position includes:...

- ...a function $\Delta_{+}(X)^{n} \rightarrow \Delta_{+}(X)$, and a function $X \rightarrow X^{n}$. ...

■ It's a way to combine n predictions into one and distribute outcomes.
■ A direction of $\left[p^{\otimes n}, p\right]$ consists of: n-many pred'ns and one outcome.

Prediction markets in terms of $\mathbb{O} \mathbf{r g}$

Fix X : Fin. We use the polynomial $p:=\Delta_{+}(X) y^{X}$ to model a predictor.
$■$ It outputs a prediction $P: \Delta_{+}(X)$ and inputs an actual outcome $x: X$.

- Then $p^{\otimes n}$ outputs n predictions and receives n outcomes.
$■$ Consider the polynomial $\left[p^{\otimes n}, p\right]$. A position includes:...
■ ...a function $\Delta_{+}(X)^{n} \rightarrow \Delta_{+}(X)$, and a function $X \rightarrow X^{n}$. ..
■ It's a way to combine n predictions into one and distribute outcomes.
■ A direction of $\left[p^{\otimes n}, p\right]$ consists of: n-many pred'ns and one outcome.
The category of maps $p^{\otimes n} \rightarrow p$ in $\mathbb{O r g}$ is $\left[p^{\otimes n}, p\right]$-coalg.
$■$ Such a coalgebra consists of a set T_{n} and for each $t: T_{n}, \ldots$
■ ...a function $\Delta_{+}(X)^{n} \rightarrow \Delta_{+}(X)$, a function $X \rightarrow X^{n}$, and...
■ ...given n predictions P_{1}, \ldots, P_{n} and an outcome x, a new state.

Prediction markets in terms of $\mathbb{O} \mathbf{r g}$

Fix X : Fin. We use the polynomial $p:=\Delta_{+}(X) y^{X}$ to model a predictor.

- It outputs a prediction $P: \Delta_{+}(X)$ and inputs an actual outcome $x: X$.
- Then $p^{\otimes n}$ outputs n predictions and receives n outcomes.
- Consider the polynomial $\left[p^{\otimes n}, p\right]$. A position includes:...
- ...a function $\Delta_{+}(X)^{n} \rightarrow \Delta_{+}(X)$, and a function $X \rightarrow X^{n}$. ...
- It's a way to combine n predictions into one and distribute outcomes.
- A direction of $\left[p^{\otimes n}, p\right]$ consists of: n-many pred'ns and one outcome.

The category of maps $p^{\otimes n} \rightarrow p$ in $\mathbb{O} \mathbf{r g}$ is $\left[p^{\otimes n}, p\right]$-coalg.

- Such a coalgebra consists of a set T_{n} and for each $t: T_{n}, \ldots$
- ...a function $\Delta_{+}(X)^{n} \rightarrow \Delta_{+}(X)$, a function $X \rightarrow X^{n}$, and...
- ...given n predictions P_{1}, \ldots, P_{n} and an outcome x, a new state.

There are many such coalgebras. The one for us is:

- Take $T_{n}:=\Delta_{n}$, the set of "relative trust levels" for n players.
- Given $t: T_{n}$, use $t \cdot-: \Delta_{+}(X)^{n} \rightarrow \Delta_{+}(X)$ and $x \mapsto(x, x, \ldots, x)$.
- Given pred'ns $\left(P_{i}\right)_{i: n}$ and outcome x, use Bayesian upd. to get new t^{\prime}.

Dynamic organizational systems

So what are dynamic organizational systems? ${ }^{1}$
■ We've shown two examples: ANNs and prediction markets.

- Technically, these are monoidal caty's or operads enriched in $\mathbb{O r g}$.

■ A single procedure (e.g. gradient descent, Bayesian update)...
■ ... which can be performed locally (per neuron, per predictor)...
■ ...such that composites of this procedure again perform the procedure.
${ }^{1}$ This is joint work with Brandon Shapiro (arXiv:2205.03906).

Dynamic organizational systems

So what are dynamic organizational systems? ${ }^{1}$

- We've shown two examples: ANNs and prediction markets.
- Technically, these are monoidal caty's or operads enriched in $\mathbb{O r g}$.
- A single procedure (e.g. gradient descent, Bayesian update)...
- ...which can be performed locally (per neuron, per predictor)...
- ...such that composites of this procedure again perform the procedure.

And why are they relevant to consciousness?

- I'd like someone to define a dynamic sense-making system.
- It organizes itself (like an ANN or pred'n market) through experience.
- Q: what single procedure, performed locally (per sense-maker)...
- ...would make a composite of sense-makers again be a sense-maker?
- I imagine each trying to account for the environment and its own fit.
- I imagine the accounting language naturally becoming more systematic

[^0]
Outline

1 Introduction

2 An account of sense-making and collective intelligence

3 Polynomial functors

4 Dynamic organizational systems

5 Conclusion

- Summary

Summary

We ask how sense is made.
■ Sense of danger, direction, humor: how to track the "right" variables?

- We make sense by settling accounts: everything fits into place.

■ We work to install sense-making systems into the deepest structures.

Summary

We ask how sense is made.
■ Sense of danger, direction, humor: how to track the "right" variables?
■ We make sense by settling accounts: everything fits into place.
■ We work to install sense-making systems into the deepest structures.
Mathematics is highly systematic (crystalized) accounting.
■ We use it to give very structured, repeatable, regulatable accounts.

- The math guides our questioning and makes results communicable.

■ Category theory is the accounting system for interlocking structures.
■ Poly is a stunningly structured category, unreasonably effective in CS.

Summary

We ask how sense is made.
■ Sense of danger, direction, humor: how to track the "right" variables?
■ We make sense by settling accounts: everything fits into place.
■ We work to install sense-making systems into the deepest structures.
Mathematics is highly systematic (crystalized) accounting.
■ We use it to give very structured, repeatable, regulatable accounts.

- The math guides our questioning and makes results communicable.
- Category theory is the accounting system for interlocking structures.

■ Poly is a stunningly structured category, unreasonably effective in CS.
Dynamic organizational systems are ways for local entities to self-organize.
■ ANNs and pred'n markets self-organize based on training / experience.
■ Open question: define a DOS for sense-making?

- The math guides questioning about how we make sense.

Thanks! Comments and questions welcome...

[^0]: ${ }^{1}$ This is joint work with Brandon Shapiro (arXiv:2205.03906).

