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Introduction Goal

Goal of today’s talk

I want to tell you what I’ve been doing and where I’m stuck.

Thanks Toby, for saying that that’s what you wanted to hear about.

I feel like I’ve developed the machinery I want to use.

As you know, I love Poly: it’s expressive and well-behaved.

Inside Poly is a categorical operad I’m calling Org.

It packages my usual “interacting machines” thing inside of Poly.

But now I have to actually use it.

I want to talk about what matters most to me:

What actually makes things work?

What is coordination, cooperation, health, effectiveness?
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Introduction Plan

Plan of the talk

Background on Poly.

The basics.

The (y,⊗) monoidal structure and its closure [−,−].

Coalgebras: e.g. dynamical systems and wiring diagrams.

Type theory and logic in the topos of p-coalgebras.

Introduce the categorical operad Org of organizations.

Recall the setup in “backprop as functor”.

Define Org and give intuition.

Explain where I’m stuck.
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Background on Poly Basics

Definition and terminology of Poly

Poly is the category of sums of representables Set→ Set.

For any A ∈ Set, write yA ∈ Poly to mean (X 7→ XA) : Set→ Set.

A polynomial p is a coproduct of representables, p =
∑

i∈I y
Ai .

Call each i ∈ I a position in p.

Note: p(1) ∼= I .

Call each a ∈ Ai a direction in p (at position i).
Let’s write p[i ] instead of Ai , to obtain this notation:

p =
∑

i∈p(1)

yp[i ]

Morphisms ϕ : p → q in Poly are just natural transformations.

Yoneda: Poly(yA, yB) = Set(B,A).

Derive “lens-like” description from universal property of coproducts:

ϕ ∈ Poly
( ∑

i∈p(1)

yp[i ],
∑

j∈q(1)

yq[j]
)
∼=
∏

i∈p(1)

∑
j∈q(1)

Set(q[j ], p[i ])
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Background on Poly Monoidal closed structure (y,⊗, [−,−])

The monoidal structure (y,⊗)
There is a monoidal structure (y,⊗) on Poly.

y ∈ Poly denotes the identity functor id : Set→ Set.

The polynomial y has one position, and one direction.

Quick aside on maps into y:

A map γ : p → y is a “global section” of p.

That is, it’s a choice of direction at each position.

Back to the main point: y is the unit of a monoidal structure.

Given polynomials p, q, we can multiply both positions and directions.

p ⊗ q :=
∑

i∈p(1)

∑
j∈q(1)

yp[i ]×q[j]

Examples:

A⊗ B = AB

Ay⊗ By = ABy

yA ⊗ yB = yAB

p ⊗ 1 = p(1)
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Background on Poly Monoidal closed structure (y,⊗, [−,−])

The ⊗-closure, i.e. internal hom [−,−]

For any two polynomials p, q ∈ Poly, there is [p, q] ∈ Poly with

Poly(p′ ⊗ p, q) ∼= Poly(p′, [p, q])

for any p′ ∈ Poly. It can be given by the following formula:

[p, q] :=
∑

ϕ : p→q

y
∑

i∈p(1) q[ϕi ]

Let’s examine it.

A position of [p, q] is a map ϕ : p → q of polynomials.

What is a direction of [p, q] at ϕ?

It’s a pair (i , e) where i ∈ p(1) and e ∈ q[ϕi ].

We’ll come back to this after we discuss coalgebras.
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Background on Poly Monoidal closed structure (y,⊗, [−,−])

Properties of internal hom

The following are true of any internal hom, just written in Poly notation.

[y, p] ∼= p.

[p1 ⊗ p2, p
′] ∼= [p1, [p2, p

′]].

There is a map p ⊗ [p, q]→ q called evaluation. It induces:

A map [p, q]⊗ [q, r ]→ [p, r ] called internal composition.

A map [p1, q1]⊗ [p2, q2]→ [p1 ⊗ p2, q1 ⊗ q2] called internal
product.

Later we will refer to these maps as the standard maps.
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Background on Poly Coalgebras

Coalgebras

A coalgebra for F : Set→ Set is a set S and a map S → F (S).

Let’s refer to elements of S as states.

For p ∈ Poly what does f : S → p(S) do to a state s ∈ S?
First it “reads out” a position f rdt(s) ∈ p(1).

Then for each direction d ∈ p[f rdt(s)], ...

... it returns an “updated” state f upd(s, d) ∈ S .

A coalgebra map (S , f )→ (S ′, f ′) is a function S
g−→ S ′ with commuting

S p(S)

S ′ p(S ′)

f

g p(g)

f ′

This is very strong: any states s ∈ S and s ′ := g(s)...

... have the same readout: f ′rdt(s ′) = f rdt(s), and...

... remain in sync after update: f ′upd(s ′, d) = g(f upd(s, d)).

That means they have the same observable behavior for all time.
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Background on Poly Coalgebras

Interaction patterns

Coalgebras can be tensored, giving p-Coalg × q-Coalg→ (p ⊗ q)-Coalg.

Given coalgebras f : S → p(S) and g : T → q(T ), we can form...

... their tensor product, (f ⊗ g) : (ST )→ (p ⊗ q)(ST ).

It just runs an S-state and a T -state in parallel.

Also, given a map ϕ : p → p′, we get a map p-Coalg→ p′-Coalg.

ϕ translates a p-position readout to a p′-position readout.

And it translates an incoming p′-direction back to a p-direction...

...which can be used to update the state.

Mathematically, this is just the composite S
f−→ p(S)

ϕ(S)−−−→ p′(S).

Together it means that given p1 ⊗ · · · ⊗ pk
ϕ−→ p′, we get

p1-Coalg × · · · × pk -Coalg→ p′-Coalg

An interaction pattern ϕ takes dynamical systems in the pi ’s to one in p′.
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Background on Poly Coalgebras

Interaction pattern example: wiring diagrams

Let’s draw ByA as
A B

suggesting that it outputs B’s and inputs A’s.

Wiring diagrams are (special kinds of) interactions.

Wiring rules: wires can split, but can’t “pass”.

A B C

This shows a map ByA ⊗ CyB → CyA. Which one?

Poly(BCyAB ,CyA) ∼= Set(BC ,C )× Set(BCA,AB)

Outside world doesn’t see B so we project it away.

Inside boxes don’t need C , so we project it away.

Wiring diagrams are interactions with only projections/duplications.

Interactions patterns can be much more general, but this gives intuition.
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Background on Poly Coalgebras

The category Cp of p-trees

Let p be a polynomial. Define a p-tree to be...

a rooted, possibly infinite tree, where ...

every node is labeled with some i ∈ p(1) and...

has precisely p[i ]-many branches coming out of it.

More terminology for a p-tree T :

A root path is a (finite) path f from the root to another node in T .

At the other node sits a p-tree; we call this the codomain of f .

Define the category of p-trees, denoted Cp:

its objects are p-trees,

a morphism T → U is a root-path in T with codomain U,

composition is free; i.e. Cp is free on a graph.

Facts:

Ob(Cp) ∈ Set is the terminal p-coalgebra (use root and codomain)

More generally, there is an equivalence p-Coalg ∼= Cp-Set.
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Background on Poly Type theory and logic in p-Coalg

Type theory and logic in the topos p-Coalg

Since p-Coalg ∼= Cp-Set, we know that p-coalgebras form a topos.

That means you can do dependent type theory and higher-order logic.

Example: N = {φ : N→ Prop | n ≤ n′ ⇒ φn′ ⇒ φn} = type of
p-trees equipped with nondecreasing sequences of naturals.

A logical proposition means a subobject of the terminal object.

So it is a collection φ of p-trees with the property that...

... if T ∈ φ then so is any p-subtree.

Logical operators and modalities:

⊥ is empty, > is everything, ∨ is union, ∧ is intersection.

¬φ is the set of p-trees that have no p-subtrees in φ.

¬¬φ is “capable of φ”: there’s always a way to bring φ about.
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Background on Poly Type theory and logic in p-Coalg

Characters

How can we think about a logical proposition in p-Coalg?

It’s like a character, say “you” that’s inhabiting the body p.

You can express any of p(1)-many positions, and...

... for each i ∈ p(1), there are p[i ] many things you could see happen.

Your character is all the ways you might respond to what happens.

(If we use all types, not just propositions, we get frequencies too.)
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Background on Poly Type theory and logic in p-Coalg

Example and non-example characters

So for example, here are some characters in p = {•, •, •}y{•,•} ∼= 3y2:

“I’ll output only green and red forever, any way I want.”

“I’ll either output red forever or green forever.”

“I’ll never output the same thing twice in a row”.

“I’ll always output something different than I input”.

“In finite time I’ll get to a point where I never output red again.”

“My output will never depend on the last three inputs received.”

“Whenever I receive two reds in a row, I’ll do arbitrary stuff for three
turns, then output red-blue-red-blue-· · · until I get a blue.”

“I’ll never get locked out of (¬¬) responding tit-for-tat”.

Here are some things you can’t say (transients):

“My first output is red.”

“For the next three turns I’ll output only reds and blues”.
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Background on Poly Type theory and logic in p-Coalg

Question: something like i.i.d., but what?

Consider the interface p = {H,T}y ∼= 2y.

A p-tree is just an infinite stream of H’s and T ’s.

If X is such a stream, it’s not random: all its values are known.

And yet, [T ,T ,F ,T ,F ,F ,F ,F ,T ,T , ...] has no discernable pattern.

What word φ from statistics am I looking for? “Normal”?

And then let’s check that φ is a proposition:

if stream X satisfies φ, then its tail does too, right?

What’s the analogue for an arbitrary probability (Bernoulli) distribution?
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The operad Org of organizations Backprop as functor

Backprop as functor

Consider the compositional structure of deep learning.

Each learner / neuron has inputs and outputs, say A and B.

It has a parameter space, say S and an implementation function

I : S × A→ B.

Given a training pair (a, b) ∈ A× B, it updates the parameter

U : S × A× B → S

... and back-propagates some additional error to the input A:

R : S × A× B → A.

Learners can be composed; the R map is indispensable.
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The operad Org of organizations Backprop as functor

Learners are coalgebras

An (A,B) learner is exactly a [AyA,ByB ]-coalgebra!

[AyA,ByB ] ∼=
∑

ϕ : AyA→ByB

yAB

So a map f : S → [AyA,ByB ](S) assigns to each s ∈ S :

a ϕ, i.e. a function A→ B and a function A×B → A (that’s I and R)

and a function A× B → S (that’s U).

So what does a learner do as a machine?

The state of the learner is read out as a position in [AyA,ByB ],

... i.e. a function A→ B and a function A× B → A (a “lens”).

It receives a training pair (a, b) ∈ A× B, causing state to update.

These form a topos, and in the topos for [RmyR
m
,RnyR

n
].

“I’m smooth and do gradient descent and backprop” is a proposition.

You could do more complex data science workflows in this language.
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The operad Org of organizations Definition and intuition for Org

Toward Org

Let’s look at a standard case, a (Rn,R)-learner.

Note that RnyR
n ∼= RyR ⊗ · · · ⊗ RyR.

So these learners are coalgebras on [RyR ⊗ · · · ⊗ RyR,RyR].

Let’s abstract to coalgebras on [p1 ⊗ · · · ⊗ pk , p
′].

These are machines that read out interaction patterns ϕ.

The ϕ aggregates the positions of all pi ’s to form a position of p′

... and takes a response from p′ and distributes it to all the pi ’s.

An input to the coalgebra is just such an event:

It’s a position of each pi and a response from the environment p′.

The coalgebra takes that event and updates its state.
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The operad Org of organizations Definition and intuition for Org

The categorical operad Org of organizations

Define Org to be the category-enriched operad with

objects Ob(Org) = Ob(Poly),

morphisms Org(p1, . . . , pk ; p′) := [p1 ⊗ · · · ⊗ pk , p
′]-Coalg

with identity on p given by the [p, p]-coalgebra with one state,

and composition given by the standard maps.

What does it mean?

An object in Org(p1, . . . , pk ; p′) is like the officer of a company.

She has resources p1, . . . , pk at her disposal.

She determines how their output is shuttled internally,...

... and how it is delivered to the outside world p′.

She receives a signal from the outside world and disperses it to the pi .

As this progresses, she changes her state, thus her approach.

Learners do this by gradient descent.
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The operad Org of organizations Definition and intuition for Org

The Org-algebra of 0-ary morphisms

Consider the algebra Org→ Cat given by 0-ary morphisms.

It sends p 7→ Org(; p) = [y, p]-Coalg ∼= p-Coalg.

It sends an object ϕ ∈ Org(p1, . . . , pk ; p′) to the functor

p1-Coalg × · · · × pk -Coalg→ p′-Coalg

given by tensoring and composing with ϕ as with wiring diagrams.

Let’s call this the algebra of dynamical systems.
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The operad Org of organizations Definition and intuition for Org

Fixed organizations

Consider the fixed points in Org(p1, . . . , pk ; p′).

These are just (fixed) interaction patterns of the pi ’s in p′.

I.e., the way the pi send and receive information is unchanging.

A wiring diagram, e.g. of transistors in a computer, is fixed.

There is a set-operad Orgfix mapping to Org, ...

... and we can pullback the algebra of dynamical systems to it.

So the more general Org is about adjusting interaction patterns.
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The operad Org of organizations Definition and intuition for Org

You as an organization

Think of the resources at your disposal.

This depends on how we define “you” but let’s go with colloquial.

Some resources: eyes, limbs, thoughts, heart, car, bank account.

They respond to signals from each other and the outside world.

We might imagine you as a switchboard operator.

When X comes into your eyes, you try not to think about it.

When your heart rate increases, you decide to call the bank.

You control the relays, though you don’t control how they respond.

The bank may not send the check,

Your limb may not work as expected.

But you are cognizant of what they’re doing.

If the way you control the relays can change through time, congrats!
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The operad Org of organizations Definition and intuition for Org

Gambling games in Org

Let’s consider “finite state gamblers” in Org.

Let [N] := {1, . . . ,N} and ∆N := {p : [N]→ R≥0 |
∑

i pi = N}
Think of p ∈ ∆N as a bet on an N-sided die.

For example, suppose N = 2 and p(1) = .6 and p(2) = 1.4.

If the die turns up 1, we multiply your wealth by 0.6.

If the die turns up 2, we multiply your wealth by 1.4.
Let mN := ∆Ny

N . A gambler on alphabet N is an mN -coalgebra.
That is, it’s a machine that produces bets and receives die rolls.

The game itself is an object in Org(Ny,mN ; y).

That is, it’s a [Ny⊗∆Ny
N , y]-coalgebra.

Its state set is R; that is, the officer keeps track of the bettor’s wealth.

The map R→ [Ny⊗∆Ny
N , y](R) is given by

w 7→ (i , p) 7→ (i ,w ∗ p(i))

The notation is hard to decipher, but it says that the officer sends the
outcome i to the bettor and tracks the wealth as above.
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Where I’m stuck General approach

How I’m approaching this

The above was done with two competing objectives.

To follow the math, so that it remains elegant and builds on itself.

Poly is an abundant category, with great formal properties.

Org is just packaging up coalgebra interactions.

Org generalizes “backprop as functor”...

... and wiring diagrams of dynamical systems.

I can study its “behavior types” with topos theory.

To ask that the math follow aspects of life and experience.

Learners loosely model neurons in the brain.

Martingales model betting, which has deep biological roots.

A company officer directs the interaction between resources.

What makes us “good” at this stuff: learning, betting, officiating?

Here we are, communicating. What makes it “work”?
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Where I’m stuck Flow and Ping

Flow and ping

People often talk about flow states as pleasurable and effective.

If we look at the interactions between your subsystems, ...

... what would we see, especially during flow?

Is there some notion of “efficiency” there?

In golf, baseball, or tennis, a good hit often comes with a “ping”.

In this case, you barely feel the ball hit your club, bat, or racket,...

... and yet the ball goes flying.

In contrast, when you “flub” it, you get pain and no distance.

So what is that ping? Is there some notion of “efficiency” there?

If we slow ping down by 1000x, would we see flow?

Does an hour of flow look like a ping when we look back on it?

As an officer of an organization, how can you adjust to make ping?

Can we say what “collective cognition” is?

Is there math for flow or ping?
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Where I’m stuck Flow and Ping

Rayleigh-Bénard convection

Patterns can form when there is a potential difference across a medium.

Rayleigh-Bénard convection is one such example.

Given a temp. difference across a fluid (e.g. bottom is hotter)...

... you get structure: a bunch of rotating “cells”.

They increase the rate at which the temperature equalizes.

A hurricane’s eye efficiently moves heat from ocean to atmosphere.

Some believe that life is such a pattern, designed to disperse entropy.

Can anything like this be seen from the Org point of view?

E.g., you might want to receive relatively predictable inputs...

... while producing relatively unpredictable outputs.

Can we say that sort of thing?

Can we setup simplified physics and see Rayleigh-Bénard convection?
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Where I’m stuck Sense-making

Sense-making

Let’s say our goal is sense-making.

We can think of this as channeling or processing negentropy.

We channel it to the systems that sustain us.

We get “food” to our organs to process.

We seek out information that our brains can make sense of.

We tell our friends of useful things we find out.

This should be its own reward: it structures and enables us.

I have a feeling that this can lead to natural economics.

So how do you see it in the math?

In particular, I imagine it should make sense in Org, but how?

So that’s where I’m stuck. Can you help me make sense of it?
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Where I’m stuck Sense-making

Overall fit

How does all this resonate with you?

Comments?

Questions?

Ideas on where to go?
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