Polynomials and the dynamics of data

David I. Spivak

TOPOS
 I NSTITUTE

Seminario de categorías UNAM 2021 February 17

Outline

1 Introduction

- Personal history
- Plan

2 Theory

3 Applications

4 Speculations and questions

5 Conclusion

My personal history with math

I've always believed I could understand self, life, and world with math.
■ We generally share experience and knowledge in "natural language".
■ Is any of it inherently precluded from mathematical expression?

When I learned CT, I thought "this is where I can say it all."

- It's a sublanguage of math that can talk about math.

■ It's clean and principled and structural and expressive.
So I got to work trying to understand self, life, and world.

My personal history with ACT

What can we say about self, life, and world?
■ I first assumed everything is information and communication.
■ Pretend our minds are information-storage devices.

- How do we communicate with each other and with reality?

■ Understand everything in terms of databases and data migration!
\square (Categories, set-valued functors, parametric right adjoints.)

- But interacting processes didn't seem to fit nicely.
$■$ So then I assumed everything is interacting dynamical systems.
- It's machines sending each other information, all the way down.

■ But should they really be wired the same way forever?

My personal history with Poly

Then one day I met Poly and fell in love.
■ It captures dynamical systems and "rewiring diagrams".
■ As a category it's exceptionally well-behaved.
The dynamics seemed to really be all about comonoids in Poly.
■ Joachim Kock pointed me to R. Garner; I found his HoTTEST talk.
■ Garner explained Ahman-Uustalu's result: "comonoids = categories"
■ Garner also explained that bimodules = parametric right adjoints.

Suddenly everything l'd been working on for 13 years came together.
■ I was overwhelmed by Poly's elegance and capacity for application.
■ It is extremely computational and hands-on...
■ ...while displaying excellent formal properties.

Plan for today

Today's plan:
■ Recall some basics of Poly;
■ Show how Poly models dynamical systems and databases;
■ Discuss some open questions and speculations; and

- Conclude with a brief summary.

Outline

1 Introduction

2 Theory
■ Poly as a category

- Comonoids in Poly

■ The framed bicategory \mathbb{P}

3 Applications

4 Speculations and questions

5 Conclusion

Poly for experts

What I'll call the category Poly has many names.

- The free completely distributive category on one object;

■ The free coproduct completion of Set ${ }^{\text {op }}$;
■ The full subcategory of [Set, Set] spanned by functors that preserve connected limits;
■ The full subcategory of [Set, Set] spanned by coproducts of repr'bles;
■ The category of typed sets and colax maps between them.

- Objects: pairs (S, τ), where $S \in$ Set and $\tau: S \rightarrow$ Set.

■ Morphisms $(S, \tau) \xrightarrow{\varphi}\left(S^{\prime}, \tau^{\prime}\right)$: pairs $\left(\varphi_{1}, \varphi^{\sharp}\right)$, where

Set
But let's make this easier.

What is a polynomial?

Corolla forest

Interpretations:
■ Each corolla in p is a position; its leaves are directions.
■ Each corolla in p is a decision; its leaves are the options.

What is a morphism of polynomials?

Let $p:=y^{3}+2 y$ and $q:=y^{4}+y^{2}+2$

A morphism $p \xrightarrow{\varphi} q$ delegates each p-decision to a q-decision, passing back options:

Example: how to think of a map $y^{2}+y^{6} \rightarrow y^{52}$.

The category of polynomials

Easiest description: Poly $=$ "sums of representables functors Set \rightarrow Set".
$■$ For any set S, let $y^{S}:=\operatorname{Set}(S,-)$, the functor represented by S.

- Def: a polynomial is a sum $p=\sum_{i \in I} y^{p[i]}$ of representable functors.

■ Def: a morphism of polynomials is a natural transformation.
■ In Poly, + is coproduct and \times is product.

Notation

We said that a polynomial is a sum of representable functors

$$
p \cong \sum_{i \in I} y^{p[i]}
$$

But note that $I \cong p(1)$. So we can write

$$
p \cong \sum_{i \in p(1)} y^{p[i]}
$$

Composition monoidal structure (Poly, y, \triangleleft)

The composite of two polynomial functors is again polynomial.
$■$ Let's denote the composite of p and q by $p \triangleleft q$.
■ Example: if $p:=y^{2}, q:=y+1$, then $p \triangleleft q \cong y^{2}+2 y+1$.
■ This is a monoidal structure, but not symmetric. $\left(q \triangleleft p \cong y^{2}+1\right)$
■ The identity functor y is the unit: $p \triangleleft y \cong p \cong y \triangleleft p$.
Why the we weird symbol \triangleleft rather than \circ ?
■ We want to reserve \circ for morphism composition.

- The notation $p \triangleleft q$ represents trees with p under q.

Composition given by stacking trees

Suppose $p:=y^{2}+y$ and $q:=y^{3}+1$.

Draw the composite $p \triangleleft q$ by stacking q-trees on top of p-trees:

You can also read it as q feeding into p, which is how composition works.

Comonoids in (Poly, y, \triangleleft)

In any monoidal category (m, I, \otimes), one can consider comonoids.
■ A comonoid is a triple (m, ϵ, δ) satisfying certain rules, where
■ $m \in M$ is an object, the carrier,
$\square \epsilon: m \rightarrow I$ is a map, the counit, and
■ $\delta: m \rightarrow m \otimes m$ is a map, the comultiplication.
In (Poly, $y, \triangleleft)$, comonoids are exactly categories! ${ }^{1}$
■ If C is a category, the corresponding comonoid has carrier

$$
\mathfrak{c}:=\sum_{i \in \mathrm{Ob}(C)} y^{\mathrm{c}[i]}
$$

where $\mathfrak{c}[i]$ is the set of morphisms in C that emanate from i.

- The counit $\epsilon: \mathfrak{c} \rightarrow y$ assigns to each object an identity.

■ The comult $\delta: \mathfrak{c} \rightarrow \mathfrak{c} \triangleleft \mathfrak{c}$ assigns codomains and composites.

Comonoid maps are "cofunctors"

In Poly, comonoids are categories, but their morphisms aren't functors.

- A comonoid morphism $\varphi: C \nrightarrow \mathscr{D}$ is called a cofunctor.

■ It includes a Poly map on carriers. For each object $i \in \mathfrak{c}(1)$, we get:
■ an object $j:=\varphi_{1}(i) \in \mathfrak{d}(1)$ and
■ for each emanating $f \in \mathfrak{d}[j]$, an emanating $\varphi_{i}^{\sharp}(f) \in \mathfrak{c}[i]$.
Example: what is a cofunctor $C \xrightarrow{\varphi} y^{\mathbb{N}}$?
■ It is trivial on objects. On morphisms...
■ ...it assigns an emanating morphism $\varphi_{i}^{\sharp}(1)$ to each object $i \in \mathfrak{c}(1)$.
"That's not what you do with a category!"

- Cofunctors are kinda weird right? A whole new world to explore.
- A cofunctor $C \nrightarrow y^{\mathbb{N}}$ is like a vector field on the category.
- This hints at applications, which are coming soon.

Bicomodules in (Poly, y, \triangleleft)

Given comonoids C, \mathscr{D}, a ($(, \mathscr{D})$-bicomodule is another kind of map.
■ It's a polynomial m, equipped with two maps

$$
\mathfrak{c} \triangleleft m \longleftarrow m \longrightarrow m \triangleleft \mathfrak{d}
$$

each cohering naturally with the comonoid structure ϵ, δ.
■ I denote this (C, \mathscr{D})-bicomodule m like so:

$$
\mathfrak{c} \triangleleft \stackrel{m}{\triangleleft} \triangleleft \mathfrak{d} \quad \text { or } \quad C \triangleleft \stackrel{m}{\triangleleft} \triangleleft D
$$

■ The \triangleleft 's at the ends help me remember the how the maps go.

- Maybe it looks like it's going the wrong way, but hold on.

Bicomodules are parametric right adjoints

Garner explained ${ }^{2}$ that bicomodules $m \in e \mathbf{M o d}_{\mathscr{D}}$, which we've denoted

$$
C \triangleleft \stackrel{m}{\triangleleft} \triangle D
$$

can be identified with parametric right adjoint functors (prafunctors)

$$
\mathcal{D} \text {-Set } \xrightarrow{M} C \text {-Set. }
$$

- From this perspective the arrow points in the expected direction.

■ Check: ${ }_{e} \mathbf{M o d}_{0} \cong \mathcal{C}$-Set.
Prafunctors $C \triangleleft \triangleleft \mathscr{D}$ generalize profunctors $C \mapsto \mathscr{D}$:

- A profunctor $C \rightarrow \mathscr{D}$ is a functor $C \rightarrow(\mathscr{D} \text {-Set })^{\text {op }}$
- A prafunctor $C \triangleleft \triangleleft D$ is a functor $C \rightarrow \mathbf{C o c o}\left((\mathcal{D}-\text { Set })^{\mathrm{op}}\right) \ldots$

■ ...where Coco is the free coproduct completion.
I'll explain how to think about it concretely when we get to applications.

[^0]
The framed bicategory \mathbb{P}

Poly comonoids, cofunctors, and bicomodules form a framed bicategory \mathbb{P}.
■ It's got a ton of structure, e.g. two monoidal structures,,$+ \otimes$.
■ Despite the last slide, it's actually not that hard to think about.
Here are some facts about ${ }_{C} \mathbf{M o d}_{\mathscr{D}}$ for categories \mathcal{C}, \mathscr{D}.

- ${ }_{D} \mathbf{M o d}_{\mathbf{0}} \cong \mathscr{D}$-Set, copresheaves on \mathscr{D}.
$\square{ }_{1} \operatorname{Mod}_{\mathscr{D}} \cong \operatorname{Coco}\left(\left(D^{-S e t}\right)^{\mathrm{op}}\right)$.
■ ${ }_{e} \operatorname{Mod}_{\mathscr{D}} \cong \mathbf{C a t}\left(C, \mathbf{M o d}_{\mathscr{D}}\right)$.

Outline

1 Introduction

2 Theory

3 Applications
■ Interacting Moore machines
■ Mode-dependence
■ Databases

4 Speculations and questions

5 Conclusion

Moore machines

Definition

Given sets A, B, an (A, B)-Moore machine consists of:

- a set S, elements of which are called states,
- a function $r: S \rightarrow B$, called readout, and

■ a function $u: S \times A \rightarrow S$, called update.

It is initialized if it is equipped also with
\square an element $s_{0} \in S$, called the initial state.
We refer to A as the input set, B as the output set of the Moore machine.

Dynamics: an (A, B)-Moore machine $\left(S, r, u, s_{0}\right)$ is a "stream transducer":
■ Given a list/stream [a0, a_{1}, \ldots] of A^{\prime} '...
\square let $s_{n+1}:=u\left(s_{n}, a_{n}\right)$ and $b_{n}:=r\left(s_{n}\right)$.
■ We thus have obtained a list/stream $\left[b_{0}, b_{1}, \ldots\right]$ of B 's.

Moore machines as maps in Poly

We can understand Moore machines $A^{-5} \int^{B}$ in terms of polynomials.

- An uninitialized Moore machine $r: S \rightarrow B$ and $u: S \times A \rightarrow S$ is:
- A map of polynomials $S y^{S} \rightarrow B y^{A}$.
- φ_{1} is the readout and φ^{\sharp} is the update.

■ Add initialization by giving a map $y \rightarrow S y^{S}$.
A p-dynamical system allows different input-sets at different positions.
■ For arbitrary $p \in$ Poly we can interpret a $\operatorname{map} \varphi: S y^{S} \rightarrow p$ as:
■ a readout: every state $s \in S$ gets a position $i:=\varphi_{1}(s) \in p(1)$
■ an update: for every direction $d \in p[i]$, a next state $\varphi_{s}^{\sharp}(d) \in S$.
■ Again, add initialization by giving a map $y \rightarrow S y^{S}$.
Even more general: $S y^{S} \nrightarrow C$ for any category C.
■ For example, a map $S y^{S} \rightarrow p$ can be identified with a cofunctor...
■ ... $S y^{S} \leftrightarrow \mathfrak{c}_{p}$, where \mathfrak{c}_{p} is the cofree comonoid on p.

Wiring diagrams

We can have a bunch of dynamical systems interacting in an open system.

Each box represents a monomial, e.g. $p_{3}=C y^{A B} \in$ Poly.
■ The whole interaction, p_{1} sending outputs to p_{2} and p_{3}, etc....
■ ... is captured by a map of polynomials $\varphi: p_{1} \otimes \cdots \otimes p_{5} \rightarrow q .{ }^{3}$
■ Given the positions (outputs) of each p_{i}, we get an output of $q \ldots$
■ ... and when given an input of q, each p_{i} gets an input.
${ }^{3}$ Here $p \otimes p^{\prime}$ just multiplies positions and directions,

$$
p \otimes p^{\prime}=\sum_{(i, i \prime) \in p(1) \times p^{\prime}(1)} y^{p[i] \times p^{\prime}\left[i^{\prime}\right]} .
$$

More general interaction

The whole picture above represents one morphism in Poly.
■ Let's suppose the company chooses who it wires to; this is its mode.

- Then both suppliers have interface $W y$ for $W \in$ Set.

■ Company interface is $2 y^{W}$: two modes, each of which is W-input.
■ The outer box is just y, i.e. a closed system.
So the picture represents a map $W y \otimes W y \otimes 2 y^{W} \rightarrow y$.
■ That's a map $2 W^{2} y^{W} \rightarrow y$.
■ Equivalently, it's a function $2 W^{2} \rightarrow W$. Take it to be evaluation.
■ In other words, the company's choice determines which $w \in W$ it receives.

Other sorts of dynamical systems

Dynamical systems are usually defined as actions of a monoid T.
■ Discrete: \mathbb{N}, reversible: \mathbb{Z}, real-time: \mathbb{R}.
■ If T is a monoid and S is a set, a T-action on S is equivalently...
■ ... a map $S \times T \rightarrow S$ satisfying two laws, which is equivalently...
■ ... a cofunctor $S y^{S} \nrightarrow y^{T}$, as in our general definition above.

Categorical databases

One view on databases is that they're basically just copresheaves.

A functor $I: C \rightarrow$ Set (i.e. $C \triangleleft 1 \triangleleft 0$) can be represented as follows:

Employee	Worksln	Mngr
Ω	P9	\varnothing
$\mathrm{T}^{* * * *}$	bLue	orca
orca	bLue	orca

Department	Admin
bLue	$\mathrm{T}^{* * * *}$
P9	\checkmark

But where's the data? What are the employees names, etc.?
More realistically, data should include attributes and look like this:

Employee	FName	Worksln	Mngr
	Alan	P9	O
$\mathrm{T}^{* * * *}$	Dani	bLue	orca
orca	Sara	bLue	orca

Department	DName	Secr
bLue	Sales	$\mathrm{T}^{* * * *}$
P9	IT	\bigcirc

■ Assign a copresheaf $T: \mathrm{Ob}(C) \rightarrow$ Set, e.g. T (Employee) $=$ String.
$■$ Using the canonical cofunctor $C \nrightarrow \mathrm{Ob}(C)$, attributes are given by $\alpha_{22} \dot{\beta}_{33}$

Data migration

The framed bicategory structure of \mathbb{P} is very useful in databases.
■ We hinted at this in the last slide, adding attributes via a cofunctor.

- But so-called data migration functors are precisely prafunctors.

A prafunctor $C \triangleleft \stackrel{P}{\triangleleft} \mathscr{D}$ in $C \mathbf{M o d}_{\mathscr{D}}$ can be understood as follows.
■ First, it's a functor $C \rightarrow{ }_{\mathbf{1}} \mathbf{M o d}_{\mathscr{D}}$, so what's that?
■ We said it's a formal coproduct of formal limits in \mathscr{D}.

- A formal limit in \mathscr{D} is called a conjunctive query on \mathscr{D}.

■ So a prafunctor $1 \triangleleft \stackrel{Q}{\triangleleft}$ D is a disjoint union of conjunctive queries.

- Let's call Q a duc-query on \mathscr{D}.

Example: if $\mathscr{D}=\left(\stackrel{\text { City }}{\bullet} \xrightarrow{\text { in }}\right.$ State in $\left.{ }^{\text {County }} \stackrel{\bullet}{\bullet}\right)$, a duc-query might be...

$$
(\text { City } \times \text { State } \text { City })+(\text { City } \times \text { State } \text { County })+(\text { County } \times \text { State County })
$$

A general bimodule $P \in{ }_{C} \mathbf{M o d}_{\mathscr{D}}$ is a C-indexed duc-query on \mathscr{D}.

Outline

1 Introduction

2 Theory

3 Applications

4 Speculations and questions
■ Aggregation?
■ Metaphysical questions

5 Conclusion

Database aggregation

One of the most important uses of databases is aggregation.
■ Setup: every employee is paid a salary and works in a department.
■ Problem: assign each department the sum of its employees salaries.

- This is aggregation: not row-by-row; instead "rolling up a table".

I don't know of a nice ACT story for this anywhere.
■ Poly loves databases and data migration.
■ It's good at dynamics, e.g. "doing something" over and over.
■ Isn't there some natural way to do aggregation?
■ We'd start with a commutative monoid in the types; then what?
This is probably my current nomination for " $\# 1$ problem in ACT".
■ It's a crucial step in understanding the nature of summarizing.
■ In turn, summarizing is a huge metaphysical interest of mine.

A Poly-oriented view on metaphysics

I'll explain aspects of my current metaphysics using Poly.
■ One's metaphysics is how they understand the fundamental principles.
■ How does time work? What's up with identity? What is life?
■ We can point at Poly while considering some of these things.
The following is just a play of forms, a submission I make for your review.

- Don't take this as a presentation of fact.
- Feel free to let me know what you think later.

First a little more math: the cofree comonoid.

The cofree comonoid \mathfrak{c}_{p}

Comonoids in Poly are categories, so \mathfrak{c}_{p} is a category; which one?
■ It's actually free on a graph, but the graph is very interesting.

- The vertex-set $\mathfrak{c}_{p}(1)$ of the graph is the set of p-trees.

■ A p-tree is a possibly infinite tree t, where each node...
$■$...is labeled by a position $i \in p(1)$ and has $p[i]$-many branches.

- For each vertex t, the set $\mathfrak{c}_{p}[t]$ of arrows emanating from t is...

■ ... the set of nodes n in tree t.
■ Identity arrow = root node; codomain of n is the subtree at n.
Example object (tree) $t \in \mathfrak{c}_{p}$, where $p \cong 2 y^{2}+1$:

Intuition from \mathfrak{c}_{p}

Suppose you (or the world) can be in $p(1)$-many positions, and...
...for each $i \in p(1)$, there are $p[i]$-many ways things might happen.
■ Your character is how you respond in each such case.
■ The character above always responds to left by turning green, etc.
The category of all " p-inhabiting characters" is \mathfrak{c}_{p}-Set, a topos.
■ It's also the category of all dynamical systems with interface p.
■ One can describe characters using the internal language of \mathfrak{c}_{p}-Set.

- We'll use an informal version to talk about experience.

What was, what's happening, and our character

Here are some assertions for your review:
■ The past is irrevocably gone; it's always now.
■ What we have of the past is what is left in the present.

- This includes the layout of your surroundings.
- It also includes the layout of your mind (memory).
- The past-what was-is fossilized in the present layout.

■ We're continually consolidating experience; now, now, now.

- Imagine: all that remains of the past is the present position $i \in \mathfrak{c}_{p}(1)$.
- What's happening now is the present direction $d \in p[i]$.

■ Imagine: our job is to compress the past into the present.

- We try to remember something, we write it down, etc.
- Compression because we encode both i and d in $\operatorname{cod}(d)$.

■ Our character $X: \mathfrak{c}_{p} \rightarrow$ Set is our compression scheme.
■ It's the type of responses we can have as things happen to us.

The lessons of history?

Imperative: compress the lessons of history to actualize ourselves.

- DNA compresses the lessons of who died, who survived, who thrived.

■ History books, math books, culture: compress the lessons of history.
■ But what's a lesson? What's worth compressing?
■ Two senses of appreciation:

- We pass on what we appreciate.
- Appreciation of an asset is its growth.

How do you make math out of any of this?
■ Polani's notion of Empowerment?
■ Channel capacity between position now and direction in future.

- This may give a concrete notion of "lesson of history".

Factoring

Again for intuition only, imagine all of reality is embodied in p.
■ Imagine you are a tensor factor, $p:=p_{1} \otimes p^{\prime}, \ldots$
$■ \ldots$ where Ego $=\mathrm{me}=p_{1}$, and Alter $=$ environmnent $=p^{\prime}$.

- Perhaps such factoring is a strategy for discerning the character of p ?

■ A map $p_{1} \otimes p^{\prime} \rightarrow y$ can be understood via standard cybernetics.
■ I present an unfolding situation for the environment, and...

- ... the environment produces an unfolding situation for me.

■ We seem to pass constraints between characters in p_{1} and p^{\prime}.

- But all of it is dictated by the character inhabiting p.

Is this sort of mereological breakdown actually useful? If so, what for?

Moving forward

The AI transition:
\square Humans try to mimic intelligence they see in animals and people.
■ Example: "Computers" were originally people.
■ Turing explicitly designed machines to mimic their behavior.
■ We capture our understanding of life/intelligence in artifacts.

- I'll call these artifacts "AI".

■ Al can be run continuously at very fast rates.
■ This has led to increasing complexity, already visible; more to come!
Mathematicians can enter the fray.

- If we say something in constructive math, technology can be formed.

■ If what we say is elegant, the tech won't be ad-hoc.
■ I prefer to be alongside elegant AI rather than ad-hoc AI.
■ Mathematicians can join our historical moment and lead.
Poly is my entry point; you join our historical moment as you see fit.

Outline

1 Introduction

2 Theory

3 Applications

4 Speculations and questions

5 Conclusion

- Summary

Workshop on polynomial functors in March

Joachim Kock and I are organizing a Poly workshop. ${ }^{4}$
■ Dates: March 15-19

- Speakers:

Thorsten Altenkirch
Michael Batanin
Marcelo Fiore
David Gepner
Rune Haugseng
André Joyal
Kristina Sojakova
Ross Street

Steve Awodey
Bryce Clarke
Richard Garner
Helle Hvid Hansen
Bart Jacobs
Fredrik Nordvall-Forsberg
David Spivak
Tarmo Uustalu

[^1]
Summary

Poly is a category of remarkable abundance.
■ It's completely combinatorial.
■ Calculations are concrete.
■ Much is already familiar, e.g. $(y+1)^{2} \cong y^{2}+2 y+1$.
■ It's theoretically beautiful.
■ Comonoids are categories.
■ Coalgebras are copresheaves.
■ It's got a wide scope of applications.
■ Databases and data migration.

- Dynamical systems and cellular automata.

A single setting for pursuing real philosophical and technological progress.
Thanks! Questions and comments welcome.

[^0]: ${ }^{2}$ Garner's HoTTEST video, https://www. youtube.com/watch?v=tW6HYnqn6eI

[^1]: ${ }^{4}$ https://topos.site/p-func-2021-workshop/

