Polynomials and the dynamics of data

David I. Spivak

Seminario de categorías UNAM 2021 February 17

Outline

1 Introduction

- Personal history
- Plan

2 Theory

- **3** Applications
- **4** Speculations and questions

5 Conclusion

Personal history

My personal history with math

I've always believed I could understand self, life, and world with math.

- We generally share experience and knowledge in "natural language".
- Is any of it inherently precluded from mathematical expression?

When I learned CT, I thought "this is where I can say it all."

- It's a sublanguage of math that can talk about math.
- It's clean and principled and structural and expressive.
- So I got to work trying to understand self, life, and world.

My personal history with ACT

What can we say about self, life, and world?

- I first assumed everything is information and communication.
 - Pretend our minds are information-storage devices.
 - How do we communicate with each other and with reality?
 - Understand everything in terms of databases and data migration!
 - (Categories, set-valued functors, parametric right adjoints.)
 - But interacting processes didn't seem to fit nicely.
- So then I assumed everything is interacting dynamical systems.
 - It's machines sending each other information, all the way down.

But should they really be wired the same way forever?

My personal history with Poly

Then one day I met **Poly** and fell in love.

- It captures dynamical systems and "rewiring diagrams".
- As a category it's exceptionally well-behaved.

The dynamics seemed to really be all about comonoids in Poly.

- Joachim Kock pointed me to R. Garner; I found his HoTTEST talk.
- Garner explained Ahman-Uustalu's result: "comonoids = categories"
- Garner also explained that bimodules = parametric right adjoints.

Suddenly everything I'd been working on for 13 years came together.

- I was overwhelmed by **Poly**'s elegance and capacity for application.
- It is extremely computational and hands-on...
- ...while displaying excellent formal properties.

Plan for today

Today's plan:

- Recall some basics of **Poly**;
- Show how **Poly** models dynamical systems and databases;
- Discuss some open questions and speculations; and
- Conclude with a brief summary.

Outline

1 Introduction

2 Theory

- Poly as a category
- Comonoids in Poly
- \blacksquare The framed bicategory $\mathbb P$

3 Applications

A Speculations and questions

5 Conclusion

Poly for experts

What I'll call the category **Poly** has many names.

- The free completely distributive category on one object;
- The free coproduct completion of Set^{op};
- The full subcategory of [Set, Set] spanned by functors that preserve connected limits;
- The full subcategory of [Set, Set] spanned by coproducts of repr'bles;
- The category of typed sets and colax maps between them.
 - Objects: pairs (S, τ) , where $S \in \mathbf{Set}$ and $\tau \colon S \to \mathbf{Set}$.
 - Morphisms $(S, \tau) \xrightarrow{\varphi} (S', \tau')$: pairs $(\varphi_1, \varphi^{\sharp})$, where

But let's make this easier.

What is a polynomial?

Interpretations:

- Each corolla in p is a position; its leaves are directions.
- Each corolla in *p* is a decision; its leaves are the options.

What is a morphism of polynomials?

Let
$$p := y^3 + 2y$$
 and $q := y^4 + y^2 + 2$

A morphism $p \xrightarrow{\varphi} q$ delegates each *p*-decision to a *q*-decision, passing back options:

Example: how to think of a map $y^2 + y^6 \rightarrow y^{52}$.

The category of polynomials

Easiest description: Poly = "sums of representables functors $Set \rightarrow Set$ ".

- For any set S, let $y^{S} := \mathbf{Set}(S, -)$, the functor *represented* by S.
- Def: a polynomial is a sum $p = \sum_{i \in I} y^{p[i]}$ of representable functors.
- Def: a morphism of polynomials is a natural transformation.
- In **Poly**, + is coproduct and × is product.

Notation

We said that a polynomial is a sum of representable functors

$$p \cong \sum_{i \in I} y^{p[i]}.$$

But note that $I \cong p(1)$. So we can write

$$p \cong \sum_{i \in p(1)} y^{p[i]}.$$

Composition monoidal structure (Poly, y, \triangleleft)

The composite of two polynomial functors is again polynomial.

- Let's denote the composite of p and q by $p \triangleleft q$.
- Example: if $p := y^2$, q := y + 1, then $p \triangleleft q \cong y^2 + 2y + 1$.
- **This is a monoidal structure, but not symmetric.** $(q \triangleleft p \cong y^2 + 1)$
- The identity functor y is the unit: $p \triangleleft y \cong p \cong y \triangleleft p$.

Why the we weird symbol \triangleleft rather than \circ ?

- We want to reserve \circ for morphism composition.
- The notation $p \triangleleft q$ represents trees with p under q.

Composition given by stacking trees

Suppose $p := y^2 + y$ and $q := y^3 + 1$.

Draw the composite $p \triangleleft q$ by stacking *q*-trees on top of *p*-trees:

You can also read it as q feeding into p, which is how composition works.

Comonoids in (Poly, y, \triangleleft)

In any monoidal category $(\mathcal{M}, I, \otimes)$, one can consider comonoids.

A comonoid is a triple (m, ϵ, δ) satisfying certain rules, where

• $m \in \mathcal{M}$ is an object, the *carrier*,

- $\epsilon : m \rightarrow I$ is a map, the *counit*, and
- $\delta: m \to m \otimes m$ is a map, the *comultiplication*.

In (**Poly**, y, \triangleleft), comonoids are exactly categories!¹

 \blacksquare If $\mathcal C$ is a category, the corresponding comonoid has carrier

$$\mathfrak{c} \coloneqq \sum_{i \in \mathsf{Ob}(\mathcal{C})} y^{\mathfrak{c}[i]}$$

where c[i] is the set of morphisms in C that emanate from i.

- The counit $\epsilon \colon \mathfrak{c} \to y$ assigns to each object an identity.
- The comult $\delta : \mathfrak{c} \to \mathfrak{c} \triangleleft \mathfrak{c}$ assigns codomains and composites.

¹Ahman-Uustalu. See my talk, https://www.youtube.com/watch?v=2mWnrgPIrIA

Comonoid maps are "cofunctors"

In Poly, comonoids are categories, but their morphisms aren't functors.

- A comonoid morphism $\varphi \colon \mathcal{C} \nrightarrow \mathcal{D}$ is called a *cofunctor*.
- It includes a **Poly** map on carriers. For each object $i \in \mathfrak{c}(1)$, we get:
 - an object $j\coloneqq arphi_1(i)\in \mathfrak{d}(1)$ and
 - for each emanating $f \in \mathfrak{d}[j]$, an emanating $\varphi_i^{\sharp}(f) \in \mathfrak{c}[i]$.

Example: what is a cofunctor $C \xrightarrow{\varphi} y^{\mathbb{N}}$?

It is trivial on objects. On morphisms...

• ... it assigns an emanating morphism $\varphi_i^{\sharp}(1)$ to each object $i \in \mathfrak{c}(1)$.

"That's not what you do with a category!"

- Cofunctors are kinda weird right? A whole new world to explore.
- A cofunctor $C \twoheadrightarrow y^{\mathbb{N}}$ is like a vector field on the category.
- This hints at applications, which are coming soon.

Bicomodules in (Poly, y, \triangleleft)

Given comonoids \mathcal{C}, \mathcal{D} , a $(\mathcal{C}, \mathcal{D})$ -bicomodule is another kind of map.

■ It's a polynomial *m*, equipped with two maps

 $\mathfrak{c} \triangleleft m \longleftarrow m \longrightarrow m \triangleleft \mathfrak{d}$

each cohering naturally with the comonoid structure ϵ, δ . I denote this $(\mathcal{C}, \mathcal{D})$ -bicomodule *m* like so:

$$\mathfrak{c} \triangleleft \overset{m}{\longleftarrow} \mathfrak{d}$$
 or $\mathcal{C} \triangleleft \overset{m}{\longleftarrow} \mathcal{D}$

• The \triangleleft 's at the ends help me remember the how the maps go.

Maybe it looks like it's going the wrong way, but hold on.

Bicomodules are parametric right adjoints

Garner explained² that bicomodules $m \in {}_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$, which we've denoted

 $\mathcal{C} \triangleleft \overset{m}{\longrightarrow} \mathcal{D}$

can be identified with parametric right adjoint functors (prafunctors)

 $\mathcal{D}\text{-}\mathsf{Set} \xrightarrow{M} C\text{-}\mathsf{Set}.$

From this perspective the arrow points in the expected direction.

• Check: $_{\mathcal{C}}\mathbf{Mod}_0 \cong \mathcal{C}$ -Set.

Prafunctors $\mathcal{C} \triangleleft \longrightarrow \mathcal{D}$ generalize profunctors $\mathcal{C} \longrightarrow \mathcal{D}$:

- A profunctor $\mathcal{C} \to \mathcal{D}$ is a functor $\mathcal{C} \to (\mathcal{D}\text{-}\mathbf{Set})^{\mathsf{op}}$
- A prafunctor $\mathcal{C} \triangleleft \mathcal{D}$ is a functor $\mathcal{C} \rightarrow \mathbf{Coco}((\mathcal{D}-\mathbf{Set})^{\mathsf{op}})...$

• ...where **Coco** is the free coproduct completion.

I'll explain how to think about it concretely when we get to applications.

²Garner's HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6eI

The framed bicategory \mathbb{P}

Poly comonoids, cofunctors, and bicomodules form a framed bicategory \mathbb{P} .

- It's got a ton of structure, e.g. two monoidal structures, $+, \otimes$.
- Despite the last slide, it's actually not that hard to think about.

Here are some facts about ${}_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$ for categories \mathcal{C}, \mathcal{D} .

- **•** \mathcal{D} Mod₀ $\cong \mathcal{D}$ -Set, copresheaves on \mathcal{D} .
- $_1$ Mod $_{\mathcal{D}} \cong$ Coco $((\mathcal{D}$ -Set)^{op}).
- $_{\mathcal{C}}\mathsf{Mod}_{\mathcal{D}}\cong\mathsf{Cat}(\mathcal{C},_{1}\mathsf{Mod}_{\mathcal{D}}).$

Outline

1 Introduction

2 Theory

3 Applications

- Interacting Moore machines
- Mode-dependence
- Databases

4 Speculations and questions

5 Conclusion

Moore machines

Definition

Given sets A, B, an (A, B)-Moore machine consists of:
a set S, elements of which are called *states*,
a function r: S → B, called *readout*, and
a function u: S × A → S, called *update*.
It is *initialized* if it is equipped also with

• an element $s_0 \in S$, called the *initial state*.

We refer to A as the *input set*, B as the *output set* of the Moore machine.

Dynamics: an (A, B)-Moore machine (S, r, u, s_0) is a "stream transducer":

- Given a list/stream $[a_0, a_1, \ldots]$ of A's...
- let $s_{n+1} \coloneqq u(s_n, a_n)$ and $b_n \coloneqq r(s_n)$.
- We thus have obtained a list/stream $[b_0, b_1, \ldots]$ of *B*'s.

Moore machines as maps in Poly

We can understand Moore machines $A^{-1}S^{-B}$ in terms of polynomials.

An uninitialized Moore machine $r: S \rightarrow B$ and $u: S \times A \rightarrow S$ is:

- A map of polynomials $Sy^S \to By^A$.
- φ_1 is the readout and φ^{\sharp} is the update.
- Add initialization by giving a map $y \to Sy^S$.

A *p-dynamical system* allows different input-sets at different positions.

- For arbitrary $p \in \mathbf{Poly}$ we can interpret a map $\varphi \colon Sy^{\mathsf{S}} \to p$ as:
 - a readout: every state $s \in S$ gets a position $i \coloneqq \varphi_1(s) \in p(1)$

• an update: for every direction $d \in p[i]$, a next state $\varphi_s^{\sharp}(d) \in S$.

• Again, add initialization by giving a map $y \to Sy^S$.

Even more general: $Sy^S \not\rightarrow C$ for any category C.

For example, a map Sy^S → p can be identified with a cofunctor...
 ... Sy^S → c_p, where c_p is the cofree comonoid on p.

Wiring diagrams

We can have a bunch of dynamical systems interacting in an open system.

Each box represents a monomial, e.g. $p_3 = Cy^{AB} \in \mathbf{Poly}$.

- The whole interaction, p_1 sending outputs to p_2 and p_3 , etc....
- ... is captured by a map of polynomials $\varphi: p_1 \otimes \cdots \otimes p_5 \to q$.³
 - Given the positions (outputs) of each p_i , we get an output of q...
 - ... and when given an input of q, each p_i gets an input.

³Here $p \otimes p'$ just multiplies positions and directions,

$$\boldsymbol{p}\otimes \boldsymbol{p}' = \sum_{(i,i')\in \boldsymbol{p}(1)\times \boldsymbol{p}'(1)} y^{\boldsymbol{p}[i]\times \boldsymbol{p}'[i']}$$

 (φ)

More general interaction

The whole picture above represents one morphism in **Poly**.

- Let's suppose the company chooses who it wires to; this is its mode.
- Then both suppliers have interface Wy for $W \in$ **Set**.
- Company interface is $2y^W$: two modes, each of which is W-input.
- The outer box is just *y*, i.e. a closed system.

So the picture represents a map $Wy \otimes Wy \otimes 2y^W \rightarrow y$.

- That's a map $2W^2y^W \rightarrow y$.
- Equivalently, it's a function $2W^2 \rightarrow W$. Take it to be evaluation.
- In other words, the company's choice determines which $w \in W$ it receives.

Other sorts of dynamical systems

Dynamical systems are usually defined as actions of a monoid T.

- **Discrete**: \mathbb{N} , reversible: \mathbb{Z} , real-time: \mathbb{R} .
- If T is a monoid and S is a set, a T-action on S is equivalently...
- ... a map $S \times T \rightarrow S$ satisfying two laws, which is equivalently...
- ... a cofunctor $Sy^S \rightarrow y^T$, as in our general definition above.

Databases

Categorical databases

One view on databases is that they're basically just copresheaves.

A functor $I: \mathcal{C} \to \mathbf{Set}$ (i.e. $\mathcal{C} \xleftarrow{I} \mathbf{0}$) can be represented as follows:

Employee	WorksIn	Mngr	Department	Admin
\heartsuit	P9	\odot	bLue	T****
T****	bLue	orca	P9	
orca	bLue	orca		

But where's the data? What are the employees names, etc.?

More realistically, data should include *attributes* and look like this:

Employ	ee	FName	WorksIn	Mngr	Department	DName	Secr
\otimes		Alan	P9	\heartsuit	bLue	Sales	T****
T***	ĸ	Dani	bLue	orca	P9	IT	\heartsuit
orca		Sara	bLue	orca			

Assign a copresheaf $T: Ob(\mathcal{C}) \rightarrow \mathbf{Set}$, e.g. T(Employee) = String.

Using the canonical cofunctor $\mathcal{C} \twoheadrightarrow \mathsf{Ob}(\mathcal{C})$, attributes are given by $\alpha_{22,33}$

Data migration

The framed bicategory structure of $\ensuremath{\mathbb{P}}$ is very useful in databases.

- We hinted at this in the last slide, adding attributes via a cofunctor.
- But so-called *data migration functors* are precisely prafunctors.

A prafunctor $\mathcal{C} \triangleleft \stackrel{P}{\longrightarrow} \mathcal{D}$ in $_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$ can be understood as follows.

- First, it's a functor $\mathcal{C} \to {}_1\mathbf{Mod}_{\mathfrak{D}}$, so what's that?
- We said it's a formal coproduct of formal limits in D.
- A formal limit in 𝔅 is called a *conjunctive query* on 𝔅.
- So a prafunctor $\mathbf{1} \triangleleft \mathcal{Q} \not \mathcal{D}$ is a disjoint union of conjunctive queries.
- Let's call *Q* a duc-query on *D*.

Example: if $\mathcal{D} = \begin{pmatrix} \mathsf{City} & \mathsf{in} \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{pmatrix}$, a duc-query might be...

 $(\mathsf{City} \times_{\mathsf{State}} \mathsf{City}) + (\mathsf{City} \times_{\mathsf{State}} \mathsf{County}) + (\mathsf{County} \times_{\mathsf{State}} \mathsf{County})$

A general bimodule $P \in {}_{\mathcal{C}}\mathbf{Mod}_{\mathcal{D}}$ is a \mathcal{C} -indexed duc-query on \mathcal{D} .

Outline

1 Introduction

2 Theory

3 Applications

4 Speculations and questions

- Aggregation?
- Metaphysical questions

5 Conclusion

Database aggregation

One of the most important uses of databases is aggregation.

- Setup: every employee is paid a salary and works in a department.
- Problem: assign each department the sum of its employees salaries.
- This is aggregation: not row-by-row; instead "rolling up a table".

I don't know of a nice ACT story for this anywhere.

- **Poly** loves databases and data migration.
- It's good at dynamics, e.g. "doing something" over and over.
- Isn't there some natural way to do aggregation?
- We'd start with a commutative monoid in the types; then what?

This is probably my current nomination for "#1 problem in ACT".

- It's a crucial step in understanding the nature of *summarizing*.
- In turn, summarizing is a huge metaphysical interest of mine.

A Poly-oriented view on metaphysics

I'll explain aspects of my current metaphysics using Poly.

- One's metaphysics is how they understand the fundamental principles.
- How does time work? What's up with identity? What is life?
- We can point at **Poly** while considering some of these things.

The following is just a play of forms, a submission I make for your review.

- Don't take this as a presentation of fact.
- Feel free to let me know what you think later.

First a little more math: the cofree comonoid.

The cofree comonoid c_p

Comonoids in **Poly** are categories, so c_p is a category; which one?

- It's actually free on a graph, but the graph is very interesting.
- The vertex-set $c_p(1)$ of the graph is the set of *p*-trees.
 - A *p*-tree is a possibly infinite tree *t*, where each node...
 - ... is labeled by a position $i \in p(1)$ and has p[i]-many branches.
- For each vertex t, the set $c_p[t]$ of arrows emanating from t is...

...the set of nodes n in tree t.

■ Identity arrow = root node; codomain of *n* is the subtree at *n*. Example object (tree) $t \in c_p$, where $p \cong 2y^2 + 1$:

Intuition from c_p

Suppose you (or the world) can be in p(1)-many positions, and... ...for each $i \in p(1)$, there are p[i]-many ways things might happen.

- Your character is how you respond in each such case.
- The character above always responds to left by turning green, etc.

The category of all "*p*-inhabiting characters" is c_p -**Set**, a topos.

- It's also the category of all dynamical systems with interface *p*.
- One can describe characters using the internal language of c_p -Set.
- We'll use an informal version to talk about experience.

What was, what's happening, and our character

Here are some assertions for your review:

- The past is irrevocably gone; it's always now.
- What we have of the past is what is left in the present.
 - This includes the layout of your surroundings.
 - It also includes the layout of your mind (memory).
 - The past—what was—is fossilized in the present layout.
 - We're continually consolidating experience; now, now, now.
- Imagine: all that remains of the past is the present position $i \in \mathfrak{c}_{\rho}(1)$.
 - What's happening now is the present direction $d \in p[i]$.
 - Imagine: our job is to compress the past into the present.
 - We try to remember something, we write it down, etc.
 - Compression because we encode both i and d in cod(d).
 - Our character $X: \mathfrak{c}_p \to \mathbf{Set}$ is our compression scheme.
 - It's the type of responses we can have as things happen to us.

The lessons of history?

Imperative: compress the lessons of history to actualize ourselves.

- DNA compresses the lessons of who died, who survived, who thrived.
- History books, math books, culture: compress the lessons of history.
- But what's a lesson? What's worth compressing?
- Two senses of appreciation:
 - We pass on what we appreciate.
 - Appreciation of an asset is its growth.

How do you make math out of any of this?

- Polani's notion of Empowerment?
- Channel capacity between position now and direction in future.
- This may give a concrete notion of "lesson of history".

Factoring

Again for intuition only, imagine all of reality is embodied in p.

- Imagine you are a tensor factor, $p \coloneqq p_1 \otimes p'$, ...
- ...where $Ego = me = p_1$, and Alter = environment = p'.
- Perhaps such factoring is a strategy for discerning the character of p?
- A map $p_1 \otimes p' \rightarrow y$ can be understood via standard cybernetics.
 - I present an unfolding situation for the environment, and...
 - ... the environment produces an unfolding situation for me.
 - We seem to pass constraints between characters in p_1 and p'.
 - But all of it is dictated by the character inhabiting *p*.

Is this sort of mereological breakdown actually useful? If so, what for?

Moving forward

The AI transition:

- Humans try to mimic intelligence they see in animals and people.
 - Example: "Computers" were originally people.
 - Turing explicitly designed machines to mimic their behavior.
 - We capture our understanding of life/intelligence in artifacts.
 - I'll call these artifacts "AI".
- Al can be run continuously at very fast rates.
- This has led to increasing complexity, already visible; more to come!

Mathematicians can enter the fray.

- If we say something in constructive math, technology can be formed.
- If what we say is elegant, the tech won't be ad-hoc.
- I prefer to be alongside elegant AI rather than ad-hoc AI.
- Mathematicians can join our historical moment and lead.

Poly is my entry point; you join our historical moment as you see fit.

Outline

- **1** Introduction
- 2 Theory
- **B** Applications
- **4** Speculations and questions
- **5** Conclusion
 - Summary

Workshop on polynomial functors in March

Joachim Kock and I are organizing a Poly workshop.⁴

Dates: March 15 – 19

Speakers:

Thorsten Altenkirch Michael Batanin Marcelo Fiore David Gepner Rune Haugseng André Joyal Kristina Sojakova Ross Street Steve Awodey Bryce Clarke Richard Garner Helle Hvid Hansen Bart Jacobs Fredrik Nordvall-Forsberg David Spivak Tarmo Uustalu

⁴https://topos.site/p-func-2021-workshop/

Summary

Poly is a category of remarkable abundance.

- It's completely combinatorial.
 - Calculations are concrete.

• Much is already familiar, e.g. $(y+1)^2 \cong y^2 + 2y + 1$.

- It's theoretically beautiful.
 - Comonoids are categories.
 - Coalgebras are copresheaves.
- It's got a wide scope of applications.
 - Databases and data migration.
 - Dynamical systems and cellular automata.

A single setting for pursuing real philosophical and technological progress.

Thanks! Questions and comments welcome.