Poly: a category of remarkable abundance

David I. Spivak

TOPOS
 INSTITUTE

Colloquium
2021 February 04

Outline

1 Introduction
■ Personal history

- Plan

3 Applications

4 Conclusion

My personal history with math

I've always believed I could understand self, life, and world with math.
■ We generally share experience and knowledge in "natural language".
■ Is any of it inherently precluded from mathematical expression?

My personal history with math

I've always believed I could understand self, life, and world with math.
■ We generally share experience and knowledge in "natural language".
■ Is any of it inherently precluded from mathematical expression?

When I learned CT, I thought "this is where I can say it all."

- It's a sublanguage of math that can talk about math.

■ It's clean and principled and structural and expressive.
So I got to work trying to understand self, life, and world.

My personal history with ACT

What can we say about self, life, and world?
■ I first assumed everything is information and communication.
■ Pretend our minds are information-storage devices.

- How do we communicate with each other and with reality?

■ Understand everything in terms of databases and data migration!

- (Categories, set-valued functors, parametric right adjoints.)

My personal history with ACT

What can we say about self, life, and world?
■ I first assumed everything is information and communication.
■ Pretend our minds are information-storage devices.

- How do we communicate with each other and with reality?

■ Understand everything in terms of databases and data migration!
\square (Categories, set-valued functors, parametric right adjoints.)

- But interacting processes didn't seem to fit nicely.
$■$ So then I assumed everything is interacting dynamical systems.
- It's machines sending each other information, all the way down.

■ But should they really be wired the same way forever?

My personal history with Poly

Then one day I met Poly and fell in love.
■ It captures dynamical systems and "rewiring diagrams".
■ As a category it's exceptionally well-behaved.

My personal history with Poly

Then one day I met Poly and fell in love.
■ It captures dynamical systems and "rewiring diagrams".
■ As a category it's exceptionally well-behaved.
The dynamics seemed to really be all about comonoids in Poly.
■ Joachim Kock pointed me to R. Garner; I found his HoTTEST talk.
■ Garner explained Ahman-Uustalu's result: "comonoids = categories"
■ Garner also explained that bimodules = parametric right adjoints.

My personal history with Poly

Then one day I met Poly and fell in love.
■ It captures dynamical systems and "rewiring diagrams".
■ As a category it's exceptionally well-behaved.
The dynamics seemed to really be all about comonoids in Poly.
■ Joachim Kock pointed me to R. Garner; I found his HoTTEST talk.
■ Garner explained Ahman-Uustalu's result: "comonoids = categories"
■ Garner also explained that bimodules = parametric right adjoints.

Suddenly everything l'd been working on for 13 years came together.
■ I was overwhelmed by Poly's elegance and capacity for application.
■ It is extremely computational and hands-on...
■ ...while displaying excellent formal properties.

Toward metaphysics

I use Poly to help ground my thinking about self, life, and world.
■ What does it mean that I can "manipulate objects"?
■ How should I think about biological reproduction?
■ If it's always now, how do I perceive events that "unfold over time"?
■ What is survival? If we change over time, what survives?

Toward metaphysics

I use Poly to help ground my thinking about self, life, and world.
■ What does it mean that I can "manipulate objects"?
■ How should I think about biological reproduction?
■ If it's always now, how do I perceive events that "unfold over time"?
■ What is survival? If we change over time, what survives?
I'm happy to talk with you about these ideas off-line.

Plan for the talk

Here's the plan for today's talk
■ Theory

- Define Poly and one of its monoidal structures

■ Comonoids = categories, coalgebras = copresheaves, etc
■ Monoids generalize operads, algebras = operad-algebras, etc

Plan for the talk

Here's the plan for today's talk
■ Theory

- Define Poly and one of its monoidal structures

■ Comonoids = categories, coalgebras = copresheaves, etc
■ Monoids generalize operads, algebras = operad-algebras, etc

- Applications
- Dynamical systems

■ Databases
■ Cellular automata
■ Conclusion
■ Upcoming events
■ Summary

Plan for the talk

Here's the plan for today's talk

- Theory
- Define Poly and one of its monoidal structures

■ Comonoids = categories, coalgebras = copresheaves, etc
■ Monoids generalize operads, algebras = operad-algebras, etc

- Applications
- Dynamical systems

■ Databases
■ Cellular automata
■ Conclusion
■ Upcoming events

- Summary

Think of the talk as a calling card: reach out if you want to discuss!

Outline

1 Introduction

2 Theory

- (Poly, $y, \triangleleft)$
- Comonoids in Poly

■ The framed bicategory \mathbb{P}
■ Monads in \mathbb{P} generalize operads

3 Applications

4 Conclusion

Poly for experts

What I'll call the category Poly has many names.

- The free completely distributive category on one object;

■ The free coproduct completion of Set ${ }^{\mathrm{op}}$;
■ The full subcategory of [Set, Set] spanned by functors that preserve connected limits;
■ The full subcategory of [Set, Set] spanned by coproducts of repr'bles;

Poly for experts

What I'll call the category Poly has many names.

- The free completely distributive category on one object;

■ The free coproduct completion of Set ${ }^{\mathrm{op}}$;
■ The full subcategory of [Set, Set] spanned by functors that preserve connected limits;

- The full subcategory of [Set, Set] spanned by coproducts of repr'bles;

■ The category of typed sets and colax maps between them.

- Objects: pairs (S, τ), where $S \in$ Set and $\tau: S \rightarrow$ Set.

■ Morphisms $(S, \tau) \xrightarrow{\varphi}\left(S^{\prime}, \tau^{\prime}\right)$: pairs $\left(\varphi_{1}, \varphi^{\sharp}\right)$, where

Set
But let's make this easier.

What is a polynomial?

What is a polynomial?

Corolla forest

Interpretations:
■ Each corolla in p is a decision; its leaves are the options.
■ Each corolla in p is a position; its leaves are directions.

What is a morphism of polynomials?

Let $p:=y^{3}+2 y$ and $q:=y^{4}+y^{2}+2$

A morphism $p \xrightarrow{\varphi} q$ delegates each p-decision to a q-decision, passing back options:

Example: how to think of a map $y^{2}+y^{6} \rightarrow y^{52}$.

The category of polynomials

Easiest description: Poly $=$ "sums of representables functors Set \rightarrow Set".
$■$ For any set S, let $y^{S}:=\operatorname{Set}(S,-)$, the functor represented by S.
■ Def: a polynomial is a sum $p=\sum_{i \in I} y^{p[i]}$ of representable functors.
■ Def: a morphism of polynomials is a natural transformation.
■ In Poly, + is coproduct and \times is product.

Notation

We said that a polynomial is a sum of representable functors

$$
p \cong \sum_{i \in I} y^{p[i]}
$$

But note that $I \cong p(1)$. So we can write

$$
p \cong \sum_{i \in p(1)} y^{p[i]}
$$

Composition monoidal structure (Poly, y, \triangleleft)

The composite of two polynomial functors is again polynomial.
■ Let's denote the composite of p and q by $p \triangleleft q$.
■ Example: if $p:=y^{2}, q:=y+1$, then $p \triangleleft q \cong y^{2}+2 y+1$.
■ This is a monoidal structure, but not symmetric. $\left(q \triangleleft p \cong y^{2}+1\right)$
■ The identity functor y is the unit: $p \triangleleft y \cong p \cong y \triangleleft p$.

Composition monoidal structure (Poly, y, \triangleleft)

The composite of two polynomial functors is again polynomial.
$■$ Let's denote the composite of p and q by $p \triangleleft q$.
■ Example: if $p:=y^{2}, q:=y+1$, then $p \triangleleft q \cong y^{2}+2 y+1$.
■ This is a monoidal structure, but not symmetric. $\left(q \triangleleft p \cong y^{2}+1\right)$
■ The identity functor y is the unit: $p \triangleleft y \cong p \cong y \triangleleft p$.
Why the we weird symbol \triangleleft rather than \circ ?
■ We want to reserve \circ for morphism composition.
■ The notation $p \triangleleft q$ represents trees with p under q.

Composition given by stacking trees

Suppose $p:=y^{2}+y$ and $q:=y^{3}+1$.

Draw the composite $p \triangleleft q$ by stacking q-trees on top of p-trees:

You can also read it as q feeding into p, which is how composition works.

Comonoids in (Poly, y, \triangleleft)

In any monoidal category (m, I, \otimes), one can consider comonoids.
■ A comonoid is a triple (m, ϵ, δ) satisfying certain rules, where
■ $m \in M$ is an object, the carrier,
■ $\epsilon: m \rightarrow I$ is a map, the counit, and

- $\delta: m \rightarrow m \otimes m$ is a map, the comultiplication.

In (Poly, $y, \triangleleft)$, comonoids are exactly categories! ${ }^{1}$

[^0]
Comonoids in (Poly, y, \triangleleft)

In any monoidal category (m, I, \otimes), one can consider comonoids.
■ A comonoid is a triple (m, ϵ, δ) satisfying certain rules, where
■ $m \in M$ is an object, the carrier,
$\square \epsilon: m \rightarrow I$ is a map, the counit, and

- $\delta: m \rightarrow m \otimes m$ is a map, the comultiplication.

In (Poly, $y, \triangleleft)$, comonoids are exactly categories! ${ }^{1}$

- If C is a category, the corresponding comonoid is

$$
\mathfrak{c}:=\sum_{i \in \mathrm{Ob}(C)} y^{\mathrm{c}[i]}
$$

where $\mathfrak{c}[i]$ is the set of morphisms in C that emanate from i.

- The counit $\epsilon: \mathfrak{c} \rightarrow y$ assigns to each object an identity.

■ The comult $\delta: \mathfrak{c} \rightarrow \mathfrak{c} \triangleleft \mathfrak{c}$ assigns codomains and composites.

Comonoid maps are "cofunctors"

In Poly, comonoids are categories, but their morphisms aren't functors.

- A comonoid morphism $\varphi: C \nrightarrow \mathscr{D}$ is called a cofunctor.

■ It includes a Poly map on carriers. For each object $i \in \mathfrak{c}(1)$, we get:
■ an object $j:=\varphi_{1}(i) \in \mathfrak{d}(1)$ and
■ for each emanating $f \in \mathfrak{d}[j]$, an emanating $\varphi_{i}^{\sharp}(f) \in \mathfrak{c}[i]$.

Comonoid maps are "cofunctors"

In Poly, comonoids are categories, but their morphisms aren't functors.

- A comonoid morphism $\varphi: C \nrightarrow \mathscr{D}$ is called a cofunctor.

■ It includes a Poly map on carriers. For each object $i \in \mathfrak{c}(1)$, we get:
■ an object $j:=\varphi_{1}(i) \in \mathfrak{d}(1)$ and
■ for each emanating $f \in \mathfrak{d}[j]$, an emanating $\varphi_{i}^{\sharp}(f) \in \mathfrak{c}[i]$.
Example: what is a cofunctor $C \xrightarrow{\varphi} y^{\mathbb{N}}$?
■ It is trivial on objects. On morphisms...
■ ...it assigns an emanating morphism $\varphi_{i}^{\sharp}(1)$ to each object $i \in \mathfrak{c}(1)$.

Comonoid maps are "cofunctors"

In Poly, comonoids are categories, but their morphisms aren't functors.

- A comonoid morphism $\varphi: C \nrightarrow \mathscr{D}$ is called a cofunctor.

■ It includes a Poly map on carriers. For each object $i \in \mathfrak{c}(1)$, we get:
■ an object $j:=\varphi_{1}(i) \in \mathfrak{d}(1)$ and
■ for each emanating $f \in \mathfrak{d}[j]$, an emanating $\varphi_{i}^{\sharp}(f) \in \mathfrak{c}[i]$.
Example: what is a cofunctor $C \xrightarrow{\varphi} y^{\mathbb{N}}$?
■ It is trivial on objects. On morphisms...
■ ...it assigns an emanating morphism $\varphi_{i}^{\sharp}(1)$ to each object $i \in \mathfrak{c}(1)$.
"That's not what you do with a category!"

- Cofunctors are kinda weird right? A whole new world to explore.

■ A cofunctor $C \nrightarrow y^{\mathbb{N}}$ is like a vector field on the category.

- This hints at applications, which are coming soon.

Bicomodules in (Poly, y, \triangleleft)

Given comonoids C, \mathscr{D}, a ($(, \mathscr{D})$-bicomodule is another kind of map.
■ It's a polynomial m, equipped with two maps

$$
\mathfrak{c} \triangleleft m \longleftarrow m \longrightarrow m \triangleleft \mathfrak{d}
$$

each cohering naturally with the comonoid structure ϵ, δ.
■ I denote this (C, \mathscr{D})-bicomodule m like so:

$$
\mathfrak{c} \triangleleft \stackrel{m}{\triangleleft} \triangleleft \mathfrak{d} \quad \text { or } \quad C \triangleleft \stackrel{m}{\triangleleft} \triangleleft D
$$

■ The \triangleleft 's at the ends help me remember the how the maps go.

- Maybe it looks like it's going the wrong way, but hold on.

Bicomodules are parametric right adjoints

Garner explained ${ }^{2}$ that bicomodules $m \in e \mathbf{M o d}_{\mathscr{D}}$, which we've denoted

$$
C \triangleleft \xrightarrow{m} \triangleleft D
$$

can be identified with parametric right adjoint functors (prafunctors)

$$
\mathcal{D} \text {-Set } \xrightarrow{M} C \text {-Set. }
$$

[^1]
Bicomodules are parametric right adjoints

Garner explained ${ }^{2}$ that bicomodules $m \in e \mathbf{M o d}_{\mathscr{D}}$, which we've denoted

$$
C \triangleleft \xrightarrow{m} \triangleleft D
$$

can be identified with parametric right adjoint functors (prafunctors)

$$
\mathscr{D} \text {-Set } \xrightarrow{M} C \text {-Set. }
$$

- From this perspective the arrow points in the expected direction.

■ Check: ${ }_{e}$ Mod $_{0} \cong$ - -Set.

[^2]
Bicomodules are parametric right adjoints

Garner explained ${ }^{2}$ that bicomodules $m \in e \mathbf{M o d}_{\mathscr{D}}$, which we've denoted

$$
C \triangleleft \stackrel{m}{\triangleleft} \triangle D
$$

can be identified with parametric right adjoint functors (prafunctors)

$$
\mathcal{D} \text {-Set } \xrightarrow{M} C \text {-Set. }
$$

- From this perspective the arrow points in the expected direction.

■ Check: ${ }_{C}$ Mod $_{0} \cong \mathcal{C}$-Set.
Prafunctors $C \triangleleft \triangleleft \mathscr{D}$ generalize profunctors $C \mapsto \mathscr{D}$:

- A profunctor $C \rightarrow \mathscr{D}$ is a functor $C \rightarrow(\mathscr{D} \text {-Set })^{\text {op }}$
- A prafunctor $C \triangleleft \triangleleft D$ is a functor $C \rightarrow \mathbf{C o c o}\left((\mathcal{D}-\text { Set })^{\mathrm{op}}\right) \ldots$

■ ...where Coco is the free coproduct completion.
I'll explain how to think about it concretely when we get to applications.

[^3]
The framed bicategory \mathbb{P}

Poly comonoids, cofunctors, and bicomodules form a framed bicategory \mathbb{P}.
■ It's got a ton of structure, e.g. two monoidal structures,,$+ \otimes$.
■ Despite the last slide, it's actually not that hard to think about. Here are some facts about $C_{\mathbf{M o d}_{\mathscr{D}}}$ for categories C, \mathscr{D}.

■ ${ }_{D}$ Mod $_{\mathbf{0}} \cong \mathscr{D}$-Set, copresheaves on \mathscr{D}.
$\square{ }_{1} \operatorname{Mod}_{\mathscr{D}} \cong \operatorname{Coco}\left(\left(D_{\text {-Set }}\right)^{\circ \mathrm{P}}\right)$.

- ${ }_{e} \mathbf{M o d}_{\mathscr{D}} \cong \mathbf{C a t}\left(C, \mathbf{1}_{\mathbf{M o d}}^{\mathscr{D}}\right)$.

The framed bicategory \mathbb{P}

Poly comonoids, cofunctors, and bicomodules form a framed bicategory \mathbb{P}.
■ It's got a ton of structure, e.g. two monoidal structures,,$+ \otimes$.
■ Despite the last slide, it's actually not that hard to think about. Here are some facts about $e^{\mathbf{M o d}_{\mathscr{D}}}$ for categories \mathcal{C}, \mathscr{D}.

■ ${ }_{D}$ Mod $_{\mathbf{0}} \cong \mathscr{D}$-Set, copresheaves on \mathscr{D}.
$\square{ }_{1} \operatorname{Mod}_{\mathscr{D}} \cong \operatorname{Coco}\left(\left(D_{\text {-Set }}\right)^{\mathrm{op}}\right)$.

- ${ }_{C} \mathbf{M o d}_{\mathscr{D}} \cong \mathbf{C a t}\left(C, \mathbf{1}_{\mathbf{M o d}}^{\mathscr{D}}\right)$.

We can think about ${ }_{1}$ Mod $_{\mathscr{D}}$ as something like a polynomial rig in \mathscr{D}.
■ If $\mathscr{D}=J$ is discrete, it's the rig of polynomials in variables $\left(y^{j}\right)_{j \in J}$.
\square So ,Mod , is I-many polynomials in J variables, as in Gambino-Kock.

The framed bicategory \mathbb{P}

Poly comonoids, cofunctors, and bicomodules form a framed bicategory \mathbb{P}.
■ It's got a ton of structure, e.g. two monoidal structures,,$+ \otimes$.
■ Despite the last slide, it's actually not that hard to think about.
Here are some facts about $e_{C} \mathbf{M o d}_{\mathscr{D}}$ for categories C, \mathscr{D}.
■ ${ }_{D}$ Mod $_{\mathbf{0}} \cong \mathscr{D}$-Set, copresheaves on \mathscr{D}.
$\square{ }_{1} \operatorname{Mod}_{\mathscr{D}} \cong \operatorname{Coco}\left(\left(D_{\text {-Set }}\right)^{\mathrm{op}}\right)$.

- ${ }_{C} \mathbf{M o d}_{\mathscr{D}} \cong \mathbf{C a t}\left(C, \mathbf{1}_{\mathbf{M o d}}^{\mathscr{D}}\right)$.

We can think about ${ }_{1}$ Mod $_{\mathscr{D}}$ as something like a polynomial rig in \mathscr{D}.
■ If $\mathscr{D}=J$ is discrete, it's the rig of polynomials in variables $\left(y^{j}\right)_{j \in J}$.
■ So ,Mod ${ }_{J}$ is I-many polynomials in J variables, as in Gambino-Kock.
$■$ For general \mathscr{D}, note that $y^{-}: \mathscr{D} \rightarrow(\mathscr{D} \text {-Set })^{\mathrm{op}}$ is free limit completion.
■ So just generalize from sums of \mathscr{D}-products to sums of \mathscr{D}-limits, e.g.

$$
y^{a} y^{a}+42 \lim \left(y^{a} \xrightarrow{f} y^{c} \stackrel{g}{\leftarrow} y^{b}\right) \quad \in{ }_{1} \mathbf{M o d}_{\mathscr{D}}
$$

(Here, $f: a \rightarrow c$ and $g: b \rightarrow c$ are morphisms in \mathscr{D}).

Operads as monads in \mathbb{P}

In any framed bicategory, notation from \mathbb{P}, a monad (C, m, η, μ) consists of

- An object C, the type

■ a bimodule $C \triangleleft \stackrel{m}{\triangleleft} C$, the carrier
\square a 2 -cell η : $\mathrm{id}_{c} \Rightarrow m$, the unit
■ a 2-cell $\mu: m \circ m \Rightarrow m$, the multiplication

- satisfying the usual laws.

[^4]
Operads as monads in \mathbb{P}

In any framed bicategory, notation from \mathbb{P}, a monad (C, m, η, μ) consists of

- An object C, the type
- a bimodule $C \triangleleft{ }^{m} \triangleleft$, the carrier
- a 2-cell η : $\mathrm{id}_{c} \Rightarrow m$, the unit

■ a 2-cell $\mu: m \circ m \Rightarrow m$, the multiplication
■ satisfying the usual laws.
In \mathbb{P}, these generalize operads in a number of ways:
■ When $C \cong I$ is discrete, $\eta^{\sharp}, \mu^{\sharp}$ are isos, you get colored operads. ${ }^{3}$
■ Relaxing discreteness of C, the input to a morphism can be...
■ ... a diagram, rather than a mere set, of objects.
■ Relaxing "iso" condition, composites and ids can have "weird" arities.

[^5]
Grothendieck sites give \mathbb{P}-monads

Every Grothendieck site $\left(C^{\mathrm{op}}, J\right)$ has an associated monad m_{J} in \mathbb{P}.
■ A J-sheaf is an m_{J}-algebra, but not all m_{J}-algebras are J-sheaves.
■ An m_{J}-algebra has existence, but not necess'ly uniqueness for gluing.

Grothendieck sites give \mathbb{P}-monads

Every Grothendieck site $\left(C^{\circ p}, J\right)$ has an associated monad m_{J} in \mathbb{P}.
■ A J-sheaf is an m_{J}-algebra, but not all m_{J}-algebras are J-sheaves.
■ An m_{J}-algebra has existence, but not necess'ly uniqueness for gluing.
To each Grothendieck top'y J, we need (m, η, μ) where $C \triangleleft \overbrace{}^{m} C$.
■ The topology J assigns to each $V \in C$ a set J_{V}, "covering families" ...
■ ... and each $F \in J_{V}$ is assigned a subfunctor $S_{F} \subseteq C[V]$.
■ From this data we define $m \in$ Poly:

$$
m:=\sum_{V \in \mathrm{Ob}(C)} \sum_{F \in J_{V}} y^{S_{F}} .
$$

The Grothendieck top'y axioms endow the bimodule and monad structure.

Grothendieck sites give \mathbb{P}-monads

Every Grothendieck site $\left(C^{\mathrm{op}}, J\right)$ has an associated monad m_{J} in \mathbb{P}.
■ A J-sheaf is an m_{J}-algebra, but not all m_{J}-algebras are J-sheaves.
■ An m_{J}-algebra has existence, but not necess'ly uniqueness for gluing.
To each Grothendieck top'y J, we need (m, η, μ) where $C \triangleleft{ }^{m} \triangleleft C$.
■ The topology J assigns to each $V \in C$ a set J_{V}, "covering families" ...
■ ... and each $F \in J_{V}$ is assigned a subfunctor $S_{F} \subseteq C[V]$.
■ From this data we define $m \in$ Poly:

$$
m:=\sum_{V \in \mathrm{Ob}(e)} \sum_{F \in J_{V}} y^{S_{F}} .
$$

The Grothendieck top'y axioms endow the bimodule and monad structure.
An algebra structure $m \circ P \xrightarrow{h} P$ assigns a section $h_{V}(F, s) \in P_{V}$ to each V-covering family F and matching family s of sections.

Outline

1 Introduction

2 Theory

3 Applications
■ Dynamical systems

- Databases
- Cellular automata

4 Conclusion

Moore machines

Definition

Given sets A, B, an (A, B)-Moore machine consists of:

- a set S, elements of which are called states,
- a function $r: S \rightarrow B$, called readout, and
\square a function $u: S \times A \rightarrow S$, called update.

It is initialized if it is equipped also with
■ an element $s_{0} \in S$, called the initial state.
We refer to A as the input set, B as the output set, and (A, B) as the interface of the Moore machine.

Moore machines

Definition

Given sets A, B, an (A, B)-Moore machine consists of:
\square a set S, elements of which are called states,

- a function $r: S \rightarrow B$, called readout, and
\square a function $u: S \times A \rightarrow S$, called update.

It is initialized if it is equipped also with
■ an element $s_{0} \in S$, called the initial state.
We refer to A as the input set, B as the output set, and (A, B) as the interface of the Moore machine.

Dynamics: an (A, B)-Moore machine $\left(S, u, r, s_{0}\right)$ is a "stream transducer":
■ Given a list/stream $\left[a_{0}, a_{1}, \ldots\right]$ of A 's...
\square let $s_{n+1}:=u\left(s_{n}, a_{n}\right)$ and $b_{n}:=r\left(s_{n}\right)$.
■ We thus have obtained a list/stream [$\left.b_{0}, b_{1}, \ldots\right]$ of B 's.

Moore machines

Definition

Given sets A, B, an (A, B)-Moore machine consists of:

- a set S, elements of which are called states,
- a function $r: S \rightarrow B$, called readout, and
\square a function $u: S \times A \rightarrow S$, called update.

It is initialized if it is equipped also with
■ an element $s_{0} \in S$, called the initial state.
We refer to A as the input set, B as the output set, and (A, B) as the interface of the Moore machine.

Dynamics: an (A, B)-Moore machine $\left(S, u, r, s_{0}\right)$ is a "stream transducer":
■ Given a list/stream $\left[a_{0}, a_{1}, \ldots\right]$ of A 's...
\square let $s_{n+1}:=u\left(s_{n}, a_{n}\right)$ and $b_{n}:=r\left(s_{n}\right)$.
■ We thus have obtained a list/stream [$\left.b_{0}, b_{1}, \ldots\right]$ of B 's.
This all works because $S y^{S}$ is a comonoid.

Moore machines as maps in Poly

We can understand Moore machines $A_{-5} \int^{B}$ in terms of polynomials.

- An uninitialized Moore machine $r: S \rightarrow B$ and $u: S \times A \rightarrow S$ is:

■ A map of polynomials $S y^{S} \rightarrow B y^{A}$.

- φ_{1} is the readout and φ^{\sharp} is the update.
- Add initialization by giving a map $y \rightarrow S y^{S}$.

Moore machines as maps in Poly

We can understand Moore machines $A_{-5} \sqrt{3}^{3}$ in terms of polynomials.

- An uninitialized Moore machine $r: S \rightarrow B$ and $u: S \times A \rightarrow S$ is:
- A map of polynomials $S y^{S} \rightarrow B y^{A}$.
- φ_{1} is the readout and φ^{\sharp} is the update.
- Add initialization by giving a map $y \rightarrow S y^{S}$.

A p-dynamical system allows different input-sets at different positions.

- For arbitrary $p \in$ Poly we can interpret a $\operatorname{map} \varphi: S y^{S} \rightarrow p$ as:

■ a readout: every state $s \in S$ gets a position $i:=\varphi_{1}(s) \in p(1)$
■ an update: for every direction $d \in p[i]$, a next state $\varphi_{s}^{\sharp}(d) \in S$.
■ Again, add initialization by giving a map $y \rightarrow S y^{S}$.

Moore machines as maps in Poly

We can understand Moore machines $A_{-5} \int^{B}$ in terms of polynomials.
■ An uninitialized Moore machine $r: S \rightarrow B$ and $u: S \times A \rightarrow S$ is:

- A map of polynomials $S y^{S} \rightarrow B y^{A}$.
- φ_{1} is the readout and φ^{\sharp} is the update.

■ Add initialization by giving a map $y \rightarrow S y^{S}$.
A p-dynamical system allows different input-sets at different positions.
■ For arbitrary $p \in$ Poly we can interpret a $\operatorname{map} \varphi: S y^{S} \rightarrow p$ as:
■ a readout: every state $s \in S$ gets a position $i:=\varphi_{1}(s) \in p(1)$
■ an update: for every direction $d \in p[i]$, a next state $\varphi_{s}^{\sharp}(d) \in S$.
■ Again, add initialization by giving a map $y \rightarrow S y^{S}$.
Even more general: $S y^{S} \nrightarrow C$ for any category C.

- For example, a map $S y^{S} \rightarrow p$ can be identified with a cofunctor...

■ ... $S y^{S} \nrightarrow$ Cofree $_{p}$, where Cofree $_{p}$ is the cofree comonoid on p.

Wiring diagrams

We can have a bunch of dynamical systems interacting in an open system.

Each box represents a monomial, e.g. $p_{3}=C y^{A B} \in$ Poly.
■ The whole interaction, p_{1} sending outputs to p_{2} and p_{3}, etc....
■ ... is captured by a map of polynomials $\varphi: p_{1} \otimes \cdots \otimes p_{5} \rightarrow q .{ }^{4}$
■ Given the positions (outputs) of each p_{i}, we get an output of $q \ldots$
■ ... and when given an input of q, each p_{i} gets an input.
${ }^{4}$ Here $p \otimes p^{\prime}$ just multiplies positions and directions,

$$
p \otimes p^{\prime}=\sum_{(i, i \prime) \in p(1) \times p^{\prime}(1)} y^{p[i] \times p^{\prime}\left[i^{\prime}\right]} .
$$

More general interaction

This whole picture represents one morphism in Poly.
■ Let's suppose the company chooses who it wires to; this is its mode.
■ Then both suppliers have interface $W y$ for $W \in$ Set.
■ Company interface is $2 y^{W}$: two modes, each of which is W-input.
■ The outer box is just y, i.e. a closed system.
So the picture represents a map $W y \otimes W y \otimes 2 y^{W} \rightarrow y$.
■ That's a map $2 W^{2} y^{W} \rightarrow y$.
■ Equivalently, it's a function $2 w^{2} \rightarrow W$. Take it to be evaluation.
■ In other words, the company's choice determines which $w \in W$ it receives.

Other sorts of dynamical systems

Dynamical systems are usually defined as actions of a monoid T.
■ Discrete: \mathbb{N}, reversible: \mathbb{Z}, real-time: \mathbb{R}.
■ If T is a monoid and S is a set, a T-action on S is equivalently...
■ ... a map $S \times T \rightarrow S$ satisfying two laws, which is equivalently...
■ ... a cofunctor $S y^{S} \nrightarrow y^{T}$, as in our general definition above.

Categorical databases

One view on databases is that they're basically just copresheaves.

A functor $I: C \rightarrow$ Set (i.e. $C \triangleleft 1 \triangleleft 0$) can be represented as follows:

Employee	Worksln	Mngr
\mathcal{O}	P 9	\varnothing
$\mathrm{~T}^{* * * *}$	bLue	orca
orca	bLue	orca

Department	Admin
bLue	$\mathrm{T}^{* * * *}$
P9	\odot

Categorical databases

One view on databases is that they're basically just copresheaves.

A functor I: $C \rightarrow$ Set (i.e. $C \triangleleft{ }^{\prime} \triangleleft 0$) can be represented as follows:

Employee	Worksln	Mngr
\cap	P9	\bigcirc
$\mathrm{T}^{* * * *}$	bLue	orca
orca	bLue	orca

Department	Admin
bLue	$\mathrm{T}^{* * * *}$
P9	\odot

But where's the data? What are the employees names, etc.?

Categorical databases

One view on databases is that they're basically just copresheaves.

More realistically, data should include attributes and look like this:

Employee	FName	Worksln	Mngr
1	Alan	101	2
2	Ruth	101	2
3	Sara	102	3

Department	DName	Secr
101	Sales	1
102	IT	3

Categorical databases

One view on databases is that they're basically just copresheaves.

More realistically, data should include attributes and look like this:

Employee	FName	Worksln	Mngr
1	Alan	101	2
2	Ruth	101	2
3	Sara	102	3

Department	DName	Secr
101	Sales	1
102	IT	3

■ Assign a copresheaf $T: \mathrm{Ob}(C) \rightarrow$ Set, e.g. T (Employee) $=$ String.
■ Using the canonical cofunctor $C \nrightarrow \mathrm{Ob}(C)$, attributes are given by α :

Data migration

The framed bicategory structure of \mathbb{P} is very useful in databases.
■ We hinted at this in the last slide, adding attributes via a cofunctor.
■ But so-called data migration functors are precisely prafunctors.

Data migration

The framed bicategory structure of \mathbb{P} is very useful in databases.
■ We hinted at this in the last slide, adding attributes via a cofunctor.
■ But so-called data migration functors are precisely prafunctors.
A prafunctor $C \triangleleft \stackrel{P}{\triangleleft} \mathscr{D}$ in $C \mathbf{M o d}_{\mathscr{D}}$ can be understood as follows.
■ First, it's a functor $C \rightarrow{ }_{1}$ Mod $_{\mathscr{D}}$, so what's that?
■ We said it's a formal coproduct of formal limits in \mathscr{D}.
■ A formal limit in \mathscr{D} is called a conjunctive query on \mathscr{D}.
■ So a prafunctor $1 \triangleleft \stackrel{Q}{\triangleleft}$ D is a disjoint union of conjunctive queries.

- Let's call Q a duc-query on \mathscr{D}.

Data migration

The framed bicategory structure of \mathbb{P} is very useful in databases.
■ We hinted at this in the last slide, adding attributes via a cofunctor.

- But so-called data migration functors are precisely prafunctors.

A prafunctor $C \triangleleft \stackrel{P}{\triangleleft} \mathscr{D}$ in $C \mathbf{M o d}_{\mathscr{D}}$ can be understood as follows.
■ First, it's a functor $C \rightarrow{ }_{\mathbf{1}} \mathbf{M o d}_{\mathscr{D}}$, so what's that?
■ We said it's a formal coproduct of formal limits in \mathscr{D}.

- A formal limit in \mathscr{D} is called a conjunctive query on \mathscr{D}.

■ So a prafunctor $1 \triangleleft \stackrel{Q}{\triangleleft} \mathscr{D}$ is a disjoint union of conjunctive queries.

- Let's call Q a duc-query on \mathscr{D}.

Example: if $\mathscr{D}=\left(\stackrel{\text { City }}{\bullet} \xrightarrow{\text { in }}\right.$ State in $\left.{ }^{\text {County }} \stackrel{\bullet}{\bullet}\right)$, a duc-query might be...

$$
(\text { City } \times \text { State } \text { City })+(\text { City } \times \text { State } \text { County })+(\text { County } \times \text { State County })
$$

A general bimodule $P \in{ }_{C} \mathbf{M o d}_{\mathscr{D}}$ is a C-indexed duc-query on \mathscr{D}.

Cellular automata

The last thing we'll discuss today is cellular automata.
■ Here's a picture of a glider from Conway's Game of Life:

Cellular automata

The last thing we'll discuss today is cellular automata.
■ Here's a picture of a glider from Conway's Game of Life:

■ GoL takes place on a grid, a set $V:=\mathbb{Z} \times \mathbb{Z}$ of "squares"
■ Each square has neighbors; think of the grid as a graph $A \rightrightarrows V$.
■ Each square can be in one of two states: white or black.

Cellular automata

The last thing we'll discuss today is cellular automata.
■ Here's a picture of a glider from Conway's Game of Life:

■ GoL takes place on a grid, a set $V:=\mathbb{Z} \times \mathbb{Z}$ of "squares"
■ Each square has neighbors; think of the grid as a graph $A \rightrightarrows V$.
■ Each square can be in one of two states: white or black.
■ The state at any square is updated according to a formula, e.g. If the square is \square and has 2 or 3 neighbors, it stays \square. If the square is \square and has $3 \square$ neighbors, it turns \square. Otherwise it turns / remains \square.

Cellular automata as algebras in \mathbb{P}

How do we encode this in \mathbb{P} ?

- We encode the graph $A \rightrightarrows V$ as a prafunctor $V y \triangleleft^{g} \triangleleft V y$

■ Each $v \in V$ queries its neighbors (and itself).

- The carrier of the prafunctor for GoL is $g:=V y^{9}$.

Cellular automata as algebras in \mathbb{P}

How do we encode this in \mathbb{P} ?
■ We encode the graph $A \rightrightarrows V$ as a prafunctor $V y \triangleleft^{g} \triangleleft V y$
■ Each $v \in V$ queries its neighbors (and itself).

- The carrier of the prafunctor for GoL is $g:=V y^{9}$.
- We encode the color-set for each node as a prafunctor $V y \triangleleft{ }^{C}$

■ In GoL, each $v \in V$ gets the set 2 ; i.e. $C:=2 V$.
■ We encode the update formula as a map u of prafunctors

Cellular automata as algebras in \mathbb{P}

How do we encode this in \mathbb{P} ?
■ We encode the graph $A \rightrightarrows V$ as a prafunctor $V y \triangleleft^{g} \triangleleft V y$
■ Each $v \in V$ queries its neighbors (and itself).

- The carrier of the prafunctor for GoL is $g:=V y^{9}$.
- We encode the color-set for each node as a prafunctor $V y \triangleleft{ }_{\hookrightarrow} 0$

■ In GoL, each $v \in V$ gets the set 2 ; i.e. $C:=2 V$.
$■$ We encode the update formula as a map u of prafunctors
■ And we encode the initial color setup as a point $V \rightarrow C$:

From here you can iteratively "run" the cellular automaton.

Outline

1 Introduction

2 Theory

3 Applications

4 Conclusion
■ Future outlook

- Summary

Future work

Our society is engaging in many unhealthy behaviors.
■ We need to understand what healthy behavior is.
■ What activities are necessary for survival?
■ How should we communicate so that what needs to happen does?

Future work

Our society is engaging in many unhealthy behaviors.
■ We need to understand what healthy behavior is.
■ What activities are necessary for survival?
■ How should we communicate so that what needs to happen does?
We can think about them mathematically and apply our results.
■ If we make philosophical/mathematical progress, we can echo it in tech
■ If we make technological progress, people will take it up.
■ If people use healthier tech systems, it might help.

Future work

Our society is engaging in many unhealthy behaviors.
■ We need to understand what healthy behavior is.
■ What activities are necessary for survival?
■ How should we communicate so that what needs to happen does?
We can think about them mathematically and apply our results.
■ If we make philosophical/mathematical progress, we can echo it in tech
■ If we make technological progress, people will take it up.
■ If people use healthier tech systems, it might help.
It is as promising a direction as anything I know of.

Workshop on polynomial functors in March

Joachim Kock and I are organizing a Poly workshop. ${ }^{5}$
■ Dates: March 15-19

- Speakers:

Thorsten Altenkirch
Michael Batanin
Marcelo Fiore
David Gepner
Rune Haugseng
André Joyal
Kristina Sojakova
Ross Street

Steve Awodey
Bryce Clarke
Richard Garner
Helle Hvid Hansen
Bart Jacobs
Fredrik Nordvall-Forsberg
David Spivak
Tarmo Uustalu

[^6]
Future Topos Institute colloquia

This is the first of a series of Topos Institute colloquia.
■ More info here: https://topos.site/seminars/
■ Next few speakers
■ Richard Garner
■ Gunnar Carlsson

- Samson Abramsky

Please join us!

Summary

Poly is a category of remarkable abundance.
■ It's completely combinatorial.
■ Calculations are concrete.
■ Much is already familiar, e.g. $(y+1)^{2} \cong y^{2}+2 y+1$.
■ It's theoretically beautiful.
■ Comonoids are categories, coalgebras are copresheaves.
■ Monoids generalize operads.

- It's got a wide scope of applicatons.

■ Databases and data migration.

- Dynamical systems and cellular automata.

A single setting for pursuing real philosophical and technological progress.
Thanks! Questions and comments welcome.

[^0]: ${ }^{1}$ Ahman-Uustalu. See my talk, https://www.youtube.com/watch?v=2mWnrgPIrlA

[^1]: ${ }^{2}$ Garner's HoTTEST video, https://www. youtube.com/watch?v=tW6HYnqn6eI

[^2]: ${ }^{2}$ Garner's HoTTEST video, https://www. youtube.com/watch?v=tW6HYnqn6eI

[^3]: ²Garner's HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6eI

[^4]: ${ }^{3}$ Not quite the standard definition of operad, but one I like better: the input to a morphism is a set, rather than a list of objects. You can also talk about standard operads and generalizations within the \mathbb{P} setting; see Gambino-Kock.

[^5]: ${ }^{3}$ Not quite the standard definition of operad, but one I like better: the input to a morphism is a set, rather than a list of objects. You can also talk about standard operads and generalizations within the \mathbb{P} setting; see Gambino-Kock.

[^6]: ${ }^{5}$ https://topos.site/p-func-2021-workshop/

