# Learners' languages

David I. Spivak



Topos Internal Seminar 2021 September 21

### Outline

#### 1 Introduction

- Goal
- Plan
- 2 Background on Poly
- **3** The operad  $\mathfrak{O}\mathfrak{r}g$  of organizations
- 4 Where I'm stuck

### Goal of today's talk

I want to tell you what I've been doing and where I'm stuck.

- Thanks Toby, for saying that that's what you wanted to hear about.
  I feel like I've developed the machinery I want to use.
  - As you know, I love Poly: it's expressive and well-behaved.
  - Inside Poly is a categorical operad I'm calling *Org*.
  - It packages my usual "interacting machines" thing inside of Poly.

# Goal of today's talk

I want to tell you what I've been doing and where I'm stuck.

Thanks Toby, for saying that that's what you wanted to hear about.
 I feel like I've developed the machinery I want to use.

- As you know, I love Poly: it's expressive and well-behaved.
- Inside Poly is a categorical operad I'm calling *Org*.
- It packages my usual "interacting machines" thing inside of Poly.

But now I have to actually use it.

- I want to talk about what matters most to me:
- What actually makes things work?
- What is coordination, cooperation, health, effectiveness?

# Plan of the talk

- Background on Poly.
  - The basics.
  - The  $(y, \otimes)$  monoidal structure and its closure [-, -].
  - Coalgebras: e.g. dynamical systems and wiring diagrams.
  - Type theory and logic in the topos of *p*-coalgebras.
- Introduce the categorical operad *Org* of *organizations*.
  - Recall the setup in "backprop as functor".
  - Define  $\mathfrak{O}\mathfrak{r}g$  and give intuition.
- Explain where I'm stuck.

# Outline

#### 1 Introduction

#### 2 Background on Poly

- Basics
- Monoidal closed structure  $(y, \otimes, [-, -])$
- Coalgebras
- Type theory and logic in *p*-Coalg

#### **3** The operad $\mathfrak{O}rg$ of organizations

4 Where I'm stuck

# Definition and terminology of Poly

Poly is the category of sums of representables  $\mathsf{Set}\to\mathsf{Set}.$ 

- For any  $A \in \text{Set}$ , write  $y^A \in \text{Poly to mean } (X \mapsto X^A)$ : Set  $\rightarrow$  Set.
- A polynomial p is a coproduct of representables,  $p = \sum_{i \in I} y^{A_i}$ .

• Call each  $i \in I$  a position in p.

• Note:  $p(1) \cong I$ .

• Call each  $a \in A_i$  a direction in p (at position i).

• Let's write p[i] instead of  $A_i$ , to obtain this notation:

$$p = \sum_{i \in p(1)} y^{p[i]}$$

# Definition and terminology of Poly

Poly is the category of sums of representables  $\mathsf{Set}\to\mathsf{Set}.$ 

- For any  $A \in \text{Set}$ , write  $y^A \in \text{Poly to mean } (X \mapsto X^A)$ : Set  $\rightarrow$  Set.
- A polynomial p is a coproduct of representables,  $p = \sum_{i \in I} y^{A_i}$ .

• Call each  $i \in I$  a position in p.

- Note:  $p(1) \cong I$ .
- Call each  $a \in A_i$  a direction in p (at position i).
- Let's write p[i] instead of  $A_i$ , to obtain this notation:

$$p = \sum_{i \in p(1)} y^{p[i]}$$

Morphisms  $\varphi \colon p \to q$  in Poly are just natural transformations.

- Yoneda:  $Poly(y^A, y^B) = Set(B, A)$ .
- Derive "lens-like" description from universal property of coproducts:

$$\varphi \in \mathsf{Poly}\Big(\sum_{i \in p(1)} y^{p[i]}, \sum_{j \in q(1)} y^{q[j]}\Big) \cong \prod_{i \in p(1)} \sum_{j \in q(1)} \mathsf{Set}(q[j], p[i])$$

# The monoidal structure $(y, \otimes)$

There is a monoidal structure  $(y, \otimes)$  on Poly.

- $y \in \mathsf{Poly}$  denotes the identity functor id:  $\mathsf{Set} \to \mathsf{Set}$ .
  - The polynomial y has one position, and one direction.
  - Quick aside on maps into y:
    - A map  $\gamma: p \to y$  is a "global section" of p.
    - That is, it's a choice of direction at each position.

# The monoidal structure $(y, \otimes)$

There is a monoidal structure  $(y, \otimes)$  on Poly.

- $y \in \mathsf{Poly}$  denotes the identity functor id:  $\mathsf{Set} \to \mathsf{Set}$ .
  - The polynomial y has one position, and one direction.

Quick aside on maps into y:

• A map  $\gamma: p \to y$  is a "global section" of p.

That is, it's a choice of direction at each position.

**\blacksquare** Back to the main point: y is the unit of a monoidal structure.

Given polynomials *p*, *q*, we can multiply both positions and directions.

$$p \otimes q \coloneqq \sum_{i \in p(1)} \sum_{j \in q(1)} y^{p[i] \times q[j]}$$

Examples:

$$\blacksquare A \otimes B = AB$$

# The $\otimes$ -closure, i.e. internal hom [-,-]

For any two polynomials  $p, q \in \mathsf{Poly}$ , there is  $[p, q] \in \mathsf{Poly}$  with

$$\mathsf{Poly}(p'\otimes p,q)\cong\mathsf{Poly}(p',[p,q])$$

for any  $p' \in \mathsf{Poly}$ . It can be given by the following formula:

$$[p,q] \coloneqq \sum_{\varphi: p \to q} y^{\sum_{i \in p(1)} q[\varphi_i]}$$

# The $\otimes$ -closure, i.e. internal hom [-,-]

For any two polynomials  $p,q\in \mathsf{Poly},$  there is  $[p,q]\in \mathsf{Poly}$  with

$$\mathsf{Poly}(p'\otimes p,q)\cong\mathsf{Poly}(p',[p,q])$$

for any  $p' \in \mathsf{Poly}$ . It can be given by the following formula:

$$[p,q] \coloneqq \sum_{\varphi: p \to q} y^{\sum_{i \in p(1)} q[\varphi_i]}$$

Let's examine it.

• A position of [p,q] is a map  $\varphi \colon p \to q$  of polynomials.

• What is a direction of [p, q] at  $\varphi$ ?

- It's a pair (i, e) where  $i \in p(1)$  and  $e \in q[\varphi i]$ .
- We'll come back to this after we discuss coalgebras.

### Properties of internal hom

The following are true of any internal hom, just written in Poly notation.

- $[y,p] \cong p.$
- $[p_1 \otimes p_2, p'] \cong [p_1, [p_2, p']].$
- There is a map  $p \otimes [p,q] \rightarrow q$  called *evaluation*. It induces:
  - A map  $[p,q] \otimes [q,r] \rightarrow [p,r]$  called *internal composition*.
  - A map  $[p_1, q_1] \otimes [p_2, q_2] \rightarrow [p_1 \otimes p_2, q_1 \otimes q_2]$  called *internal* product.

Later we will refer to these maps as the standard maps.

# Coalgebras

A coalgebra for  $F : \text{Set} \to \text{Set}$  is a set S and a map  $S \to F(S)$ .

- Let's refer to elements of S as states.
- For p ∈ Poly what does f: S → p(S) do to a state s ∈ S?
  First it "reads out" a position f<sup>rdt</sup>(s) ∈ p(1).
  - Then for each direction  $d \in p[f^{rdt}(s)], \dots$
  - ... it returns an "updated" state  $f^{upd}(s, d) \in S$ .

# Coalgebras

A coalgebra for  $F : \text{Set} \to \text{Set}$  is a set S and a map  $S \to F(S)$ .

- Let's refer to elements of S as states.
- For p ∈ Poly what does f: S → p(S) do to a state s ∈ S?
  First it "reads out" a position f<sup>rdt</sup>(s) ∈ p(1).
  - Then for each direction  $d \in p[f^{rdt}(s)], \dots$
  - ... it returns an "updated" state  $f^{upd}(s, d) \in S$ .

A coalgebra map  $(S, f) \rightarrow (S', f')$  is a function  $S \xrightarrow{g} S'$  with commuting

$$egin{array}{ccc} S & \stackrel{f}{\longrightarrow} & p(S) \ g & & & \downarrow^{p(g)} \ S' & \stackrel{f'}{\longrightarrow} & p(S') \end{array}$$

This is very strong: any states  $s \in S$  and  $s' \coloneqq g(s)$ ...

- ... have the same readout:  $f'^{rdt}(s') = f^{rdt}(s)$ , and...
- ... remain in sync after update:  $f'^{upd}(s', d) = g(f^{upd}(s, d))$ .
- That means they have the same observable behavior for all time.

### Interaction patterns

Coalgebras can be tensored, giving p-Coalg  $\times$  q-Coalg  $\rightarrow$  ( $p \otimes q$ )-Coalg.

- Given coalgebras  $f: S \to p(S)$  and  $g: T \to q(T)$ , we can form...
- ... their tensor product,  $(f \otimes g) \colon (ST) \to (p \otimes q)(ST)$ .
- It just runs an S-state and a T-state in parallel.

### Interaction patterns

Coalgebras can be tensored, giving p-Coalg imes q-Coalg o  $(p \otimes q)$ -Coalg.

- Given coalgebras  $f: S \to p(S)$  and  $g: T \to q(T)$ , we can form...
- ... their tensor product,  $(f \otimes g) \colon (ST) \to (p \otimes q)(ST)$ .
- It just runs an *S*-state and a *T*-state in parallel.

Also, given a map  $\varphi \colon p \to p'$ , we get a map p-Coalg  $\to p'$ -Coalg.

- $\varphi$  translates a *p*-position readout to a *p*'-position readout.
- And it translates an incoming p'-direction back to a p-direction...
- ...which can be used to update the state.
- Mathematically, this is just the composite  $S \xrightarrow{f} p(S) \xrightarrow{\varphi(S)} p'(S)$ .

### Interaction patterns

Coalgebras can be tensored, giving p-Coalg imes q-Coalg o  $(p \otimes q)$ -Coalg.

- Given coalgebras  $f: S \to p(S)$  and  $g: T \to q(T)$ , we can form...
- ... their tensor product,  $(f \otimes g): (ST) \to (p \otimes q)(ST)$ .
- It just runs an S-state and a T-state in parallel.

Also, given a map  $\varphi \colon p \to p'$ , we get a map p-Coalg  $\to p'$ -Coalg.

- $\varphi$  translates a *p*-position readout to a *p*'-position readout.
- And it translates an incoming p'-direction back to a p-direction...
- ...which can be used to update the state.
- Mathematically, this is just the composite  $S \xrightarrow{f} p(S) \xrightarrow{\varphi(S)} p'(S)$ .

Together it means that given  $p_1 \otimes \cdots \otimes p_k \xrightarrow{\varphi} p'$ , we get

$$p_1 ext{-}\mathsf{Coalg} imes\cdots imes p_k ext{-}\mathsf{Coalg} o p' ext{-}\mathsf{Coalg}$$

An interaction pattern  $\varphi$  takes dynamical systems in the  $p_i$ 's to one in p'.

#### Coalgebras

### Interaction pattern example: wiring diagrams

Let's draw  $By^A$  as  $\stackrel{A}{\longrightarrow} \stackrel{B}{\longrightarrow}$  suggesting that it outputs B's and inputs A's.

- Wiring diagrams are (special kinds of) interactions.
- Wiring rules: wires can split, but can't "pass".

### Interaction pattern example: wiring diagrams

Let's draw  $By^A$  as  $\xrightarrow{A} \bigcirc \xrightarrow{B}$  suggesting that it outputs B's and inputs A's.

- Wiring diagrams are (special kinds of) interactions.
- Wiring rules: wires can split, but can't "pass".



This shows a map  $By^A \otimes Cy^B \to Cy^A$ . Which one?

### Interaction pattern example: wiring diagrams

Let's draw  $By^A$  as  $\xrightarrow{A} \bigcirc \xrightarrow{B}$  suggesting that it outputs B's and inputs A's.

- Wiring diagrams are (special kinds of) interactions.
- Wiring rules: wires can split, but can't "pass".



This shows a map  $By^A \otimes Cy^B \to Cy^A$ . Which one?

- $Poly(BCy^{AB}, Cy^{A}) \cong Set(BC, C) \times Set(BCA, AB)$
- Outside world doesn't see *B* so we project it away.
- Inside boxes don't need *C*, so we project it away.
- Wiring diagrams are interactions with only projections/duplications. Interactions patterns can be much more general, but this gives intuition.

Let p be a polynomial. Define a p-tree to be...

- a rooted, possibly infinite tree, where ...
- every node is labeled with some  $i \in p(1)$  and...
- has precisely *p*[*i*]-many branches coming out of it.

Let p be a polynomial. Define a p-tree to be...

- a rooted, possibly infinite tree, where ...
- every node is labeled with some  $i \in p(1)$  and...
- has precisely *p*[*i*]-many branches coming out of it.

More terminology for a p-tree T:

- A root path is a (finite) path f from the root to another node in T.
- At the other node sits a *p*-tree; we call this the *codomain of f*.

Let p be a polynomial. Define a p-tree to be...

- a rooted, possibly infinite tree, where ...
- every node is labeled with some  $i \in p(1)$  and...
- has precisely p[i]-many branches coming out of it.

More terminology for a p-tree T:

- A root path is a (finite) path f from the root to another node in T.
- At the other node sits a *p*-tree; we call this the *codomain of f*.

Define the *category of p-trees*, denoted  $C_p$ :

- its objects are p-trees,
- a morphism  $T \rightarrow U$  is a root-path in T with codomain U,
- composition is free; i.e.  $C_p$  is free on a graph.

Let p be a polynomial. Define a p-tree to be...

- a rooted, possibly infinite tree, where ...
- every node is labeled with some  $i \in p(1)$  and...
- has precisely p[i]-many branches coming out of it.

More terminology for a p-tree T:

- A root path is a (finite) path f from the root to another node in T.
- At the other node sits a *p*-tree; we call this the *codomain of f*.

Define the category of p-trees, denoted  $C_p$ :

- its objects are *p*-trees,
- a morphism  $T \rightarrow U$  is a root-path in T with codomain U,
- composition is free; i.e.  $C_p$  is free on a graph.

Facts:

- $Ob(C_p) \in Set$  is the terminal *p*-coalgebra (use root and codomain)
- More generally, there is an equivalence p-Coalg  $\cong C_p$ -Set.

### Type theory and logic in the topos *p*-Coalg

Since *p*-Coalg  $\cong C_p$ -Set, we know that *p*-coalgebras form a topos.

- That means you can do dependent type theory and higher-order logic.
- Example:  $\underline{\mathbb{N}} = \{\phi : \mathbb{N} \to \operatorname{Prop} \mid n \leq n' \Rightarrow \phi n' \Rightarrow \phi n\} = \text{type of}$

*p*-trees equipped with nondecreasing sequences of naturals.

### Type theory and logic in the topos *p*-Coalg

Since p-Coalg  $\cong C_p$ -Set, we know that p-coalgebras form a topos.

- That means you can do dependent type theory and higher-order logic.
- Example:  $\underline{\mathbb{N}} = \{\phi : \mathbb{N} \to \operatorname{Prop} \mid n \leq n' \Rightarrow \phi n' \Rightarrow \phi n\} = \text{type of } p\text{-trees equipped with nondecreasing sequences of naturals.}$

A logical proposition means a subobject of the terminal object.

- So it is a collection  $\phi$  of *p*-trees with the property that...
- ... if  $T \in \phi$  then so is any *p*-subtree.

Logical operators and modalities:

- $\perp$  is empty,  $\top$  is everything,  $\lor$  is union,  $\land$  is intersection.
- $\neg \phi$  is the set of *p*-trees that have no *p*-subtrees in  $\phi$ .
- $\neg \neg \phi$  is "capable of  $\phi$ ": there's always a way to bring  $\phi$  about.

#### Characters

How can we think about a logical proposition in *p*-Coalg?

- It's like a character, say "you" that's inhabiting the body *p*.
- You can express any of p(1)-many positions, and...
- ... for each  $i \in p(1)$ , there are p[i] many things you could see happen.
- Your character is all the ways you might respond to what happens.
- (If we use all types, not just propositions, we get frequencies too.)

#### Example and non-example characters

So for example, here are some characters in  $p = \{\bullet, \bullet, \bullet\}y^{\{\bullet, \bullet\}} \cong 3y^2$ :

- "I'll output only green and red forever, any way I want."
- "I'll either output red forever or green forever."
- "I'll never output the same thing twice in a row".
- "I'll always output something different than I input".
- "In finite time I'll get to a point where I never output red again."
- "My output will never depend on the last three inputs received."
- "Whenever I receive two reds in a row, I'll do arbitrary stuff for three turns, then output red-blue-red-blue-··· until I get a blue."
- "I'll never get locked out of  $(\neg \neg)$  responding tit-for-tat".

Here are some things you can't say (transients):

- "My first output is red."
- "For the next three turns I'll output only reds and blues".

### Question: something like i.i.d., but what?

Consider the interface  $p = \{H, T\}y \cong 2y$ .

- A p-tree is just an infinite stream of H's and T's.
- If X is such a stream, it's not random: all its values are known.
- And yet, [T, T, F, T, F, F, F, F, T, T, ...] has no discernable pattern.

### Question: something like i.i.d., but what?

Consider the interface  $p = \{H, T\}y \cong 2y$ .

- A p-tree is just an infinite stream of H's and T's.
- If X is such a stream, it's not random: all its values are known.
- And yet, [T, T, F, T, F, F, F, F, T, T, ...] has no discernable pattern.

What word  $\phi$  from statistics am I looking for? "Normal"?

- And then let's check that  $\phi$  is a proposition:
- if stream X satisfies  $\phi$ , then its tail does too, right?

### Question: something like i.i.d., but what?

Consider the interface  $p = \{H, T\}y \cong 2y$ .

- A p-tree is just an infinite stream of H's and T's.
- If X is such a stream, it's not random: all its values are known.
- And yet, [T, T, F, T, F, F, F, F, T, T, ...] has no discernable pattern.

What word  $\phi$  from statistics am I looking for? "Normal"?

- And then let's check that  $\phi$  is a proposition:
- if stream X satisfies  $\phi$ , then its tail does too, right?

What's the analogue for an arbitrary probability (Bernoulli) distribution?

# Outline

#### **1** Introduction

#### 2 Background on Poly

#### **3** The operad $\mathfrak{Org}$ of organizations

- Backprop as functor
- Definition and intuition for Org

#### 4 Where I'm stuck

# Backprop as functor

Consider the compositional structure of deep learning.

- Each learner / neuron has inputs and outputs, say A and B.
- It has a parameter space, say S and an implementation function

 $I: S \times A \rightarrow B.$ 

Given a training pair  $(a, b) \in A \times B$ , it updates the parameter

 $U\colon S\times A\times B\to S$ 

• ... and back-propagates some additional error to the input A:

 $R\colon S\times A\times B\to A.$ 

Learners can be composed; the R map is indispensable.

#### Learners are coalgebras

An (A, B) learner is exactly a  $[Ay^A, By^B]$ -coalgebra!

$$[Ay^A, By^B] \cong \sum_{\varphi \colon Ay^A \to By^B} y^{AB}$$

So a map  $f: S \rightarrow [Ay^A, By^B](S)$  assigns to each  $s \in S$ :

a φ, i.e. a function A → B and a function A×B → A (that's I and R)
 and a function A×B → S (that's U).

#### Learners are coalgebras

An (A, B) learner is exactly a  $[Ay^A, By^B]$ -coalgebra!

$$[Ay^A, By^B] \cong \sum_{\varphi \colon Ay^A \to By^B} y^{AB}$$

So a map  $f: S \rightarrow [Ay^A, By^B](S)$  assigns to each  $s \in S$ :

a φ, i.e. a function A → B and a function A × B → A (that's I and R)
 and a function A × B → S (that's U).

So what does a learner do as a machine?

- The state of the learner is read out as a position in  $[Ay^A, By^B]$ ,
- ... i.e. a function  $A \rightarrow B$  and a function  $A \times B \rightarrow A$  (a "lens").
- It receives a training pair  $(a, b) \in A \times B$ , causing state to update.

#### Learners are coalgebras

An (A, B) learner is exactly a  $[Ay^A, By^B]$ -coalgebra!

$$[Ay^A, By^B] \cong \sum_{\varphi \colon Ay^A \to By^B} y^{AB}$$

So a map  $f: S \rightarrow [Ay^A, By^B](S)$  assigns to each  $s \in S$ :

a φ, i.e. a function A → B and a function A × B → A (that's I and R)
 and a function A × B → S (that's U).

So what does a learner do as a machine?

• The state of the learner is read out as a position in  $[Ay^A, By^B]$ ,

• ... i.e. a function  $A \rightarrow B$  and a function  $A \times B \rightarrow A$  (a "lens").

It receives a training pair  $(a, b) \in A \times B$ , causing state to update. These form a topos, and in the topos for  $[\mathbb{R}^m y^{\mathbb{R}^m}, \mathbb{R}^n y^{\mathbb{R}^n}]$ .

- "I'm smooth and do gradient descent and backprop" is a proposition.
- You could do more complex data science workflows in this language.

#### **Toward** Org

Let's look at a standard case, a  $(\mathbb{R}^n, \mathbb{R})$ -learner.

• Note that  $\mathbb{R}^n y^{\mathbb{R}^n} \cong \mathbb{R} y^{\mathbb{R}} \otimes \cdots \otimes \mathbb{R} y^{\mathbb{R}}$ .

So these learners are coalgebras on  $[\mathbb{R}y^{\mathbb{R}} \otimes \cdots \otimes \mathbb{R}y^{\mathbb{R}}, \mathbb{R}y^{\mathbb{R}}]$ .

Let's abstract to coalgebras on  $[p_1 \otimes \cdots \otimes p_k, p']$ .

• These are machines that read out interaction patterns  $\varphi$ .

- The φ aggregates the positions of all p<sub>i</sub>'s to form a position of p'
  ... and takes a response from p' and distributes it to all the p<sub>i</sub>'s.
- An input to the coalgebra is just such an event:
  - It's a position of each  $p_i$  and a response from the environment p'.
  - The coalgebra takes that event and updates its state.

### The categorical operad Org of organizations

Define  $\bigcirc rg$  to be the category-enriched operad with

- objects Ob(Org) = Ob(Poly),
- morphisms  $\mathfrak{Org}(p_1,\ldots,p_k;p') \coloneqq [p_1 \otimes \cdots \otimes p_k,p']$ -Coalg
- with identity on p given by the [p, p]-coalgebra with one state,
- and composition given by the standard maps.

# The categorical operad Org of organizations

Define  $\ensuremath{\mathbb{O}} \imath g$  to be the category-enriched operad with

• objects Ob(Org) = Ob(Poly),

• morphisms  $\mathfrak{Org}(p_1,\ldots,p_k;p') \coloneqq [p_1 \otimes \cdots \otimes p_k,p']$ -Coalg

- with identity on p given by the [p, p]-coalgebra with one state,
- and composition given by the standard maps.

What does it mean?

- An object in  $\mathfrak{Org}(p_1,\ldots,p_k;p')$  is like the officer of a company.
- She has resources  $p_1, \ldots, p_k$  at her disposal.
- She determines how their output is shuttled internally,...
- ... and how it is delivered to the outside world p'.
- She receives a signal from the outside world and disperses it to the p<sub>i</sub>.
- As this progresses, she changes her state, thus her approach.

Learners do this by gradient descent.

#### **The** *Org*-algebra of *O*-ary morphisms

Consider the algebra  $\mathfrak{Or}g \to \mathsf{Cat}$  given by 0-ary morphisms.

- It sends  $p \mapsto \mathfrak{Org}(; p) = [y, p]$ -Coalg  $\cong p$ -Coalg.
- It sends an object  $\varphi \in \mathfrak{Org}(p_1, \ldots, p_k; p')$  to the functor

$$p_1$$
-Coalg  $\times \cdots \times p_k$ -Coalg  $\rightarrow p'$ -Coalg

given by tensoring and composing with  $\varphi$  as with wiring diagrams. Let's call this the algebra of *dynamical systems*.

# **Fixed organizations**

Consider the fixed points in  $Org(p_1, \ldots, p_k; p')$ .

- These are just (fixed) interaction patterns of the  $p_i$ 's in p'.
- I.e., the way the  $p_i$  send and receive information is unchanging.
- A wiring diagram, e.g. of transistors in a computer, is fixed.
- There is a set-operad Org<sub>fix</sub> mapping to Org, ...
- ... and we can pullback the algebra of dynamical systems to it.

# **Fixed organizations**

Consider the fixed points in  $Org(p_1, \ldots, p_k; p')$ .

- These are just (fixed) interaction patterns of the  $p_i$ 's in p'.
- **I.e.**, the way the  $p_i$  send and receive information is unchanging.
- A wiring diagram, e.g. of transistors in a computer, is fixed.
- There is a set-operad Org<sub>fix</sub> mapping to Org, ...
- ... and we can pullback the algebra of dynamical systems to it.

So the more general  $\mathfrak{O}\mathfrak{r}g$  is about adjusting interaction patterns.

# You as an organization

Think of the resources at your disposal.

- This depends on how we define "you" but let's go with colloquial.
- Some resources: eyes, limbs, thoughts, heart, car, bank account.
- They respond to signals from each other and the outside world.

We might imagine you as a switchboard operator.

- When X comes into your eyes, you try not to think about it.
- When your heart rate increases, you decide to call the bank.
- You control the relays, though you don't control how they respond.
  - The bank may not send the check,
  - Your limb may not work as expected.
  - But you are cognizant of what they're doing.

If the way you control the relays can change through time, congrats!

# Gambling games in Org

Let's consider "finite state gamblers" in Ozg.

- Let  $[N] \coloneqq \{1, \ldots, N\}$  and  $\Delta_N \coloneqq \{p \colon [N] \to \mathbb{R}_{\geq 0} \mid \sum_i p_i = N\}$
- Think of  $p \in \Delta_N$  as a *bet* on an *N*-sided die.
  - For example, suppose N = 2 and p(1) = .6 and p(2) = 1.4.
  - If the die turns up 1, we multiply your wealth by 0.6.
  - If the die turns up 2, we multiply your wealth by 1.4.
- Let  $m_N := \Delta_N y^N$ . A gambler on alphabet N is an  $m_N$ -coalgebra.
  - That is, it's a machine that produces bets and receives die rolls.

# Gambling games in Org

Let's consider "finite state gamblers" in Ozg.

- Let  $[N] := \{1, \ldots, N\}$  and  $\Delta_N := \{p \colon [N] \to \mathbb{R}_{\geq 0} \mid \sum_i p_i = N\}$
- Think of  $p \in \Delta_N$  as a *bet* on an *N*-sided die.
  - For example, suppose N = 2 and p(1) = .6 and p(2) = 1.4.
  - If the die turns up 1, we multiply your wealth by 0.6.
  - If the die turns up 2, we multiply your wealth by 1.4.
- Let  $m_N := \Delta_N y^N$ . A gambler on alphabet N is an  $m_N$ -coalgebra.

That is, it's a machine that produces bets and receives die rolls. The game itself is an object in  $Org(Ny, m_N; y)$ .

- That is, it's a  $[Ny \otimes \Delta_N y^N, y]$ -coalgebra.
- Its state set is  $\mathbb{R}$ ; that is, the officer keeps track of the bettor's wealth.
- The map  $\mathbb{R} \to [Ny \otimes \Delta_N y^N, y](\mathbb{R})$  is given by

$$w \mapsto (i, p) \mapsto (i, w * p(i))$$

The notation is hard to decipher, but it says that the officer sends the outcome i to the bettor and tracks the wealth as above.

### Outline

#### **1** Introduction

2 Background on Poly

#### **3** The operad Org of organizations

#### 4 Where I'm stuck

- General approach
- Flow and Ping
- Sense-making

# How I'm approaching this

The above was done with two competing objectives.

- To follow the math, so that it remains elegant and builds on itself.
  - Poly is an abundant category, with great formal properties.
  - Org is just packaging up coalgebra interactions.
  - 𝔅𝕫 generalizes "backprop as functor"...
  - ... and wiring diagrams of dynamical systems.
  - I can study its "behavior types" with topos theory.
- To ask that the math follow aspects of life and experience.
  - Learners loosely model neurons in the brain.
  - Martingales model betting, which has deep biological roots.
  - A company officer directs the interaction between resources.

What makes us "good" at this stuff: learning, betting, officiating?

Here we are, communicating. What makes it "work"?

### Flow and ping

People often talk about flow states as pleasurable and effective.

- If we look at the interactions between your subsystems, ...
- ... what would we see, especially during flow?
- Is there some notion of "efficiency" there?

### Flow and ping

People often talk about flow states as pleasurable and effective.

- If we look at the interactions between your subsystems, ...
- ... what would we see, especially during flow?
- Is there some notion of "efficiency" there?

In golf, baseball, or tennis, a good hit often comes with a "ping".

- In this case, you barely feel the ball hit your club, bat, or racket,...
- ... and yet the ball goes flying.
- In contrast, when you "flub" it, you get pain and no distance.
- So what is that ping? Is there some notion of "efficiency" there?

■ If we slow ping down by 1000x, would we see flow?

Does an hour of flow look like a ping when we look back on it?

As an officer of an organization, how can you adjust to make ping?Can we say what "collective cognition" is?

### Flow and ping

People often talk about flow states as pleasurable and effective.

- If we look at the interactions between your subsystems, ...
- ... what would we see, especially during flow?
- Is there some notion of "efficiency" there?

In golf, baseball, or tennis, a good hit often comes with a "ping".

- In this case, you barely feel the ball hit your club, bat, or racket,...
- ... and yet the ball goes flying.
- In contrast, when you "flub" it, you get pain and no distance.
- So what is that ping? Is there some notion of "efficiency" there?

■ If we slow ping down by 1000x, would we see flow?

- Does an hour of flow look like a ping when we look back on it?
- As an officer of an organization, how can you adjust to make ping?
- Can we say what "collective cognition" is?

Is there math for flow or ping?

# **Rayleigh-Bénard convection**

Patterns can form when there is a potential difference across a medium.

- Rayleigh-Bénard convection is one such example.
  - Given a temp. difference across a fluid (e.g. bottom is hotter)...
  - ... you get structure: a bunch of rotating "cells".
  - They increase the rate at which the temperature equalizes.
- A hurricane's eye efficiently moves heat from ocean to atmosphere.

# **Rayleigh-Bénard convection**

Patterns can form when there is a potential difference across a medium.

- Rayleigh-Bénard convection is one such example.
  - Given a temp. difference across a fluid (e.g. bottom is hotter)...
  - ... you get structure: a bunch of rotating "cells".
  - They increase the rate at which the temperature equalizes.
- A hurricane's eye efficiently moves heat from ocean to atmosphere.

Some believe that life is such a pattern, designed to disperse entropy.

- Can anything like this be seen from the Org point of view?
  - E.g., you might want to receive relatively predictable inputs...
  - ... while producing relatively unpredictable outputs.
- Can we say that sort of thing?
- Can we setup simplified physics and see Rayleigh-Bénard convection?

#### Sense-making

Let's say our goal is sense-making.

- We can think of this as channeling or processing negentropy.
- We channel it to the systems that sustain us.
  - We get "food" to our organs to process.
  - We seek out information that our brains can make sense of.
  - We tell our friends of useful things we find out.

#### Sense-making

Let's say our goal is sense-making.

- We can think of this as channeling or processing negentropy.
- We channel it to the systems that sustain us.
  - We get "food" to our organs to process.
  - We seek out information that our brains can make sense of.
  - We tell our friends of useful things we find out.

This should be its own reward: it structures and enables us.

- I have a feeling that this can lead to natural economics.
- So how do you see it in the math?
- In particular, I imagine it should make sense in Org, but how?

#### Sense-making

Let's say our goal is sense-making.

- We can think of this as channeling or processing negentropy.
- We channel it to the systems that sustain us.
  - We get "food" to our organs to process.
  - We seek out information that our brains can make sense of.
  - We tell our friends of useful things we find out.

This should be its own reward: it structures and enables us.

- I have a feeling that this can lead to natural economics.
- So how do you see it in the math?
- In particular, I imagine it should make sense in Org, but how?

So that's where I'm stuck. Can you help me make sense of it?

# **Overall fit**

How does all this resonate with you?

- Comments?
- Questions?
- Ideas on where to go?