Polynomial Functors and Shannon Entropy

David I. Spivak

TOPOS
 I NSTITUTE

Symposium on Categorical Semantics of Entropy
2022 May 13

Outline

1 Introduction
■ Why am I here?

- Working in the Poly ecosystem
- Plan of the talk

2 Background on Poly

3 Distributive functors and entropy

4 Generalizations and future work

5 Conclusion

Why am I here?

We're here to learn from each other. But what is learning?
■ Somehow out of all the information out there, some of it sticks.
■ We develop frameworks by which to store information.
■ I'm interested in how intelligence and learning function.
■ So I study how knowledge is stored and transferred in databases and...
■ ...how dynamical systems interact to adapt and learn (e.g. in DNNs).

Why am I here?

We're here to learn from each other. But what is learning?
■ Somehow out of all the information out there, some of it sticks.
■ We develop frameworks by which to store information.
■ I'm interested in how intelligence and learning function.
■ So I study how knowledge is stored and transferred in databases and...
■ ...how dynamical systems interact to adapt and learn (e.g. in DNNs).
Entropy has been put forward as an approach to intelligence and learning.
■ Life can be understood as a dissipative system, spraying entropy.
■ It does so while packing negentropy-organization-into itself.
■ Polani's empowerment and Freer's causal entropic forces...
■ ...are entropy-based approaches to intelligent behavior.

Why am I here?

We're here to learn from each other. But what is learning?
■ Somehow out of all the information out there, some of it sticks.
■ We develop frameworks by which to store information.
■ I'm interested in how intelligence and learning function.
■ So I study how knowledge is stored and transferred in databases and...
■ ...how dynamical systems interact to adapt and learn (e.g. in DNNs).
Entropy has been put forward as an approach to intelligence and learning.
■ Life can be understood as a dissipative system, spraying entropy.
■ It does so while packing negentropy-organization-into itself.
■ Polani's empowerment and Freer's causal entropic forces...
■ ...are entropy-based approaches to intelligent behavior.
I only seem to understand things when they're written categorically.
■ I've been trying to understand "what entropy really is."
■ The Baez-Fritz-Leinster conception of entropy is great,...
■ ...but I want to connect it in with dynamical systems or databases.

The overwhelming abundance of Poly

In January 2020 I fell in love with a category called Poly.
■ Its applications subsume everything l'd done with categ'I databases...
■ ...and everything l'd done with interacting dynamical systems.

- It's used in functional programming, type theory, higher cat'y theory.

The overwhelming abundance of Poly

In January 2020 I fell in love with a category called Poly.
■ Its applications subsume everything l'd done with categ'l databases...
■ ...and everything l'd done with interacting dynamical systems.
■ It's used in functional programming, type theory, higher cat'y theory. But it's not just very applicable, it's also very highly-structured.

- Coproducts and products that agree with usual polynomial arithmetic;
- All limits and colimits;
- At least three orthogonal factorization systems;
- A symmetric monoidal structure \otimes distributing over + ;
- A cartesian closure q^{p} and monoidal closure $[p, q]$ for \otimes;
- Another nonsymmetric monoidal structure \triangleleft that's duoidal with \otimes;
- A left (Meyers?) \triangleleft-coclosure $\left[\begin{array}{l}- \\ -\end{array}\right]$, meaning $\operatorname{Poly}(p, q \triangleleft r) \cong \operatorname{Poly}\left(\left[\begin{array}{l}r \\ p\end{array}\right], q\right)$;
- An indexed right \triangleleft-coclosure, i.e. $\operatorname{Poly}(p, q \triangleleft r) \cong \sum_{f: p(1) \rightarrow q(1)} \operatorname{Poly}(p \stackrel{f}{f}, r)$;
- An indexed right \otimes-coclosure (Niu?), i.e. $\operatorname{Poly}(p, q \otimes r) \cong \sum_{f: p(1) \rightarrow q(1)} \operatorname{Poly}\left(p^{f} q, r\right)$;
- At least eight monoidal structures in total;
- \triangleleft-monoids generalize Σ-free operads;
- \triangleleft-comonoids are exactly categories; bicomodules are data migrations.

See "A reference for categorical structures on Poly", arXiv: 2202.005342/22

Entropy in terms of Poly

I now use the Poly-ecosystem to structure my thinking.
■ The abundance of structure lets me track my mental moves.
■ I can check the resulting formulation using concrete examples.
■ So now I try to do everything in Poly, e.g. thinking about entropy.

Entropy in terms of Poly

I now use the Poly-ecosystem to structure my thinking.
■ The abundance of structure lets me track my mental moves.

- I can check the resulting formulation using concrete examples.

■ So now I try to do everything in Poly, e.g. thinking about entropy. So today I'll tell you how entropy looks from the Poly point of view.

■ I'll show how to think of objects in Poly as empirical distributions.
■ I'll show that there are distributive monoidal functors

$$
\text { Poly }{ }^{\text {Cart }} \xrightarrow{p \mapsto \dot{p} y} \text { Poly } \xrightarrow{p \mapsto(p(1), \Gamma(p))} \text { Set } \times \text { Set }^{\mathrm{op}}
$$

sending $p \in$ Poly ${ }^{\text {Cart }}$ to an invariant $h(p):=(A, B) \in \mathbf{S e t} \times$ Set $^{\text {op }}$.
■ The Shannon entropy can then be extracted: $H(p)=\log \left(A^{A} / B\right) / A$.
■ Properties of entropy follow from the distributive monoidality of h.

Plan

The plan for the rest of the time is as follows:
■ Give background on polynomial functors.
■ Explain h : Poly ${ }^{\text {Cart }} \rightarrow$ Set \times Set $^{\text {op }}$ and its relation to entropy.

- Talk about generalizations and future work.

■ Conclude.

Outline

1 Introduction

2 Background on Poly

- The category Poly
- Distributive monoidal structure

■ Other theoretical aspects

3 Distributive functors and entropy

4 Generalizations and future work

5 Conclusion

Poly for experts

What I'll call the category Poly has many names.
■ The free completely distributive category on one object;
■ The free coproduct completion of Set ${ }^{\mathrm{op}}$;
■ The full subcategory of [Set, Set] spanned by...
...functors that preserve connected limits;
■ The full subcategory of [Set, Set] spanned by coproducts of repr'bles;

Poly for experts

What I'll call the category Poly has many names.
■ The free completely distributive category on one object;
■ The free coproduct completion of Set ${ }^{\text {op; }}$
■ The full subcategory of [Set, Set] spanned by... ...functors that preserve connected limits;

- The full subcategory of [Set, Set] spanned by coproducts of repr'bles;

■ The category of typed sets and colax maps between them.
■ Objects: pairs (S, τ), where $S \in$ Set and $\tau: S \rightarrow$ Set.
■ Morphisms $(S, \tau) \xrightarrow{\varphi}\left(S^{\prime}, \tau^{\prime}\right)$: pairs $\left(\varphi_{1}, \varphi^{\sharp}\right)$, where

Set

But let's make this easier.

What is a polynomial?

What is a polynomial?

Corolla forest

You can think of the bundle as a empirical distribution:
■ The first outcome was drawn twice; the next three once; the rest never.
■ It corresponds to the distribution ($\left.\frac{2}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, 0,0\right)$.

What is a morphism of polynomials?

Let $p:=y^{3}+2 y$ and $q:=y^{4}+y^{2}+2$

A morphism $p \xrightarrow{\varphi} q$ sends p-outcomes to q-outcomes, interpreting draws:

The category of polynomials

Easiest description: Poly $=$ "sums of representables functors Set \rightarrow Set".
$■$ For any set S, let $y^{S}:=\operatorname{Set}(S,-)$, the functor represented by S.
■ Def: a polynomial is a sum $p=\sum_{i \in I} y^{p[i]}$ of representable functors.

- Def: a morphism of polynomials is a natural transformation.

■ In Poly, usual + is the coproduct and usual \times is the product.

The category of polynomials

Easiest description: Poly $=$ "sums of representables functors Set \rightarrow Set".
$■$ For any set S, let $y^{S}:=\operatorname{Set}(S,-)$, the functor represented by S.
■ Def: a polynomial is a sum $p=\sum_{i \in I} y^{p[i]}$ of representable functors.

- Def: a morphism of polynomials is a natural transformation.

■ In Poly, usual + is the coproduct and usual \times is the product.
We will need a wide subcategory Poly Cart \subseteq Poly.

- Same objects, but morphisms $p \xrightarrow{\varphi} q$ are cartesian natural transform's;

■ ...i.e. for any function $S \rightarrow T$, the naturality square is a pullback.
■ Equivalently, for each outcome $i \in p(1)$ the interpretation map

$$
q[\varphi(i)] \cong p[i]
$$

is a bijection. Example: there are 24 cartesian maps $y^{4} \rightarrow y^{4}+y^{3}$.

Notation

We said that a polynomial is a sum of representable functors

$$
p \cong \sum_{i \in I} y^{p[i]}
$$

But note that $I \cong p(1)$. So we can write

$$
p \cong \sum_{i \in p(1)} y^{p[i]}
$$

So $p(1)$ is the outcome-set, and elements of $p[i]$ are draws of outcome i.

Fundamental invariants

We will be interested in two fundamental invariants of a polynomial.
■ From the bundle POV, these would be base and global sections.
■ So if p is represented by $E \rightarrow B$, these are B and $\operatorname{Set}_{/ B}(B, E)$.

- In terms of polynomials these are

$$
p(1) \cong \operatorname{Poly}(y, p) \quad \text { and } \quad \Gamma(p):=\operatorname{Poly}(p, y)
$$

■ E.g. for the following bundle these are $p(1) \cong 4$ and $\Gamma(p) \cong 18$.

has 4 base elements
and 18 global sections

Fundamental invariants

We will be interested in two fundamental invariants of a polynomial.
■ From the bundle POV, these would be base and global sections.
■ So if p is represented by $E \rightarrow B$, these are B and $\operatorname{Set}_{/ B}(B, E)$.

- In terms of polynomials these are

$$
p(1) \cong \operatorname{Poly}(y, p) \quad \text { and } \quad \Gamma(p):=\operatorname{Poly}(p, y)
$$

■ E.g. for the following bundle these are $p(1) \cong 4$ and $\Gamma(p) \cong 18$.

has 4 base elements
and 18 global sections

These are functorial in opposite directions:

$$
\text { Poly } \xrightarrow{p \mapsto(p(1), \Gamma(p))} \text { Set } \times \text { Set }^{\text {op }}
$$

In fact, this functor is a left adjoint, but we won't need that.

The distributive monoidal structure (Poly, $0,+, y, \otimes$)

The category Poly is distributive monoidal.

- The usual sum of two polynomials is their coproduct; 0 is initial.
- The usual product is the cartesian product too, but we won't use this.

■ There is another operation \otimes called Dirichlet product. Formula:

$$
p \otimes q:=\sum_{(i, j) \in p(1) \times q(1)} y^{p[i] \times q[j]}
$$

These are very simple bundle-wise: sum \& product of base and total space:

The distributive monoidal structure (Poly, $0,+, y, \otimes$)

The category Poly is distributive monoidal.
■ The usual sum of two polynomials is their coproduct; 0 is initial.

- The usual product is the cartesian product too, but we won't use this.

■ There is another operation \otimes called Dirichlet product. Formula:

$$
p \otimes q:=\sum_{(i, j) \in p(1) \times q(1)} y^{p[i] \times q[j]}
$$

These are very simple bundle-wise: sum \& product of base and total space:

■ These clearly distribute: $p \otimes\left(q_{1}+q_{2}\right) \cong\left(p \otimes q_{1}\right)+\left(p \otimes q_{2}\right)$.
■ Soon we'll see how the fundamental invariants respect these oper'ns.

Derivatives and the total space

The derivative of a polynomial functor is another polynomial functor.

- Write \dot{p} for the derivative with respect to y.
- In fact, we will be much more interested in $\dot{p} y$.

$$
\dot{p}=\sum_{i \in p(1)} \sum_{d \in p[i]} y^{p[i] \backslash\{d\}} \quad \text { and } \quad \dot{p} y \cong \sum_{i \in p(1)} p[i] y^{p[i]}
$$

Derivatives and the total space

The derivative of a polynomial functor is another polynomial functor.

- Write \dot{p} for the derivative with respect to y.
- In fact, we will be much more interested in $\dot{p} y$.

$$
\dot{p}=\sum_{i \in p(1)} \sum_{d \in p[i]} y^{p[i] \backslash\{d\}} \quad \text { and } \quad \dot{p} y \cong \sum_{i \in p(1)} p[i] y^{p[i]}
$$

Neither of these is functorial in Poly, but they are functorial in Poly ${ }^{\text {Cart }}$.

$$
\text { PolyCart } \xrightarrow{p \mapsto \dot{p} y} \text { PolyCart }
$$

Derivatives and the total space

The derivative of a polynomial functor is another polynomial functor.

- Write \dot{p} for the derivative with respect to y.
- In fact, we will be much more interested in $\dot{p} y$.

$$
\dot{p}=\sum_{i \in p(1)} \sum_{d \in p[i]} y^{p[i] \backslash\{d\}} \quad \text { and } \quad \dot{p} y \cong \sum_{i \in p(1)} p[i] y^{p[i]}
$$

Neither of these is functorial in Poly, but they are functorial in Poly ${ }^{\text {Cart }}$.

$$
\text { PolyCart } \xrightarrow{p \mapsto \dot{p} y} \text { Poly }{ }^{\text {Cart }}
$$

In fact $p \mapsto \dot{p} y$ is a comonad on Poly Cart .
■ I see the counit $\dot{p} y \rightarrow p$ as "how Poly thinks of p as a bundle."
■ In that way p is the base. So let's call $p \mapsto \dot{p} y$ the total space functor.

Bifibration Poly \rightarrow Set

The last theory we'll need is the bifibration Poly \rightarrow Set.

- The functor $p \mapsto p(1)$ is both a fibration and an op-fibration.

■ In fact it's even more: a distributive monoidal $*$-bifibration!
Down to earth what does this mean? Let p be a polynomial and A a set.
■ For any function $f: A \rightarrow p(1)$ we can take the pullback

$$
\begin{array}{ccc}
f^{*} p \longrightarrow p \\
\downarrow & \lrcorner & \downarrow \\
A & & p(1)
\end{array}
$$

Bifibration Poly \rightarrow Set

The last theory we'll need is the bifibration Poly \rightarrow Set.

- The functor $p \mapsto p(1)$ is both a fibration and an op-fibration.

■ In fact it's even more: a distributive monoidal $*$-bifibration!
Down to earth what does this mean? Let p be a polynomial and A a set.
■ For any function $f: A \rightarrow p(1)$ we can take the pullback

$$
\begin{array}{cc}
f^{*} p \longrightarrow & p \\
\downarrow & \downarrow \\
A \underset{f}{\longrightarrow} & p(1)
\end{array}
$$

■ So f^{*} takes polys with outcome-set $p(1)$ to those with outcome-set A.
■ This operation has both a left adjoint $f_{!}$and a right adjoint f_{*}.

$$
f_{!} p:=\sum_{b \in B} y^{\prod_{a \leftrightarrow b} p[a]} \quad \text { and } \quad f_{*} p:=\sum_{b \in B} y^{\sum_{a \mapsto b} p[a]}
$$

■ I.e., for any $f: A \rightarrow B$, we have $\operatorname{Poly}_{A}\left(f^{*} q, p\right) \cong \operatorname{Poly}_{B}\left(q, f_{*} p\right)$.
As we lump outcomes together, we add up the draws.

Outline

1 Introduction

2 Background on Poly

3 Distributive functors and entropy

- Distributive functor Poly ${ }^{\text {Cart }} \rightarrow$ Set \times Set $^{\text {op }}$
- Entropy and entropy density

4 Generalizations and future work

5 Conclusion

Total space as distributive

We're now ready to get to work on how all this relates to entropy.

- The approach is to extract two invariant sets from any polynomial.
- This process is "good" in that it is a distributive monoidal functor.

■ We'll extract the extensive and intensive entropies from these.

Total space as distributive

We're now ready to get to work on how all this relates to entropy.

- The approach is to extract two invariant sets from any polynomial.
- This process is "good" in that it is a distributive monoidal functor.

■ We'll extract the extensive and intensive entropies from these.
So first, we want to see that $p \mapsto \dot{p} y$ is distributive monoidal.

- The derivative is linear, $(p+q)=\dot{p}+\dot{q}$, and so is $p \mapsto p y$.
$■$ So $p \mapsto \dot{p} y$ preserves coproducts. What about \otimes ?

$$
\begin{aligned}
(\dot{p} y) \otimes(\dot{q} y) & \cong \sum_{i \in p(1)} p[i] y^{p[i]} \otimes \sum_{j \in q(1)} q[j] y^{q[j]} \\
& \cong \sum_{(i, j) \in p(1) \times q(1)} p[i] \times q[j] y^{p[i] \times q[j]} \\
& \cong(p \dot{\otimes} q) y
\end{aligned}
$$

Total space as distributive

We're now ready to get to work on how all this relates to entropy.

- The approach is to extract two invariant sets from any polynomial.
- This process is "good" in that it is a distributive monoidal functor.

■ We'll extract the extensive and intensive entropies from these.
So first, we want to see that $p \mapsto \dot{p} y$ is distributive monoidal.

- The derivative is linear, $(p+q)=\dot{p}+\dot{q}$, and so is $p \mapsto p y$.
$■$ So $p \mapsto \dot{p} y$ preserves coproducts. What about \otimes ?

$$
\begin{aligned}
(\dot{p} y) \otimes(\dot{q} y) & \cong \sum_{i \in p(1)} p[i] y^{p[i]} \otimes \sum_{j \in q(1)} q[j] y^{q[j]} \\
& \cong \sum_{(i, j) \in p(1) \times q(1)} p[i] \times q[j] y^{p[i] \times q[j]} \\
& \cong(p \dot{\otimes} q) y
\end{aligned}
$$

So (Poly $\left.{ }^{\text {Cart }}, 0,+, y, \otimes\right) \xrightarrow{p \mapsto \dot{p} y}($ Poly $, 0,+, y, \otimes)$ is distributive monoidal.

Fundamental invariants as distributive

The fundamental invariants $p \mapsto(p(1), \Gamma(p))$ are also distributive

$$
(\text { Poly }, 0,+, y, \otimes) \xrightarrow{p \mapsto(p(1), \Gamma(p))}\left(\text { Set } \times \operatorname{Set}^{\mathrm{op}},(0,1),+,(1,1), \otimes\right)
$$

But what exactly is all this structure on Set \times Set $^{\text {Op }}$?

Fundamental invariants as distributive

The fundamental invariants $p \mapsto(p(1), \Gamma(p))$ are also distributive

$$
(\text { Poly }, 0,+, y, \otimes) \xrightarrow{p \mapsto(p(1), \Gamma(p))}\left(\text { Set } \times \operatorname{Set}^{\text {op }},(0,1),+,(1,1), \otimes\right)
$$

But what exactly is all this structure on Set \times Set $^{\text {op }}$?
\square Set \times Set $^{\text {op }}$ has coproducts: $\left(A_{1}, B_{1}\right)+\left(A_{2}, B_{2}\right) \cong\left(A_{1}+A_{2}, B_{1} \times B_{2}\right)$.
■ It has another symmetric monoidal structure with unit $(1,1)$:

$$
\left(A_{1}, B_{1}\right) \otimes\left(A_{2}, B_{2}\right):=\left(A_{1} \times A_{2}, B_{1}^{A_{2}} \times B_{2}^{A_{1}}\right)
$$

\square And these distribute "because" $B^{A_{1}+A_{2}}\left(B_{1} B_{2}\right)^{A} \cong\left(B^{A_{1}} B_{1}^{A}\right)\left(B^{A_{2}} B_{2}^{A}\right)$.

Fundamental invariants as distributive

The fundamental invariants $p \mapsto(p(1), \Gamma(p))$ are also distributive

$$
(\text { Poly }, 0,+, y, \otimes) \xrightarrow{p \mapsto(p(1), \Gamma(p))}\left(\text { Set } \times \operatorname{Set}^{\mathrm{op}},(0,1),+,(1,1), \otimes\right)
$$

But what exactly is all this structure on Set \times Set $^{\text {op }}$?
■ Set \times Set $^{\text {op }}$ has coproducts: $\left(A_{1}, B_{1}\right)+\left(A_{2}, B_{2}\right) \cong\left(A_{1}+A_{2}, B_{1} \times B_{2}\right)$.
■ It has another symmetric monoidal structure with unit (1, 1):

$$
\left(A_{1}, B_{1}\right) \otimes\left(A_{2}, B_{2}\right):=\left(A_{1} \times A_{2}, B_{1}^{A_{2}} \times B_{2}^{A_{1}}\right)
$$

\square And these distribute "because" $B^{A_{1}+A_{2}}\left(B_{1} B_{2}\right)^{A} \cong\left(B^{A_{1}} B_{1}^{A}\right)\left(B^{A_{2}} B_{2}^{A}\right)$. Why do the fundamental invariants (as a pair) preserve + and \otimes ?
$■$ We have $(p+q)(1) \cong p(1)+q(1)$ and $\Gamma(p+q) \cong \Gamma(p) \times \Gamma(q)$.
■ This says they preserve + . One also checks they preserve \otimes :

$$
(p \otimes q)(1) \cong p(1) \times q(1) \quad \text { and } \quad \Gamma(p \otimes q) \cong \Gamma(p)^{q(1)} \times \Gamma(q)^{p(1)}
$$

Taking stock

Let's denote the composite of our distributive functors by h :

- The claim is that h extracts everything you need to calculate entropy.

■ Preserving + and \otimes gives us properties of entropy.

Taking stock

Let's denote the composite of our distributive functors by h :

- The claim is that h extracts everything you need to calculate entropy.

■ Preserving + and \otimes gives us properties of entropy.
Define a real number $L(A, B):=\frac{\log \left(\# A^{\# A}\right)-\log (\# B)}{\# A}$. Then:

Theorem

Let p be a polynomial, considered as a probability distribution P, and let $H(P)$ be its Shannon entropy. Then we have

$$
H(P)=L(h(p))
$$

The categorical partition function and entropy

I'm unfamiliar with the thermo picture. Joint with James Dama:
■ One should think of Shannon entropy as an entropy density.

- The thermo picture defines a partition function Ω for distributions.
- For $p \in$ Poly with $h(p)=(A, B)$, this would be $\Omega_{p}:=\frac{A^{A}}{B}$.

■ Then the extensive entropy of p is given by $\mathrm{E}(p):=\log \Omega(p)$.
■ And the Shannon entropy of p is the density $H(p):=\mathrm{E}(p) / A$.

The categorical partition function and entropy

I'm unfamiliar with the thermo picture. Joint with James Dama:
■ One should think of Shannon entropy as an entropy density.

- The thermo picture defines a partition function Ω for distributions.
- For $p \in$ Poly with $h(p)=(A, B)$, this would be $\Omega_{p}:=\frac{A^{A}}{B}$.

■ Then the extensive entropy of p is given by $\mathrm{E}(p):=\log \Omega(p)$.
■ And the Shannon entropy of p is the density $H(p):=\mathrm{E}(p) / A$. For example consider the bundle for $p:=y^{4}+4 y^{1}$:

- We find $\dot{p} y=4 y^{4}+4 y$, so $h(p)=\left(4+4,4^{4}\right)=\left(8,4^{4}\right)$.
- So $\Omega_{p}=\frac{8^{8}}{4^{4}}$, Ext've: $\mathrm{E}(p)=\log \Omega_{p}=16$, Shannon: $H(p)=16 / 8=2$.

Consequences of distributivity

The fact that h preserves \otimes and properties of log immediately give us

$$
H(p \otimes q)=H(p)+H(q)
$$

Consequences of distributivity

The fact that h preserves \otimes and properties of log immediately give us

$$
H(p \otimes q)=H(p)+H(q)
$$

The fact that h preserves + is more subtle. We see it better in Ω and E .
■ Again joint with James Dama.

- Suppose you write p as a sum, $p:=\sum_{a \in A} p_{a}$.
- This is the same as giving a function $f: p(1) \rightarrow A$.

■ Recall that from this we get $f_{*} p \in$ Poly $_{A}$, lumping distributions.

Consequences of distributivity

The fact that h preserves \otimes and properties of log immediately give us

$$
H(p \otimes q)=H(p)+H(q)
$$

The fact that h preserves + is more subtle. We see it better in Ω and E .

- Again joint with James Dama.
- Suppose you write p as a sum, $p:=\sum_{a \in A} p_{a}$.
- This is the same as giving a function $f: p(1) \rightarrow A$.

■ Recall that from this we get $f_{*} p \in$ Poly $_{A}$, lumping distributions. It follows from the fact that h preserves sums that:

$$
\Omega_{p}=\Omega_{f_{*} p} \times \prod_{a \in A} \Omega_{p_{a}} \quad \text { and } \quad \mathrm{E}(p)=\mathrm{E}\left(f_{*} p\right)+\sum_{a \in A} \mathrm{E}\left(p_{a}\right)
$$

The usual "chain rule" for Shannon entropy follows directly from this.

A geometric viewpoint on Shannon entropy

Think of objects $(A, B) \in$ Set \times Set $^{\mathrm{op}}$ as representing formal rectangles.
\square Here A is its area, $\sqrt[A]{B}$ is its width, and $A / \sqrt[A]{B}$ is its length.
■ Adding two rectangles $\left(A_{1}, B_{1}\right)+\left(A_{2}, B_{2}\right)=\left(A_{1}+A_{2}, B_{1} \times B_{2}\right) \ldots$
\square...add the areas and take the weighted geometric mean of the widths.
■ Multiplying two rectangles $\left(A_{1}, B_{1}\right) \otimes\left(A_{2}, B_{2}\right)=\left(A_{1} A_{2}, B_{1}^{A_{2}} B_{2}^{A_{2}}\right) \ldots$
■ ...you multiply the areas and multiply the widths.

- The log-length $\log (A / \sqrt[A]{B})$ of the rectangle is the Shannon entropy.

A geometric viewpoint on Shannon entropy

Think of objects $(A, B) \in$ Set \times Set $^{\mathrm{op}}$ as representing formal rectangles.
\square Here A is its area, $\sqrt[A]{B}$ is its width, and $A / \sqrt[A]{B}$ is its length.
\square Adding two rectangles $\left(A_{1}, B_{1}\right)+\left(A_{2}, B_{2}\right)=\left(A_{1}+A_{2}, B_{1} \times B_{2}\right) \ldots$
\square...add the areas and take the weighted geometric mean of the widths.

- Multiplying two rectangles $\left(A_{1}, B_{1}\right) \otimes\left(A_{2}, B_{2}\right)=\left(A_{1} A_{2}, B_{1}^{A_{2}} B_{2}^{A_{2}}\right) \ldots$

■ ...you multiply the areas and multiply the widths.

- The log-length $\log (A / \sqrt[A]{B})$ of the rectangle is the Shannon entropy. Let $p:=y^{4}+4 y$, so $h(p)=\left(8,4^{4}\right)$. Width $=\sqrt[8]{4^{4}}=2$, length $=8 / 2=4$.

A geometric viewpoint on Shannon entropy

Think of objects $(A, B) \in$ Set \times Set $^{\mathrm{op}}$ as representing formal rectangles.
\square Here A is its area, $\sqrt[A]{B}$ is its width, and $A / \sqrt[A]{B}$ is its length.
■ Adding two rectangles $\left(A_{1}, B_{1}\right)+\left(A_{2}, B_{2}\right)=\left(A_{1}+A_{2}, B_{1} \times B_{2}\right) \ldots$
■ ...add the areas and take the weighted geometric mean of the widths.
■ Multiplying two rectangles $\left(A_{1}, B_{1}\right) \otimes\left(A_{2}, B_{2}\right)=\left(A_{1} A_{2}, B_{1}^{A_{2}} B_{2}^{A_{2}}\right) \ldots$
■ ...you multiply the areas and multiply the widths.

- The log-length $\log (A / \sqrt[A]{B})$ of the rectangle is the Shannon entropy. Let $p:=y^{4}+4 y$, so $h(p)=\left(8,4^{4}\right)$. Width $=\sqrt[8]{4^{4}}=2$, length $=8 / 2=4$.

If $q=L y^{W}$ was rectangular to begin with, it'll stay that way.

Outline

1 Introduction

2 Background on Poly

3 Distributive functors and entropy

4 Generalizations and future work
■ Functoriality?

5 Conclusion

Functoriality?

One of the big questions for me is: what does functoriality buy you?

- The distributivity of h : Poly ${ }^{\text {Cart }} \rightarrow$ Set \times Set $^{\text {op }}$ means something.

■ It gives us well-known facts about entropy and entropy density.
■ But what about the fact that h is functorial?
■ Logarithms have no clue about what maps in Set \times Set $^{\text {op }}$ mean.

Entropy and dynamics?

Returning to my goals, I'd like to understand learning.
■ If entropy will be involved, I want it to be about dynamical systems.

- The groupoid $\dot{p} y$ is kind of dynamic: little $p[i]$'s spinning around.

■ But what about the point of Shannon entropy: communication?

■ Shouldn't we be able to see Huffman coding or something here...?
■ What about "empowerment" or "causal entropic forces"?

Outline

1 Introduction

2 Background on Poly

3 Distributive functors and entropy

4 Generalizations and future work

5 Conclusion

- Summary

Summary

Entropy and Poly are amazing and have overlapping applications.
■ Entropy is well-known throughout the scientific and technical world.
■ Poly is the most highly-structured category l've ever seen.
■ Both have applications to interacting dynamical systems.

Summary

Entropy and Poly are amazing and have overlapping applications.
■ Entropy is well-known throughout the scientific and technical world.
■ Poly is the most highly-structured category l've ever seen.
■ Both have applications to interacting dynamical systems.
There is (at least one) interpretation of entropy within Poly.
■ Objects in Poly can be viewed as empirical distributions.

- There is a $(+, \otimes)$-preserving functor $h:$ Poly ${ }^{\text {Cart }} \rightarrow$ Set \times Set $^{\text {op }}$.

■ If $h(p)=(A, B)$ then $H(p)=\log (A / \sqrt[4]{B}) / A$.
\square So all the entropy-relevant data of p is encapsulated in two sets.

Summary

Entropy and Poly are amazing and have overlapping applications.
■ Entropy is well-known throughout the scientific and technical world.
■ Poly is the most highly-structured category l've ever seen.

- Both have applications to interacting dynamical systems.

There is (at least one) interpretation of entropy within Poly.
■ Objects in Poly can be viewed as empirical distributions.

- There is a $(+, \otimes)$-preserving functor $h:$ Poly ${ }^{\text {Cart }} \rightarrow$ Set \times Set $^{\circ \mathrm{op}}$.
- If $h(p)=(A, B)$ then $H(p)=\log (A / \sqrt[A]{B}) / A$.

■ So all the entropy-relevant data of p is encapsulated in two sets.
Entropy still feels somehow foreign to me.
■ Hopefully, having different categorifications will help clarify it.
■ I still have hope that it will bond with the dynamics of Poly.
Thanks! Comments and questions welcome...

