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Introduction Working language

Working language for three funders

This is the first year of a grant that’s funded by three AFOSR programs:

Fred Leve: Dynamics and Control

Doug Riecken: Computation and Learning, and

Tristan Nguyen: Information Assurance.

What is working language? How does language work?

Language works in the sense of basic physics: it directs energy.

If I say “pass the salt,” 1025 atoms move through space.

This involves compositional planning and high-precision control.

Getting it set up in the first place requires (evolution and) learning.

DNA is working language: ACGT symbols code for chemistry.

Computer programming languages do a lot of work in the world.

Wanted: a minimally-assumptive mathematical framework to set up WL.

Framing all this in strong/weak/gravity/EM forces, where’s language?

Want the structure and dynamics of language to be front and center.

Can we relate matter and pattern using math rather than physics?
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Introduction Reasons for optimism

C-like miracles in Poly

In 2019 I was seeking a fr’work for mode-dependent dynamics and interac’n.

When your eyes are open vs. closed, the input datatype is different.

Communication channels can change based on what is said over them.

The category Poly fit very well, covering all the examples.

But then I became enamored with Poly based on certain “miracles”.

A “miracle” of C: add roots of x2+1, get differentiable =⇒ analytic.

A “miracle” of Poly: its comonoids are precisely categories.

The work I’d done a decade earlier on data migration was subsumed.

Automata, dependent types, dynamical systems, PL, all foregrounded.

I became optimistic that Poly could be a unified framework for my research.

It has potential to reveal deep insights about the nature of comput’n.

Perhaps it would foreground something about how language works?

Today: the way terminating scripts run on persistent machines...

...is foregrounded via free monads mp and cofree comonads cq.
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Introduction Reasons for optimism

Plan

The plan for the rest of my talk is as follows:

Being year 1, a review of basic category theory

A review of polynomial functors

Discuss new result: a module structure mp ⊗ cq → mp⊗q

This is joint work with Sophie Libkind.
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Basic category theory The big three

Categories, functors, and natural transformations

The big 3 of category theory are: category, functor, natural transformation.

Category = relational fabric. Functor = mapping. NT=trajectory.

Example: (N,≤), (−× 2) : (N,≤)→ (N,≤), (−× 2) ≤ (−× 3).

A category C is a relational “fabric”, like a space.

It’s got a set Ob(C), objects ≈ “points”.

For each c , c ′ ∈ Ob(C), a set Mor(c , c ′), morphisms f : c → c ′.

Identities idc and compositions f # g that are unital and assoc.

A functor F : C → D between categories is a “non-tearing” map.

It sends each c ∈ Ob(C) to some F (c) ∈ Ob(D).

It sends each morphism f : c → c ′ to some F (f ) : F (c)→ F (c ′).

It preserves identities and composition, i.e. F (f1 # f2) = F (f1) # F (f2).

A natural transformation C D
F

G

α is a D-trajectory param’d by C.

For each c ∈ Ob(C), a morphism αc : F (c)→ G (c) in D.

For each f : c → c ′ in C, an equation αc # F (f ) = F (f ) # αc ′ .
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Basic category theory The category of sets

Set, its endofunctors, and its monoidal structures

The big 4 would be the above, plus Set, the category of sets.

The objects of Set are sets (in some mathematical universe of sets).

A morphism f : S → T is a function, and composition is as usual.

For any N ∈ N, let N := {‘1‘, . . . , ‘N‘} denote a set with N elements.

Disjoint union A+ B, Cartesian product A× B, and exponential BA.

Let’s think about functors F : Set→ Set.

F needs to send each set to a set and function to a function.

How about X 7→ X 2? Or X 7→ X + 1? Or X 7→ 7? Or X 7→ 2X ?

Functors F ,G can be added or multiplied, pointwise: F + G , F × G .

A monoidal structure (I ,⊙) on C lets you combine things.

For example Set has (0,+), (1,×), and infinitely-many others.

Given f : A→ A′ and g : B → B ′, get

(f + g) : (A+ B)→ (A′ + B ′) (f × g) : (A× B)→ (A′ × B ′)

So Set is a distributive category.
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Basic category theory Monoids and comonoids

Monoids and comonoids

Given a cat’y C with a mon’l structure (I ,⊙), we can define (co)monoids.

A monoid (m, η, µ) consists of an object m ∈ Ob(C),...

...and maps I
η−→ m, m⊗m

µ−→ m, satisfying unitality and associativity.

A comonoid (c , ϵ, δ) consists of an object c ∈ Ob(C),...

...and maps c
ϵ−→ I , c

δ−→ c ⊗ c, satisfying counitality and coassoc’ity.

What are these for Set?

A (1,×)-monoid is a usual monoid; every set is uniq’ly a (0,+)-monoid

The only (0,+)-comonoid is 0.

Every set is uniquely a (1,×)-comonoid.

Comonoids were discovered late b/c they aren’t interesting in caty’s like Set

In Vect any choice of basis gives comonoid: V → V ⊗V and V → k.

We’ll see that they’re very interesting in other categories too.
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Basic category theory Monoids and comonoids

Monads and comonads

For any category C, the cat’y End(C) of endofunctors on C is monoidal.

Objects in End(C) are functors F : C → C.

Morphisms α : F ⇒ G are natural transformations.

Monoidal unit is identity idC; monoidal product is composition F ◦ G .

A (co)monad is a (co)monoid in the monoidal category of endofunctors.

You can see that small steps add up fast in CT.

A monad is: a functor F : C → C and NTs idC ⇒ F and F ◦ F ⇒ F .

A comonad is: a functor F : C → C and NTs F ⇒ idC and F ⇒ F ◦ F .
Each must satisfy the respective (co)unitality and (co)assocativity.

These come up throughout math and functional programming. Examples:

For each alg. theory (e.g. groups), there’s an associated monad on Set.

Monads capture effects (IO, non-det’sm, exceptions) in functional PL.

Our goal is to discuss free monads and cofree comonads.

These’ll model terminating programs and persistent machines resp.
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Polynomial functors Introducing Poly

Polynomial functors

Polynomial functors Set→ Set are the closure of the identity under
∑

,
∏
.

Let y denote idSet. Then yA =
∏

a∈A y sends X 7→ XA, e.g. y0 = 1.

A polynomial functor is
∑

i∈I
∏

j∈Ji y. E.g. y
N + Ry2 + 17.

We call each i ∈ I a position and each j ∈ Ji a direction at i .

Maps between polynomial functors are natural transformations.

The category Poly is nice because calculation is easy!

It has infinitely many monoidal structures. We’ll look at two.

Polynomials can be composed, and this is a monoidal product denoted ◦.
Example: y2 ◦ (y+ 1) = y2 + 2y+ 1 and (y+ 1) ◦ y2 = y2 + 1.

Monoidal: given maps p → q and p′ → q′, get p ◦ p′ → q ◦ q′
Example (applic’n as subst’n): p(42) = p ◦ 42y0.
An (A,B)-Moore machine is a poly map S → ByA ◦ S = B × SA.

Polynomials can be tensored (Dirichlet product) p ⊗ q, e.g. y3 ⊗ y3 = y9.

We can use this to wire together Moore machines in block diagrams.
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Polynomial functors Introducing Poly

More on substitution product

We can draw polynomials as corolla forests. Substitution is stacking.

•
• •

•
• •

•
• •

•
• •

•
•
•
•

p ◦ q = y6 + 3y3 + 2

◦

p

q
•
1
•
2

p = y2 + y

•
1
•
2

q = y3 + 1

An element of p ◦ p ◦ · · · ◦ p can be thought of as a flow-chart:

The “questions” are positions of p; the “options” are the directions.

One of the miracles of Poly is that ◦-comonoids are exactly categories!

A comonoid includes a polynomial c and maps c
ϵ−→ y and c

δ−→ c ◦ c ...
...satisfying counit. and coassoc. Isn’t it shocking that these = caty’s?

Idea: Ob’s = positions; Mor’s=directions; Id’s=ϵ; Cod’s & Comps=δ.

Another is that ◦-monoids are (very close to) “operads”.

An operad O is a “system of operations”.

For every arity N, a set ON , and how they compose.
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Polynomial functors (Co)free (co)monads

Free monad monad and cofree comonad comonad

CT tries to foreground the most general abstractions from across mathematics.

Monad and comonad are some of the most important concepts in CT.

Free (like free group) is ubiquitous across math; cofree is the dual notion.

And module (e.g. vector space, group action) is also ubiquitous.

“The free monad monad is a module over the cofree comonad comonad”

...would suggest itself as a statement with theoretical significance.

What we need to show is that it means something about working language.

First, let’s say what the free monad and cofree comonad constructions are.

Given a polynomial functor p, we have a monad mp and a comonad cp.

mp := colim
(
· · · ←− y+p ◦ (y+p ◦ (y+p))←− y+p ◦ (y+p)←− y+p ←− y

)
cp := lim

(
· · · −→ y×p ◦ (y×p ◦ (y×p)) −→ y×p ◦ (y×p) −→ y×p −→ y

)
In fact m− : Poly→ Poly is itself a monad and c− is a comonad.

Hence we refer to m− (resp. c−) as the (co)free (co)monad (co)monad.

Theorem: There is a natural map exhibiting m− as a module over c−:

mp ⊗ cq → mp⊗q
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Polynomial functors (Co)free (co)monads

How it works

Both mp and cp are carried by poly’ls; what are their pos’ns and direc’ns?

First let’s define a p-tree to be a rooted tree, where each node is...

...labeled by a position P ∈ p(1), and has p[P]-many branches.

Each position in mp and cp can be represented by a p-tree.
In mp, each tree is well-founded: always a finite path down to root

In cp, they are generally infinite: only stops if it has no branches.

p:={a}y2+{b}y3+{c}

a

b

c

a

b

c

a

b

a c b

a

b

c c

a

c··· ··· ··· ··· ··· ··· ···

How do we think about the module structure mp ⊗ cq → mp⊗q?

Think of T ∈ mp(1) as a terminating program, or a finite flowchart.

Think of U ∈ cq(1) as a machine or operating system, running forever.

We can lay T next to U and move forward through both in tandem.

We can use this to run programs that interact with a server/operating system.

E.g. compose mp ⊗ cq → mp⊗q
mφ−−→ my → y for some p ⊗ q

φ−→ y.

This way, the program interacts with (controls) the machine.
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Conclusion Summary

Summary

This grant is for studying the structure and dynamics of working language.

What minimally-assumptive math’l foundation supports language?

Understand the structure and dynamics of everything involved.

Category theory is the language of structures and their relationships.

In particular, Poly has tons of structure and many surprises.

We’re optimistic it’s good ground for considering this question.

Today: language as a relationship between program and machine.

Programs terminate, machines persist; programs “run on” machines,...

...modeled via the (co)free (co)monad (co)monad module structure:

mp ⊗ cq → mp⊗q.

CT’s conciseness here suggests that this is a fundamental relationship.

Thanks! Comments and questions welcome...
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