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Introduction Why am I here?

Why am I here?

We’re here to learn from each other. But what is learning?

Somehow out of all the information out there, some of it sticks.

We develop frameworks by which to store information.

I’m interested in how intelligence and learning function.

So I study how knowledge is stored and transferred in databases and...

...how dynamical systems interact to adapt and learn (e.g. in DNNs).

Entropy has been put forward as an approach to intelligence and learning.

Life can be understood as a dissipative system, spraying entropy.

It does so while packing negentropy—organization—into itself.

Polani’s empowerment and Freer’s causal entropic forces...

...are entropy-based approaches to intelligent behavior.

I only seem to understand things when they’re written categorically.

I’ve been trying to understand “what entropy really is.”

The Baez-Fritz-Leinster conception of entropy is great,...

...but I want to connect it in with dynamical systems or databases.
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Introduction Working in the Poly ecosystem

The overwhelming abundance of Poly

In January 2020 I fell in love with a category called Poly.

Its applications subsume everything I’d done with categ’l databases...

...and everything I’d done with interacting dynamical systems.

It’s used in functional programming, type theory, higher cat’y theory.

But it’s not just very applicable, it’s also very highly-structured.
Coproducts and products that agree with usual polynomial arithmetic;
All limits and colimits;
At least three orthogonal factorization systems;
A symmetric monoidal structure ⊗ distributing over +;
A cartesian closure qp and monoidal closure [p, q] for ⊗;
Another nonsymmetric monoidal structure / that’s duoidal with ⊗;

A left (Meyers?) /-coclosure
[
−
−

]
, meaning Poly(p, q / r) ∼= Poly(

[
r
p

]
, q);

An indexed right /-coclosure, i.e. Poly(p, q / r) ∼=
∑

f : p(1)→q(1)

Poly(p
f
_q, r);

An indexed right ⊗-coclosure (Niu?), i.e. Poly(p, q ⊗ r) ∼=
∑

f : p(1)→q(1)

Poly(p ↗
f
q, r);

At least eight monoidal structures in total;
/-monoids generalize Σ-free operads;
/-comonoids are exactly categories; bicomodules are data migrations.

See “A reference for categorical structures on Poly”, arXiv: 2202.00534
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Introduction Working in the Poly ecosystem

Entropy in terms of Poly

I now use the Poly-ecosystem to structure my thinking.

The abundance of structure lets me track my mental moves.

I can check the resulting formulation using concrete examples.

So now I try to do everything in Poly, e.g. thinking about entropy.

So today I’ll tell you how entropy looks from the Poly point of view.

I’ll show how to think of objects in Poly as empirical distributions.

I’ll show that there are distributive monoidal functors

PolyCart p 7→ṗy−−−→ Poly
p 7→(p(1),Γ(p))−−−−−−−−−→ Set× Setop

sending p ∈ PolyCart to an invariant h(p) := (A,B) ∈ Set× Setop.

The Shannon entropy can then be extracted: H(p) = log(AA/B)/A.

Properties of entropy follow from the distributive monoidality of h.
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Introduction Plan of the talk

Plan

The plan for the rest of the time is as follows:

Give background on polynomial functors.

Explain h : PolyCart → Set× Setop and its relation to entropy.

Talk about generalizations and future work.

Conclude.
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Background on Poly The category Poly

Poly for experts

What I’ll call the category Poly has many names.

The free completely distributive category on one object;

The free coproduct completion of Setop;

The full subcategory of [Set,Set] spanned by...
...functors that preserve connected limits;

The full subcategory of [Set,Set] spanned by coproducts of repr’bles;

The category of typed sets and colax maps between them.

Objects: pairs (S , τ), where S ∈ Set and τ : S → Set.

Morphisms (S , τ)
ϕ−→ (S ′, τ ′): pairs (ϕ1, ϕ

]), where

S S ′

Set

τ

ϕ1

τ ′

ϕ]

But let’s make this easier.
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Background on Poly The category Poly

What is a polynomial?

Algebraic Bundle Corolla forest

y2 + 3y + 2

•

•
•

•

•

•

•

•

•

• •
π • • • • • •

You can think of the bundle as a empirical distribution:

The first outcome was drawn twice; the next three once; the rest never.

It corresponds to the distribution ( 2
5 ,

1
5 ,

1
5 ,

1
5 , 0, 0).
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Background on Poly The category Poly

What is a morphism of polynomials?

Let p := y3 + 2y and q := y4 + y2 + 2

•
1
•
2
•
3

p

•
1
•
2
•
3
•
4

q

A morphism p
ϕ−→ q sends p-outcomes to q-outcomes, interpreting draws:

•
1

•
1

•
2

•
1

•
3

•
4
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Background on Poly The category Poly

The category of polynomials

Easiest description: Poly = “sums of representables functors Set→ Set”.

For any set S , let yS := Set(S ,−), the functor represented by S .

Def: a polynomial is a sum p =
∑

i∈I y
p[i ] of representable functors.

Def: a morphism of polynomials is a natural transformation.

In Poly, usual + is the coproduct and usual × is the product.

We will need a wide subcategory PolyCart ⊆ Poly.

Same objects, but morphisms p
ϕ−→ q are cartesian natural transform’s;

...i.e. for any function S → T , the naturality square is a pullback.

Equivalently, for each outcome i ∈ p(1) the interpretation map

q[ϕ(i)] ∼= p[i ]

is a bijection. Example: there are 24 cartesian maps y4 → y4 + y3.
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Background on Poly The category Poly

Notation

We said that a polynomial is a sum of representable functors

p ∼=
∑
i∈I

yp[i ].

But note that I ∼= p(1). So we can write

p ∼=
∑

i∈p(1)

yp[i ].

So p(1) is the outcome-set, and elements of p[i ] are draws of outcome i .
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Background on Poly The category Poly

Fundamental invariants

We will be interested in two fundamental invariants of a polynomial.

From the bundle POV, these would be base and global sections.

So if p is represented by E → B, these are B and Set/B(B,E ).

In terms of polynomials these are

p(1) ∼= Poly(y, p) and Γ(p) := Poly(p, y).

E.g. for the following bundle these are p(1) ∼= 4 and Γ(p) ∼= 18.

2y3 + y2 + y =

•

•
•
•

•

•
•
•

•

•
•

•

•
π

has 4 base elements
and 18 global sections

These are functorial in opposite directions:

Poly
p 7→(p(1),Γ(p))−−−−−−−−−→ Set× Setop

In fact, this functor is a left adjoint, but we won’t need that.
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Background on Poly Distributive monoidal structure

The distributive monoidal structure (Poly, 0,+, y,⊗)
The category Poly is distributive monoidal.

The usual sum of two polynomials is their coproduct; 0 is initial.

The usual product is the cartesian product too, but we won’t use this.

There is another operation ⊗ called Dirichlet product. Formula:

p ⊗ q :=
∑

(i ,j)∈p(1)×q(1)

yp[i ]×q[j]

These are very simple bundle-wise: sum & product of base and total space:

E1

B1

+

E2

B2

=

E1 + E2

B1 + B2

and

E1

B1

⊗
E2

B2

=

E1 × E2

B1 × B2

These clearly distribute: p ⊗ (q1 + q2) ∼= (p ⊗ q1) + (p ⊗ q2).

Soon we’ll see how the fundamental invariants respect these oper’ns.
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Background on Poly Other theoretical aspects

Derivatives and the total space

The derivative of a polynomial functor is another polynomial functor.

Write ṗ for the derivative with respect to y.

In fact, we will be much more interested in ṗy.

ṗ =
∑

i∈p(1)

∑
d∈p[i ]

yp[i ]\{d} and ṗy ∼=
∑

i∈p(1)

p[i ]yp[i ]

Neither of these is functorial in Poly, but they are functorial in PolyCart.

PolyCart p 7→ṗy−−−→ PolyCart

In fact p 7→ ṗy is a comonad on PolyCart.

I see the counit ṗy→ p as “how Poly thinks of p as a bundle.”

In that way p is the base. So let’s call p 7→ ṗy the total space functor.
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Background on Poly Other theoretical aspects

Bifibration Poly→ Set

The last theory we’ll need is the bifibration Poly→ Set.

The functor p 7→ p(1) is both a fibration and an op-fibration.

In fact it’s even more: a distributive monoidal ∗-bifibration!

Down to earth what does this mean? Let p be a polynomial and A a set.

For any function f : A→ p(1) we can take the pullback

f ∗p p

A p(1)
f

y

So f ∗ takes polys with outcome-set p(1) to those with outcome-set A.

This operation has both a left adjoint f! and a right adjoint f∗.

f!p :=
∑
b∈B

y

∏
a 7→b

p[a]
and f∗p :=

∑
b∈B

y

∑
a 7→b

p[a]

I.e., for any f : A→ B, we have PolyA(f ∗q, p) ∼= PolyB(q, f∗p).

As we lump outcomes together, we add up the draws.
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Distributive functors and entropy Distributive functor PolyCart → Set× Setop

Total space as distributive

We’re now ready to get to work on how all this relates to entropy.

The approach is to extract two invariant sets from any polynomial.

This process is “good” in that it is a distributive monoidal functor.

We’ll extract the extensive and intensive entropies from these.

So first, we want to see that p 7→ ṗy is distributive monoidal.

The derivative is linear, ˙(p + q) = ṗ + q̇, and so is p 7→ py.

So p 7→ ṗy preserves coproducts. What about ⊗?

(ṗy)⊗ (q̇y) ∼=
∑

i∈p(1)

p[i ]yp[i ] ⊗
∑

j∈q(1)

q[j ]yq[j]

∼=
∑

(i ,j)∈p(1)×q(1)

p[i ]× q[j ]yp[i ]×q[j]

∼= ˙(p ⊗ q)y

So (PolyCart, 0,+, y,⊗)
p 7→ṗy−−−→ (Poly, 0,+, y,⊗) is distributive monoidal.

14 / 22
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Distributive functors and entropy Distributive functor PolyCart → Set× Setop

Fundamental invariants as distributive

The fundamental invariants p 7→ (p(1), Γ(p)) are also distributive

(Poly, 0,+, y,⊗)
p 7→(p(1),Γ(p))−−−−−−−−−→ (Set× Setop, (0, 1),+, (1, 1),⊗)

But what exactly is all this structure on Set× Setop?

Set× Setop has coproducts: (A1,B1)+(A2,B2) ∼= (A1+A2,B1×B2).

It has another symmetric monoidal structure with unit (1, 1):

(A1,B1)⊗ (A2,B2) :=
(
A1 × A2,B

A2
1 × BA1

2

)
And these distribute “because” BA1+A2(B1B2)A ∼= (BA1BA

1 )(BA2BA
2 ).

Why do the fundamental invariants (as a pair) preserve + and ⊗?

We have (p + q)(1) ∼= p(1) + q(1) and Γ(p + q) ∼= Γ(p)× Γ(q).

This says they preserve +. One also checks they preserve ⊗:

(p ⊗ q)(1) ∼= p(1)× q(1) and Γ(p ⊗ q) ∼= Γ(p)q(1) × Γ(q)p(1)
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Fundamental invariants as distributive

The fundamental invariants p 7→ (p(1), Γ(p)) are also distributive

(Poly, 0,+, y,⊗)
p 7→(p(1),Γ(p))−−−−−−−−−→ (Set× Setop, (0, 1),+, (1, 1),⊗)

But what exactly is all this structure on Set× Setop?

Set× Setop has coproducts: (A1,B1)+(A2,B2) ∼= (A1+A2,B1×B2).

It has another symmetric monoidal structure with unit (1, 1):

(A1,B1)⊗ (A2,B2) :=
(
A1 × A2,B

A2
1 × BA1

2

)
And these distribute “because” BA1+A2(B1B2)A ∼= (BA1BA

1 )(BA2BA
2 ).
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Distributive functors and entropy Entropy and entropy density

Taking stock

Let’s denote the composite of our distributive functors by h:

PolyCart Poly Set× Setopp 7→ṗy

h

p 7→(p(1),Γ(p))

The claim is that h extracts everything you need to calculate entropy.

Preserving + and ⊗ gives us properties of entropy.

Define a real number L(A,B) := log(#A#A)−log(#B)
#A . Then:

Theorem

Let p be a polynomial, considered as a probability distribution P, and let
H(P) be its Shannon entropy. Then we have

H(P) = L(h(p))
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Distributive functors and entropy Entropy and entropy density

The categorical partition function and entropy

I’m unfamiliar with the thermo picture. Joint with James Dama:

One should think of Shannon entropy as an entropy density.

The thermo picture defines a partition function Ω for distributions.

For p ∈ Poly with h(p) = (A,B), this would be Ωp := AA

B .

Then the extensive entropy of p is given by E(p) := log Ω(p).

And the Shannon entropy of p is the density H(p) := E(p)/A.

For example consider the bundle for p := y4 + 4y1:

•

•
•
•
•

•

•

•

•

•

•

•

•
π

We find ṗy = 4y4 + 4y, so h(p) = (4 + 4, 44) = (8, 44).

So Ωp = 88

44 , Ext’ve: E(p) = log Ωp = 16, Shannon: H(p) = 16/8 = 2.
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Distributive functors and entropy Entropy and entropy density

Consequences of distributivity

The fact that h preserves ⊗ and properties of log immediately give us

H(p ⊗ q) = H(p) + H(q).

The fact that h preserves + is more subtle. We see it better in Ω and E.

Again joint with James Dama.

Suppose you write p as a sum, p :=
∑

a∈A pa.

This is the same as giving a function f : p(1)→ A.

Recall that from this we get f∗p ∈ PolyA, lumping distributions.

It follows from the fact that h preserves sums that:

Ωp = Ωf∗p ×
∏
a∈A

Ωpa and E(p) = E(f∗p) +
∑
a∈A

E(pa)

The usual “chain rule” for Shannon entropy follows directly from this.
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Distributive functors and entropy Entropy and entropy density

A geometric viewpoint on Shannon entropy

Think of objects (A,B) ∈ Set× Setop as representing formal rectangles.

Here A is its area, A
√
B is its width, and A/ A

√
B is its length.

Adding two rectangles (A1,B1) + (A2,B2) = (A1 + A2,B1 × B2)...

...add the areas and take the weighted geometric mean of the widths.

Multiplying two rectangles (A1,B1)⊗ (A2,B2) = (A1A2,B
A2
1 BA2

2 )...

...you multiply the areas and multiply the widths.

The log-length log(A/ A
√
B) of the rectangle is the Shannon entropy.

Let p := y4 + 4y, so h(p) = (8, 44). Width=
8
√

44 = 2, length=8/2 = 4.

•

•
•
•
•

•

•

•

•

•

•

•

•
π

H(p) = 2

same area,
new length7−−−−−→

•

•
•

•

•
•

•

•
•

•

•
•

π

length=4, and log 4 = 2

width=2

If q = LyW was rectangular to begin with, it’ll stay that way.
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Generalizations and future work Functoriality?

Functoriality?

One of the big questions for me is: what does functoriality buy you?

The distributivity of h : PolyCart → Set× Setop means something.

It gives us well-known facts about entropy and entropy density.

But what about the fact that h is functorial?

Logarithms have no clue about what maps in Set× Setop mean.
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Generalizations and future work Functoriality?

Entropy and dynamics?

Returning to my goals, I’d like to understand learning.

If entropy will be involved, I want it to be about dynamical systems.

The groupoid ṗy is kind of dynamic: little p[i ]’s spinning around.

But what about the point of Shannon entropy: communication?

A C

B

E

D

Shouldn’t we be able to see Huffman coding or something here...?

What about “empowerment” or “causal entropic forces”?
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Conclusion Summary

Summary

Entropy and Poly are amazing and have overlapping applications.

Entropy is well-known throughout the scientific and technical world.

Poly is the most highly-structured category I’ve ever seen.

Both have applications to interacting dynamical systems.

There is (at least one) interpretation of entropy within Poly.

Objects in Poly can be viewed as empirical distributions.

There is a (+,⊗)-preserving functor h : PolyCart → Set× Setop.

If h(p) = (A,B) then H(p) = log(A/ A
√
B)/A.

So all the entropy-relevant data of p is encapsulated in two sets.

Entropy still feels somehow foreign to me.

Hopefully, having different categorifications will help clarify it.

I still have hope that it will bond with the dynamics of Poly.

Thanks! Comments and questions welcome...
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