Poly: a category of remarkable abundance

David I. Spivak

Colloquium 2021 February 04

Outline

- 1 Introduction
 - Personal history
 - Plan
- 2 Theory
- **3** Applications
- 4 Conclusion

My personal history with math

I've always believed I could understand self, life, and world with math.

- We generally share experience and knowledge in "natural language".
- Is any of it inherently precluded from mathematical expression?

My personal history with math

I've always believed I could understand self, life, and world with math.

- We generally share experience and knowledge in "natural language".
- Is any of it inherently precluded from mathematical expression?

When I learned CT, I thought "this is where I can say it all."

- It's a sublanguage of math that can talk about math.
- It's clean and principled and structural and expressive.

So I got to work trying to understand self, life, and world.

My personal history with ACT

What can we say about self, life, and world?

- I first assumed everything is information and communication.
 - Pretend our minds are information-storage devices.
 - How do we communicate with each other and with reality?
 - Understand everything in terms of databases and data migration!
 - (Categories, set-valued functors, parametric right adjoints.)

My personal history with ACT

What can we say about self, life, and world?

- I first assumed everything is information and communication.
 - Pretend our minds are information-storage devices.
 - How do we communicate with each other and with reality?
 - Understand everything in terms of databases and data migration!
 - (Categories, set-valued functors, parametric right adjoints.)
 - But interacting processes didn't seem to fit nicely.
- So then I assumed everything is interacting dynamical systems.
 - It's machines sending each other information, all the way down.

But should they really be wired the same way forever?

My personal history with Poly

Then one day I met **Poly** and fell in love.

- It captures dynamical systems and "rewiring diagrams".
- As a category it's exceptionally well-behaved.

My personal history with Poly

Then one day I met **Poly** and fell in love.

- It captures dynamical systems and "rewiring diagrams".
- As a category it's exceptionally well-behaved.

The dynamics seemed to really be all about *comonoids* in **Poly**.

- Joachim Kock pointed me to R. Garner; I found his HoTTEST talk.
- Garner explained Ahman-Uustalu's result: "comonoids = categories"
- Garner also explained that bimodules = parametric right adjoints.

My personal history with Poly

Then one day I met **Poly** and fell in love.

- It captures dynamical systems and "rewiring diagrams".
- As a category it's exceptionally well-behaved.

The dynamics seemed to really be all about *comonoids* in **Poly**.

- Joachim Kock pointed me to R. Garner; I found his HoTTEST talk.
- Garner explained Ahman-Uustalu's result: "comonoids = categories"
- Garner also explained that bimodules = parametric right adjoints.

Suddenly everything I'd been working on for 13 years came together.

- I was overwhelmed by **Poly**'s elegance and capacity for application.
- It is extremely computational and hands-on...
- ...while displaying excellent formal properties.

Toward metaphysics

I use **Poly** to help ground my thinking about self, life, and world.

- What does it mean that I can "manipulate objects"?
- How should I think about biological reproduction?
- If it's always *now*, how do I perceive events that "unfold over time"?
- What is survival? If we change over time, what survives?

Toward metaphysics

I use **Poly** to help ground my thinking about self, life, and world.

- What does it mean that I can "manipulate objects"?
- How should I think about biological reproduction?
- If it's always now, how do I perceive events that "unfold over time"?
- What is survival? If we change over time, what survives?

I'm happy to talk with you about these ideas off-line.

Plan for the talk

Here's the plan for today's talk

- Theory
 - Define Poly and one of its monoidal structures
 - Comonoids = categories, coalgebras = copresheaves, etc
 - Monoids generalize operads, algebras = operad-algebras, etc

Plan for the talk

Here's the plan for today's talk

- Theory
 - Define Poly and one of its monoidal structures
 - Comonoids = categories, coalgebras = copresheaves, etc
 - Monoids generalize operads, algebras = operad-algebras, etc
- Applications
 - Dynamical systems
 - Databases
 - Cellular automata
- Conclusion
 - Upcoming events
 - Summary

Plan for the talk

Here's the plan for today's talk

- Theory
 - Define Poly and one of its monoidal structures
 - Comonoids = categories, coalgebras = copresheaves, etc
 - Monoids generalize operads, algebras = operad-algebras, etc
- Applications
 - Dynamical systems
 - Databases
 - Cellular automata
- Conclusion
 - Upcoming events
 - Summary

Think of the talk as a calling card: reach out if you want to discuss!

Outline

- 1 Introduction
- 2 Theory
 - \blacksquare (Poly, y, \triangleleft)
 - Comonoids in Poly
 - lacktriangle The framed bicategory $\mathbb P$
 - \blacksquare Monads in \mathbb{P} generalize operads
- **3** Applications
- 4 Conclusion

Poly for experts

What I'll call the category **Poly** has many names.

- The free completely distributive category on one object;
- The free coproduct completion of Set^{op};
- The full subcategory of [Set, Set] spanned by functors that preserve connected limits;
- The full subcategory of [Set, Set] spanned by coproducts of repr'bles;

Poly for experts

What I'll call the category **Poly** has many names.

- The free completely distributive category on one object;
- The free coproduct completion of Set^{op};
- The full subcategory of [Set, Set] spanned by functors that preserve connected limits;
- The full subcategory of [Set, Set] spanned by coproducts of repr'bles;
- The category of *typed sets* and colax maps between them.
 - Objects: pairs (S, τ) , where $S \in \mathbf{Set}$ and $\tau \colon S \to \mathbf{Set}$.
 - Morphisms $(S, \tau) \xrightarrow{\varphi} (S', \tau')$: pairs $(\varphi_1, \varphi^{\sharp})$, where

But let's make this easier.

What is a polynomial?

Bundle

Corolla forest

What is a polynomial?

Interpretations:

- Each corolla in p is a decision; its leaves are the options.
- \blacksquare Each corolla in p is a position; its leaves are directions.

What is a morphism of polynomials?

Let
$$p := y^3 + 2y$$
 and $q := y^4 + y^2 + 2$

A morphism $p \xrightarrow{\varphi} q$ delegates each *p*-decision to a *q*-decision, passing back options:

Example: how to think of a map $y^2 + y^6 \rightarrow y^{52}$.

The category of polynomials

Easiest description: Poly = "sums of representables functors $Set \rightarrow Set$ ".

- For any set S, let $y^S := \mathbf{Set}(S, -)$, the functor *represented* by S.
- Def: a polynomial is a sum $p = \sum_{i \in I} y^{p[i]}$ of representable functors.
- Def: a morphism of polynomials is a natural transformation.
- In **Poly**, + is coproduct and \times is product.

Notation

We said that a polynomial is a sum of representable functors

$$p\cong\sum_{i\in I}y^{p[i]}.$$

But note that $I \cong p(1)$. So we can write

$$p\cong \sum_{i\in p(1)}y^{p[i]}.$$

Composition monoidal structure (Poly, y, \triangleleft)

The composite of two polynomial functors is again polynomial.

- Let's denote the composite of p and q by $p \triangleleft q$.
- **Example**: if $p := y^2$, q := y + 1, then $p \triangleleft q \cong y^2 + 2y + 1$.
- This is a monoidal structure, but not symmetric. $(q \triangleleft p \cong y^2 + 1)$
- The identity functor y is the unit: $p \triangleleft y \cong p \cong y \triangleleft p$.

Composition monoidal structure (Poly, y, \triangleleft)

The composite of two polynomial functors is again polynomial.

- Let's denote the composite of p and q by $p \triangleleft q$.
- **Example:** if $p := y^2$, q := y + 1, then $p \triangleleft q \cong y^2 + 2y + 1$.
- This is a monoidal structure, but not symmetric. $(q \triangleleft p \cong y^2 + 1)$
- The identity functor y is the unit: $p \triangleleft y \cong p \cong y \triangleleft p$.

Why the we weird symbol ⊲ rather than ∘?

- We want to reserve o for morphism composition.
- The notation $p \triangleleft q$ represents trees with p under q.

Composition given by stacking trees

Suppose $p := y^2 + y$ and $q := y^3 + 1$.

Draw the composite $p \triangleleft q$ by stacking q-trees on top of p-trees:

You can also read it as q feeding into p, which is how composition works.

Comonoids in $(Poly, y, \triangleleft)$

In any monoidal category (M, I, \otimes) , one can consider comonoids.

- A comonoid is a triple (m, ϵ, δ) satisfying certain rules, where
 - lacksquare $m \in \mathcal{M}$ is an object, the *carrier*,
 - ullet $\epsilon \colon m \to I$ is a map, the *counit*, and
 - δ : $m \to m \otimes m$ is a map, the *comultiplication*.

In (**Poly**, y, \triangleleft), comonoids are exactly categories!¹

¹Ahman-Uustalu. See my talk, https://www.youtube.com/watch?v=2mWnrgPIrlA

Comonoids in $(Poly, y, \triangleleft)$

In any monoidal category (M, I, \otimes) , one can consider comonoids.

- A comonoid is a triple (m, ϵ, δ) satisfying certain rules, where
 - $m \in \mathcal{M}$ is an object, the *carrier*,
 - \bullet : $m \rightarrow I$ is a map, the *counit*, and
 - $\delta \colon m \to m \otimes m$ is a map, the *comultiplication*.

In (**Poly**, y, \triangleleft), comonoids are exactly categories!¹

lacktriangleright If C is a category, the corresponding comonoid is

$$\mathfrak{c} \coloneqq \sum_{i \in \mathsf{Ob}(\mathcal{C})} y^{\mathfrak{c}[i]}$$

where $\mathfrak{c}[i]$ is the set of morphisms in \mathcal{C} that emanate from i.

- The counit ϵ : $\mathfrak{c} \to y$ assigns to each object an identity.
- The comult δ : $\mathfrak{c} \to \mathfrak{c} \triangleleft \mathfrak{c}$ assigns codomains and composites.

Ahman-Uustalu. See my talk, https://www.youtube.com/watch?v=2mWnrgPIrlA

Comonoid maps are "cofunctors"

In **Poly**, comonoids are categories, but their morphisms aren't functors.

- A comonoid morphism $\varphi \colon \mathcal{C} \nrightarrow \mathcal{D}$ is called a *cofunctor*.
- It includes a **Poly** map on carriers. For each object $i \in \mathfrak{c}(1)$, we get:
 - lacksquare an object $j\coloneqq \varphi_1(i)\in \mathfrak{d}(1)$ and
 - for each emanating $f \in \mathfrak{d}[j]$, an emanating $\varphi_i^{\sharp}(f) \in \mathfrak{c}[i]$.

Comonoid maps are "cofunctors"

In Poly, comonoids are categories, but their morphisms aren't functors.

- A comonoid morphism $\varphi \colon \mathcal{C} \nrightarrow \mathcal{D}$ is called a *cofunctor*.
- It includes a **Poly** map on carriers. For each object $i \in \mathfrak{c}(1)$, we get:
 - lacksquare an object $j\coloneqq arphi_1(i)\in \mathfrak{d}(1)$ and
 - for each emanating $f \in \mathfrak{d}[j]$, an emanating $\varphi_i^{\sharp}(f) \in \mathfrak{c}[i]$.

Example: what is a cofunctor $C \stackrel{\varphi}{\nrightarrow} y^{\mathbb{N}}$?

- It is trivial on objects. On morphisms...
- ...it assigns an emanating morphism $\varphi_i^{\sharp}(1)$ to each object $i \in \mathfrak{c}(1)$.

Comonoid maps are "cofunctors"

In **Poly**, comonoids are categories, but their morphisms aren't functors.

- A comonoid morphism $\varphi \colon \mathcal{C} \nrightarrow \mathcal{D}$ is called a *cofunctor*.
- It includes a **Poly** map on carriers. For each object $i \in \mathfrak{c}(1)$, we get:
 - lacksquare an object $j\coloneqq \varphi_1(i)\in \mathfrak{d}(1)$ and
 - for each emanating $f \in \mathfrak{d}[j]$, an emanating $\varphi_i^{\sharp}(f) \in \mathfrak{c}[i]$.

Example: what is a cofunctor $C \stackrel{\varphi}{\nrightarrow} y^{\mathbb{N}}$?

- It is trivial on objects. On morphisms...
- ...it assigns an emanating morphism $\varphi_i^{\sharp}(1)$ to each object $i \in \mathfrak{c}(1)$.

"That's not what you do with a category!"

- Cofunctors are kinda weird right? A whole new world to explore.
- A cofunctor $C \nrightarrow y^{\mathbb{N}}$ is like a vector field on the category.
- This hints at applications, which are coming soon.

Bicomodules in $(Poly, y, \triangleleft)$

Given comonoids C, \mathcal{D} , a (C, \mathcal{D}) -bicomodule is another kind of map.

 \blacksquare It's a polynomial m, equipped with two maps

$$\mathfrak{c} \triangleleft m \longleftarrow m \longrightarrow m \triangleleft \mathfrak{d}$$

each cohering naturally with the comonoid structure ϵ, δ .

■ I denote this (C, \mathcal{D}) -bicomodule m like so:

$$\mathfrak{c} \triangleleft \stackrel{m}{\longrightarrow} \mathfrak{d}$$
 or $\mathcal{C} \triangleleft \stackrel{m}{\longrightarrow} \mathfrak{D}$

- The <'s at the ends help me remember the how the maps go.
- Maybe it looks like it's going the wrong way, but hold on.

Bicomodules are parametric right adjoints

Garner explained² that bicomodules $m \in {}_{\mathcal{C}}\mathbf{Mod}_{\mathfrak{D}}$, which we've denoted

$$C \triangleleft \stackrel{m}{\longleftarrow} \circlearrowleft \mathcal{D}$$

can be identified with parametric right adjoint functors (prafunctors)

$$\mathscr{D}$$
-Set $\xrightarrow{M} \mathscr{C}$ -Set.

²Garner's HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6eI

Bicomodules are parametric right adjoints

Garner explained² that bicomodules $m \in {}_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$, which we've denoted

$$C \triangleleft \stackrel{m}{\longrightarrow} \emptyset$$

can be identified with parametric right adjoint functors (prafunctors)

$$\mathscr{D}$$
-Set $\xrightarrow{M} \mathscr{C}$ -Set.

- From this perspective the arrow points in the expected direction.
- Check: $_{\mathcal{C}}\mathbf{Mod}_0 \cong \mathcal{C}\text{-}\mathbf{Set}$.

²Garner's HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6eI

Bicomodules are parametric right adjoints

Garner explained² that bicomodules $m \in {}_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$, which we've denoted

$$C \triangleleft \stackrel{m}{\longrightarrow} \emptyset$$

can be identified with parametric right adjoint functors (prafunctors)

$$\mathscr{D}$$
-Set $\xrightarrow{M} \mathscr{C}$ -Set.

- From this perspective the arrow points in the expected direction.
- Check: $_{\mathcal{C}}\mathbf{Mod}_0 \cong \mathcal{C}\text{-}\mathbf{Set}$.

Prafunctors $\mathcal{C} \longleftarrow \mathcal{D}$ generalize profunctors $\mathcal{C} \rightarrow \mathcal{D}$:

- A profunctor $\mathcal{C} \to \mathcal{D}$ is a functor $\mathcal{C} \to (\mathcal{D}\text{-Set})^{op}$
- A prafunctor $\mathcal{C} \triangleleft \longrightarrow \mathcal{D}$ is a functor $\mathcal{C} \rightarrow \mathbf{Coco}((\mathcal{D}\mathbf{-Set})^{\mathsf{op}})...$
- ...where Coco is the free coproduct completion.

I'll explain how to think about it concretely when we get to applications.

²Garner's HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6eI

The framed bicategory \mathbb{P}

Poly comonoids, cofunctors, and bicomodules form a framed bicategory \mathbb{P} .

- It's got a ton of structure, e.g. two monoidal structures, $+, \otimes$.
- Despite the last slide, it's actually not that hard to think about.

Here are some facts about ${}_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$ for categories ${}^{\mathcal{C}},{}^{\mathcal{D}}.$

- $_{\mathcal{D}}\mathsf{Mod}_0 \cong \mathcal{D}\text{-Set}$, copresheaves on \mathcal{D} .
- $_{1}\mathsf{Mod}_{\mathcal{D}} \cong \mathsf{Coco}((\mathcal{D}\text{-Set})^{\mathsf{op}}).$

The framed bicategory \mathbb{P}

Poly comonoids, cofunctors, and bicomodules form a framed bicategory \mathbb{P} .

- It's got a ton of structure, e.g. two monoidal structures, $+, \otimes$.
- Despite the last slide, it's actually not that hard to think about.

Here are some facts about ${}_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$ for categories ${}^{\mathcal{C}}, {}^{\mathcal{D}}.$

- $_{\mathcal{D}}\mathsf{Mod}_0 \cong \mathcal{D}\text{-Set}$, copresheaves on \mathcal{D} .
- $_{1}\mathsf{Mod}_{\mathfrak{D}} \cong \mathsf{Coco}((\mathcal{D}\text{-Set})^{\mathsf{op}}).$

We can think about ${}_{1}\mathbf{Mod}_{\mathfrak{D}}$ as something like a polynomial rig in \mathfrak{D} .

- If $\mathfrak{D} = J$ is discrete, it's the rig of polynomials in variables $(y^j)_{j \in J}$.
- So $_{I}$ **Mod** $_{J}$ is I-many polynomials in J variables, as in Gambino-Kock.

The framed bicategory \mathbb{P}

Poly comonoids, cofunctors, and bicomodules form a framed bicategory \mathbb{P} .

- lacksquare It's got a ton of structure, e.g. two monoidal structures, $+,\otimes$.
- Despite the last slide, it's actually not that hard to think about.

Here are some facts about $\mathcal{C}\mathbf{Mod}_{\mathcal{D}}$ for categories \mathcal{C},\mathcal{D} .

- $_{\mathcal{D}}\mathsf{Mod}_0 \cong \mathcal{D}\text{-Set}$, copresheaves on \mathcal{D} .
- $\blacksquare \ _{1}\mathsf{Mod}_{\mathfrak{D}} \cong \mathsf{Coco}\big((\mathcal{D}\text{-}\mathsf{Set})^{\mathsf{op}}\big).$

We can think about ${}_{1}\mathbf{Mod}_{\mathfrak{D}}$ as something like a polynomial rig in \mathfrak{D} .

- If $\mathcal{D} = J$ is discrete, it's the rig of polynomials in variables $(y^j)_{j \in J}$.
- So ${}_{I}\mathbf{Mod}_{J}$ is I-many polynomials in J variables, as in Gambino-Kock.
- For general \mathcal{D} , note that $y^- \colon \mathcal{D} \to (\mathcal{D}\text{-Set})^{\operatorname{op}}$ is free limit completion.
- \blacksquare So just generalize from sums of $\mathcal D\text{-products}$ to sums of $\mathcal D\text{-limits},$ e.g.

$$y^{a}y^{a} + 42 \lim(y^{a} \xrightarrow{f} y^{c} \xleftarrow{g} y^{b}) \in {}_{\mathbf{1}}\mathbf{Mod}_{\mathfrak{D}}$$

(Here, $f: a \to c$ and $g: b \to c$ are morphisms in \mathcal{D}).

Operads as monads in ${\mathbb P}$

In any framed bicategory, notation from \mathbb{P} , a monad $(\mathcal{C}, m, \eta, \mu)$ consists of

- An object *C*, the *type*
- \blacksquare a bimodule $C \triangleleft \stackrel{m}{\longleftarrow} \triangleleft C$, the *carrier*
- a 2-cell η : id_c \Rightarrow m, the unit
- **a** 2-cell μ : $m \circ m \Rightarrow m$, the multiplication
- satisfying the usual laws.

³Not quite the standard definition of operad, but one I like better: the input to a morphism is a set, rather than a list of objects. You can also talk about standard operads and generalizations within the \mathbb{P} setting; see Gambino-Kock.

Operads as monads in \mathbb{P}

In any framed bicategory, notation from \mathbb{P} , a monad $(\mathcal{C}, m, \eta, \mu)$ consists of

- An object *C*, the *type*
- \blacksquare a bimodule $C \triangleleft \stackrel{m}{\longleftarrow} \triangleleft C$, the *carrier*
- a 2-cell η : id_c \Rightarrow m, the unit
- a 2-cell μ : $m \circ m \Rightarrow m$, the multiplication
- satisfying the usual laws.

In \mathbb{P} , these generalize operads in a number of ways:

- When $C \cong I$ is discrete, $\eta^{\sharp}, \mu^{\sharp}$ are isos, you get colored operads.³
- Relaxing discreteness of C, the input to a morphism can be...
- ... a diagram, rather than a mere set, of objects.
- Relaxing "iso" condition, composites and ids can have "weird" arities.

 $^{^3}$ Not quite the standard definition of operad, but one I like better: the input to a morphism is a set, rather than a list of objects. You can also talk about standard operads and generalizations within the $\mathbb P$ setting; see Gambino-Kock.

Grothendieck sites give P**-monads**

Every Grothendieck site (\mathcal{C}^{op}, J) has an associated monad m_J in \mathbb{P} .

- A J-sheaf is an m_J -algebra, but not all m_J -algebras are J-sheaves.
- An m_J -algebra has existence, but not necess'ly uniqueness for gluing.

Grothendieck sites give P**-monads**

Every Grothendieck site (C^{op}, J) has an associated monad m_J in \mathbb{P} .

- A *J*-sheaf is an m_J -algebra, but not all m_J -algebras are *J*-sheaves.
- An m_J-algebra has existence, but not necess'ly uniqueness for gluing.

To each Grothendieck top'y J, we need (m, η, μ) where $C \triangleleft \stackrel{m}{\longrightarrow} C$.

- The topology J assigns to each $V \in C$ a set J_V , "covering families"...
- ... and each $F \in J_V$ is assigned a subfunctor $S_F \subseteq C[V]$.
- From this data we define $m \in \mathbf{Poly}$:

$$m := \sum_{V \in \mathsf{Ob}(\mathcal{C})} \sum_{F \in J_V} y^{S_F}.$$

The Grothendieck top'y axioms endow the bimodule and monad structure.

Grothendieck sites give P**-monads**

Every Grothendieck site (\mathcal{C}^{op}, J) has an associated monad m_J in \mathbb{P} .

- A J-sheaf is an m_J -algebra, but not all m_J -algebras are J-sheaves.
- \blacksquare An m_J -algebra has existence, but not necess'ly uniqueness for gluing.

To each Grothendieck top'y J, we need (m, η, μ) where $C \triangleleft \stackrel{m}{\longrightarrow} C$.

- The topology J assigns to each $V \in C$ a set J_V , "covering families"...
- ... and each $F \in J_V$ is assigned a subfunctor $S_F \subseteq C[V]$.
- From this data we define $m \in \mathbf{Poly}$:

$$m := \sum_{V \in \mathsf{Ob}(\mathcal{C})} \sum_{F \in J_V} y^{S_F}.$$

The Grothendieck top'y axioms endow the bimodule and monad structure.

An algebra structure $m \circ P \xrightarrow{h} P$ assigns a section $h_V(F,s) \in P_V$ to each V-covering family F and matching family s of sections.

Outline

- 1 Introduction
- 2 Theory
- **3** Applications
 - Dynamical systems
 - Databases
 - Cellular automata
- 4 Conclusion

Moore machines

Definition

Given sets A, B, an (A, B)-Moore machine consists of:

- \blacksquare a set S, elements of which are called *states*,
- **a** a function $r: S \to B$, called *readout*, and
- **a** a function $u: S \times A \rightarrow S$, called *update*.

We refer to A as the *input set*, B as the *output set*, and (A, B) as the *interface* of the Moore machine.

Moore machines

Definition

Given sets A, B, an (A, B)-Moore machine consists of:

- a set *S*, elements of which are called *states*,
- **a** a function $r: S \to B$, called *readout*, and

■ a function $u: S \times A \rightarrow S$, called *update*.

It is initialized if it is equipped also with

■ an element $s_0 \in S$, called the *initial state*.

We refer to A as the *input set*, B as the *output set*, and (A, B) as the *interface* of the Moore machine.

Dynamics: an (A, B)-Moore machine (S, u, r, s_0) is a "stream transducer":

- Given a list/stream $[a_0, a_1, \ldots]$ of A's...
- let $s_{n+1} := u(s_n, a_n)$ and $b_n := r(s_n)$.
- We thus have obtained a list/stream $[b_0, b_1, ...]$ of B's.

Moore machines

Definition

Given sets A, B, an (A, B)-Moore machine consists of:

- a set *S*, elements of which are called *states*,
- a function $r: S \rightarrow B$, called *readout*, and
- **a** a function $u: S \times A \rightarrow S$, called *update*.

 $A = \begin{bmatrix} S & B \end{bmatrix}$

It is initialized if it is equipped also with

■ an element $s_0 \in S$, called the *initial state*.

We refer to A as the *input set*, B as the *output set*, and (A, B) as the *interface* of the Moore machine.

Dynamics: an (A, B)-Moore machine (S, u, r, s_0) is a "stream transducer":

- Given a list/stream $[a_0, a_1, ...]$ of A's...
- let $s_{n+1} := u(s_n, a_n)$ and $b_n := r(s_n)$.
- We thus have obtained a list/stream $[b_0, b_1, ...]$ of B's.

This all works because Sy^S is a comonoid.

Moore machines as maps in Poly

We can understand Moore machines A - S - B in terms of polynomials.

- An uninitialized Moore machine $r: S \to B$ and $u: S \times A \to S$ is:
 - A map of polynomials $Sy^S \to By^A$.
 - lacksquare φ_1 is the readout and φ^{\sharp} is the update.
- Add initialization by giving a map $y \to Sy^S$.

Moore machines as maps in Poly

We can understand Moore machines A - S - B in terms of polynomials.

- An uninitialized Moore machine $r: S \to B$ and $u: S \times A \to S$ is:
 - A map of polynomials $Sy^S \to By^A$.
 - lacksquare φ_1 is the readout and φ^{\sharp} is the update.
- Add initialization by giving a map $y \to Sy^S$.

A *p-dynamical system* allows different input-sets at different positions.

- For arbitrary $p \in \textbf{Poly}$ we can interpret a map $\varphi \colon Sy^S \to p$ as:
 - a readout: every state $s \in S$ gets a position $i := \varphi_1(s) \in p(1)$
 - an update: for every direction $d \in p[i]$, a next state $\varphi_s^\sharp(d) \in S$.
- Again, add initialization by giving a map $y \to Sy^S$.

Moore machines as maps in Poly

We can understand Moore machines A - S - B in terms of polynomials.

- An uninitialized Moore machine $r: S \to B$ and $u: S \times A \to S$ is:
 - A map of polynomials $Sy^S \to By^A$.
 - lacksquare φ_1 is the readout and φ^{\sharp} is the update.
- Add initialization by giving a map $y \to Sy^S$.

A *p-dynamical system* allows different input-sets at different positions.

- For arbitrary $p \in \textbf{Poly}$ we can interpret a map $\varphi \colon Sy^S \to p$ as:
 - a readout: every state $s \in S$ gets a position $i := \varphi_1(s) \in p(1)$
 - an update: for every direction $d \in p[i]$, a next state $\varphi_s^{\sharp}(d) \in S$.
- Again, add initialization by giving a map $y \to Sy^S$.

Even more general: $Sy^S \rightarrow C$ for any category C.

- For example, a map $Sy^S \rightarrow p$ can be identified with a cofunctor...
- ... $Sy^S \rightarrow Cofree_p$, where $Cofree_p$ is the cofree comonoid on p.

Wiring diagrams

We can have a bunch of dynamical systems interacting in an open system.

 (φ)

Each box represents a monomial, e.g. $p_3 = Cy^{AB} \in \mathbf{Poly}$.

- The whole interaction, p_1 sending outputs to p_2 and p_3 , etc....
- lacksquare ... is captured by a map of polynomials $arphi\colon p_1\otimes\cdots\otimes p_5 o q$. 4
 - Given the positions (outputs) of each p_i , we get an output of q...
 - \blacksquare ... and when given an input of q, each p_i gets an input.

$$p \otimes p' = \sum_{(i,i') \in p(1) \times p'(1)} y^{p[i] \times p'[i']}.$$

⁴Here $p \otimes p'$ just multiplies positions and directions,

More general interaction

This whole picture represents one morphism in **Poly**.

- Let's suppose the company chooses who it wires to; this is its *mode*.
- Then both suppliers have interface Wy for $W \in \mathbf{Set}$.
- Company interface is $2y^W$: two modes, each of which is W-input.
- The outer box is just y, i.e. a closed system.

So the picture represents a map $Wy \otimes Wy \otimes 2y^W \rightarrow y$.

- That's a map $2W^2y^W \rightarrow y$.
- **E**quivalently, it's a function $2w^2 \to W$. Take it to be evaluation.
- In other words, the company's choice determines which $w \in W$ it receives.

Other sorts of dynamical systems

Dynamical systems are usually defined as actions of a monoid T.

- Discrete: \mathbb{N} , reversible: \mathbb{Z} , real-time: \mathbb{R} .
- If T is a monoid and S is a set, a T-action on S is equivalently...
- \blacksquare ... a map $S \times T \rightarrow S$ satisfying two laws, which is equivalently...
- ... a cofunctor $Sy^S \rightarrow y^T$, as in our general definition above.

One view on databases is that they're basically just copresheaves.

$$C := \begin{bmatrix} \mathsf{Mngr} & \xrightarrow{\mathsf{Employee}} & \xrightarrow{\mathsf{WorksIn}} & \mathsf{Department} \\ & & & \mathsf{Admin} \\ & & & \mathsf{Department}. \mathsf{Admin.WorksIn} = \mathsf{id}_{\mathsf{Department}} \end{bmatrix}$$

A functor $I: C \to \mathbf{Set}$ (i.e. $C \hookleftarrow 0$) can be represented as follows:

Employee	WorksIn	Mngr
Δ.	P9	0
T****	bLue	orca
orca	bLue	orca

Department	Admin
bLue	T****
P9	\Diamond

One view on databases is that they're basically just copresheaves.

$$C := \begin{bmatrix} \mathsf{Mngr} & \xrightarrow{\mathsf{Employee}} & \xrightarrow{\mathsf{WorksIn}} & \mathsf{Department} \\ & & & \mathsf{Admin} \end{bmatrix}$$

A functor $I: \mathcal{C} \to \mathbf{Set}$ (i.e. $\mathcal{C} \hookleftarrow 0$) can be represented as follows:

Employee	WorksIn	Mngr
\triangle	P9	Ø
T****	bLue	orca
orca	bLue	orca

Department	Admin
bLue	T****
P9	\Diamond

But where's the data? What are the employees names, etc.?

One view on databases is that they're basically just copresheaves.

$$C := \begin{bmatrix} \mathsf{Mngr} & \xrightarrow{\mathsf{Employee}} & \xrightarrow{\mathsf{WorksIn}} & \mathsf{Department} \\ & & & \mathsf{Admin} \end{bmatrix} \xrightarrow{\mathsf{Department}} \mathsf{Department}$$

More realistically, data should include attributes and look like this:

Employee	FName	WorksIn	Mngr
1	Alan	101	2
2	Ruth	101	2
3	Sara	102	3

Department	DName	Secr
101	Sales	1
102	IT	3
	· ·	

One view on databases is that they're basically just copresheaves.

$$C := \boxed{ \begin{array}{c} \mathsf{Mngr} & \overset{\mathsf{Employee}}{\longrightarrow} & \overset{\mathsf{WorksIn}}{\longleftarrow} & \mathsf{Department} \\ & & \mathsf{Admin} & \\ & & \mathsf{Department.Admin.WorksIn} & = \mathsf{id}_{\mathsf{Department}} \end{array}}$$

More realistically, data should include attributes and look like this:

Employee	FName	WorksIn	Mngr
1	Alan	101	2
2	Ruth	101	2
3	Sara	102	3

Department	DName	Secr
101	Sales	1
102	IT	3
	·	

- Assign a copresheaf $T : Ob(\mathcal{C}) \rightarrow \mathbf{Set}$, e.g. $T(\mathsf{Employee}) = \mathsf{String}$.
- Using the canonical cofunctor $\mathcal{C} \nrightarrow \mathsf{Ob}(\mathcal{C})$, attributes are given by α :

$$\begin{array}{ccc}
C & & \downarrow & \downarrow & \downarrow \\
\downarrow & & \downarrow & \alpha & [\\
Ob(C) & & & \uparrow &
\end{array}$$

Data migration

The framed bicategory structure of \mathbb{P} is very useful in databases.

- We hinted at this in the last slide, adding attributes via a cofunctor.
- But so-called *data migration functors* are precisely prafunctors.

Data migration

The framed bicategory structure of \mathbb{P} is very useful in databases.

- We hinted at this in the last slide, adding attributes via a cofunctor.
- But so-called *data migration functors* are precisely prafunctors.

A prafunctor $C \triangleleft \stackrel{P}{\longleftarrow} \varnothing$ in $C Mod_{\varnothing}$ can be understood as follows.

- First, it's a functor $C \to {}_{\mathbf{1}}\mathbf{Mod}_{\mathcal{D}}$, so what's that?
- We said it's a formal coproduct of formal limits in \mathcal{D} .
- A formal limit in \mathcal{D} is called a *conjunctive query* on \mathcal{D} .
- So a prafunctor $\mathbf{1} \overset{Q}{\longleftrightarrow} \mathcal{D}$ is a disjoint union of conjunctive queries.
- Let's call Q a duc-query on \mathcal{D} .

Data migration

The framed bicategory structure of \mathbb{P} is very useful in databases.

- We hinted at this in the last slide, adding attributes via a cofunctor.
- But so-called *data migration functors* are precisely prafunctors.

A prafunctor $C \triangleleft \stackrel{P}{\longleftarrow} \varnothing$ in $C Mod_{\varnothing}$ can be understood as follows.

- First, it's a functor $\mathcal{C} \to {}_{\mathbf{1}}\mathbf{Mod}_{\mathfrak{D}}$, so what's that?
- We said it's a formal coproduct of formal limits in \mathcal{D} .
- A formal limit in 𝒯 is called a *conjunctive query* on 𝒯.
- So a prafunctor $\mathbf{1} \triangleleft \bigcirc \bigcirc \bigcirc$ is a disjoint union of conjunctive queries.
- Let's call Q a duc-query on \mathcal{D} .

Example: if
$$\mathcal{D} = \begin{pmatrix} \mathsf{City} & \mathsf{in} & \mathsf{State} & \mathsf{in} & \mathsf{County} \\ \bullet & \bullet & \longleftarrow & \bullet \end{pmatrix}$$
, a duc-query might be...

$$(\mathsf{City} \times_{\mathsf{State}} \mathsf{City}) + (\mathsf{City} \times_{\mathsf{State}} \mathsf{County}) + (\mathsf{County} \times_{\mathsf{State}} \mathsf{County})$$

A general bimodule $P \in {}_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$ is a ${\mathcal{C}}$ -indexed duc-query on ${\mathcal{D}}$.

Cellular automata

The last thing we'll discuss today is cellular automata.

■ Here's a picture of a *glider* from Conway's Game of Life:

Cellular automata

The last thing we'll discuss today is cellular automata.

■ Here's a picture of a *glider* from Conway's Game of Life:

- GoL takes place on a grid, a set $V := \mathbb{Z} \times \mathbb{Z}$ of "squares"
- Each square has neighbors; think of the grid as a graph $A \rightrightarrows V$.
- Each square can be in one of two states: white or black.

Cellular automata

The last thing we'll discuss today is cellular automata.

■ Here's a picture of a *glider* from Conway's Game of Life:

- GoL takes place on a grid, a set $V := \mathbb{Z} \times \mathbb{Z}$ of "squares"
- **Each** square has neighbors; think of the grid as a graph $A \Rightarrow V$.
- Each square can be in one of two states: white or black.
- The state at any square is updated according to a formula, e.g.
 If the square is and has 2 or 3 neighbors, it stays ■.
 If the square is □ and has 3 neighbors, it turns ■.
 Otherwise it turns / remains □.

Cellular automata as algebras in ${\mathbb P}$

How do we encode this in \mathbb{P} ?

- We encode the graph $A \rightrightarrows V$ as a prafunctor $Vy \triangleleft \stackrel{g}{\longleftarrow} \bigvee Vy$
 - Each $v \in V$ queries its neighbors (and itself).
 - The carrier of the prafunctor for GoL is $g := Vy^9$.

Cellular automata as algebras in ${\mathbb P}$

How do we encode this in \mathbb{P} ?

- We encode the graph $A \rightrightarrows V$ as a prafunctor $Vy \hookleftarrow Vy$
 - Each $v \in V$ queries its neighbors (and itself).
 - The carrier of the prafunctor for GoL is $g := Vy^9$.
- We encode the color-set for each node as a prafunctor $Vy \triangleleft \stackrel{\mathcal{C}}{\longleftarrow} \bigcirc 0$
 - In GoL, each $v \in V$ gets the set 2; i.e. C := 2V.
- We encode the update formula as a map u of prafunctors

Cellular automata as algebras in ${\mathbb P}$

How do we encode this in \mathbb{P} ?

- We encode the graph $A \rightrightarrows V$ as a prafunctor $Vy \triangleleft \stackrel{g}{\longleftarrow} \triangleleft Vy$
 - Each $v \in V$ queries its neighbors (and itself).
 - The carrier of the prafunctor for GoL is $g := Vy^9$.
- We encode the color-set for each node as a prafunctor $Vy \triangleleft \stackrel{\mathcal{C}}{\longleftarrow} \triangleleft 0$
 - In GoL, each $v \in V$ gets the set 2; i.e. C := 2V.
- \blacksquare We encode the update formula as a map u of prafunctors
- And we encode the initial color setup as a point $V \rightarrow C$:

From here you can iteratively "run" the cellular automaton.

Outline

- **1** Introduction
- 2 Theory
- **3** Applications
- **4** Conclusion
 - Future outlook
 - Summary

Future work

Our society is engaging in many unhealthy behaviors.

- We need to understand what healthy behavior is.
- What activities are necessary for survival?
- How should we communicate so that what needs to happen does?

Future work

Our society is engaging in many unhealthy behaviors.

- We need to understand what healthy behavior is.
- What activities are necessary for survival?
- How should we communicate so that what needs to happen does?

We can think about them mathematically and apply our results.

- If we make philosophical/mathematical progress, we can echo it in tech
- If we make technological progress, people will take it up.
- If people use healthier tech systems, it might help.

Future work

Our society is engaging in many unhealthy behaviors.

- We need to understand what healthy behavior is.
- What activities are necessary for survival?
- How should we communicate so that what needs to happen does?

We can think about them mathematically and apply our results.

- If we make philosophical/mathematical progress, we can echo it in tech
- If we make technological progress, people will take it up.
- If people use healthier tech systems, it might help.

It is as promising a direction as anything I know of.

Workshop on polynomial functors in March

Joachim Kock and I are organizing a **Poly** workshop.⁵

- Dates: March 15 19
- Speakers:

Thorsten Altenkirch Michael Batanin Marcelo Fiore David Gepner Rune Haugseng André Joyal

Kristina Sojakova

Ross Street

Steve Awodey

Bryce Clarke Richard Garner

Helle Hvid Hansen

Bart Jacobs

Fredrik Nordvall-Forsberg

David Spivak Tarmo Uustalu

⁵https://topos.site/p-func-2021-workshop/

Future Topos Institute colloquia

This is the first of a series of Topos Institute colloquia.

- More info here: https://topos.site/seminars/
- Next few speakers
 - Richard Garner
 - Gunnar Carlsson
 - Samson Abramsky

Please join us!

Summary

Poly is a category of remarkable abundance.

- It's completely combinatorial.
 - Calculations are concrete.
 - Much is already familiar, e.g. $(y+1)^2 \cong y^2 + 2y + 1$.
- It's theoretically beautiful.
 - Comonoids are categories, coalgebras are copresheaves.
 - Monoids generalize operads.
- It's got a wide scope of applications.
 - Databases and data migration.
 - Dynamical systems and cellular automata.

A single setting for pursuing real philosophical and technological progress.

Thanks! Questions and comments welcome.