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2021 February 17



Introduction

Outline

1 Introduction
Personal history
Plan

2 Theory

3 Applications

4 Speculations and questions

5 Conclusion

0 / 33



Introduction Personal history

My personal history with math

I’ve always believed I could understand self, life, and world with math.

We generally share experience and knowledge in “natural language”.

Is any of it inherently precluded from mathematical expression?

When I learned CT, I thought “this is where I can say it all.”

It’s a sublanguage of math that can talk about math.

It’s clean and principled and structural and expressive.

So I got to work trying to understand self, life, and world.
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Introduction Personal history

My personal history with ACT

What can we say about self, life, and world?

I first assumed everything is information and communication.

Pretend our minds are information-storage devices.

How do we communicate with each other and with reality?

Understand everything in terms of databases and data migration!

(Categories, set-valued functors, parametric right adjoints.)

But interacting processes didn’t seem to fit nicely.

So then I assumed everything is interacting dynamical systems.

It’s machines sending each other information, all the way down.

X1

X2

X3

X4

X5

But should they really be wired the same way forever?
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Introduction Personal history

My personal history with Poly

Then one day I met Poly and fell in love.

It captures dynamical systems and “rewiring diagrams”.

As a category it’s exceptionally well-behaved.

The dynamics seemed to really be all about comonoids in Poly.

Joachim Kock pointed me to R. Garner; I found his HoTTEST talk.

Garner explained Ahman-Uustalu’s result: “comonoids = categories”

Garner also explained that bimodules = parametric right adjoints.

Suddenly everything I’d been working on for 13 years came together.

I was overwhelmed by Poly’s elegance and capacity for application.

It is extremely computational and hands-on...

...while displaying excellent formal properties.
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Introduction Plan

Plan for today

Today’s plan:

Recall some basics of Poly;

Show how Poly models dynamical systems and databases;

Discuss some open questions and speculations; and

Conclude with a brief summary.
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Theory Poly as a category

Poly for experts

What I’ll call the category Poly has many names.

The free completely distributive category on one object;

The free coproduct completion of Setop;

The full subcategory of [Set,Set] spanned by functors that preserve
connected limits;

The full subcategory of [Set,Set] spanned by coproducts of repr’bles;

The category of typed sets and colax maps between them.

Objects: pairs (S , τ), where S ∈ Set and τ : S → Set.

Morphisms (S , τ)
ϕ−→ (S ′, τ ′): pairs (ϕ1, ϕ

]), where

S S ′

Set

τ

ϕ1

τ ′

ϕ]

But let’s make this easier.
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Theory Poly as a category

What is a polynomial?

Algebraic Bundle Corolla forest

y2 + 3y + 2

•

•
•

•

•

•

•

•

•

• •
π • • • • • •

Interpretations:

Each corolla in p is a position; its leaves are directions.

Each corolla in p is a decision; its leaves are the options.
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Theory Poly as a category

What is a morphism of polynomials?

Let p := y3 + 2y and q := y4 + y2 + 2

•
1
•
2
•
3

p

•
1
•
2
•
3
•
4

q

A morphism p
ϕ−→ q delegates each p-decision to a q-decision, passing

back options:

•
1

•
1

•
2

•
1

•
3

•
4

Example: how to think of a map y2 + y6 → y52.
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Theory Poly as a category

The category of polynomials

Easiest description: Poly = “sums of representables functors Set→ Set”.

For any set S , let yS := Set(S ,−), the functor represented by S .

Def: a polynomial is a sum p =
∑

i∈I y
p[i ] of representable functors.

Def: a morphism of polynomials is a natural transformation.

In Poly, + is coproduct and × is product.
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Theory Poly as a category

Notation

We said that a polynomial is a sum of representable functors

p ∼=
∑
i∈I

yp[i ].

But note that I ∼= p(1). So we can write

p ∼=
∑

i∈p(1)

yp[i ].
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Theory Poly as a category

Composition monoidal structure (Poly, y, /)

The composite of two polynomial functors is again polynomial.

Let’s denote the composite of p and q by p / q.

Example: if p := y2, q := y + 1, then p / q ∼= y2 + 2y + 1.

This is a monoidal structure, but not symmetric. (q / p ∼= y2 + 1)

The identity functor y is the unit: p / y ∼= p ∼= y / p.

Why the we weird symbol / rather than ◦?
We want to reserve ◦ for morphism composition.

The notation p / q represents trees with p under q.
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Theory Poly as a category

Composition given by stacking trees

Suppose p := y2 + y and q := y3 + 1.

•
1
•
2

p

•
1
•
2

q

Draw the composite p / q by stacking q-trees on top of p-trees:

•
• •

•
• •

•
• •

•
• •

•
•

•
•

p / q

You can also read it as q feeding into p, which is how composition works.
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Theory Comonoids in Poly

Comonoids in (Poly, y, /)

In any monoidal category (M, I ,⊗), one can consider comonoids.

A comonoid is a triple (m, ε, δ) satisfying certain rules, where

m ∈M is an object, the carrier,

ε : m→ I is a map, the counit, and

δ : m→ m ⊗m is a map, the comultiplication.

In (Poly, y, /), comonoids are exactly categories!1

If C is a category, the corresponding comonoid has carrier

c :=
∑

i∈Ob(C)

yc[i ]

where c[i ] is the set of morphisms in C that emanate from i .

The counit ε : c→ y assigns to each object an identity.

The comult δ : c→ c / c assigns codomains and composites.
1Ahman-Uustalu. See my talk, https://www.youtube.com/watch?v=2mWnrgPIrlA
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Theory Comonoids in Poly

Comonoid maps are “cofunctors”

In Poly, comonoids are categories, but their morphisms aren’t functors.

A comonoid morphism ϕ : C 9 D is called a cofunctor.

It includes a Poly map on carriers. For each object i ∈ c(1), we get:

an object j := ϕ1(i) ∈ d(1) and

for each emanating f ∈ d[j ], an emanating ϕ]i (f ) ∈ c[i ].

Example: what is a cofunctor C
ϕ9 yN ?

It is trivial on objects. On morphisms...

...it assigns an emanating morphism ϕ]i (1) to each object i ∈ c(1).

“That’s not what you do with a category!”

Cofunctors are kinda weird right? A whole new world to explore.

A cofunctor C 9 yN is like a vector field on the category.

This hints at applications, which are coming soon.
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Theory The framed bicategory P

Bicomodules in (Poly, y, /)

Given comonoids C,D, a (C,D)-bicomodule is another kind of map.

It’s a polynomial m, equipped with two maps

c /m←− m −→ m / d

each cohering naturally with the comonoid structure ε, δ.

I denote this (C,D)-bicomodule m like so:

c

.

/m d or C

.

/m
D

The /’s at the ends help me remember the how the maps go.

Maybe it looks like it’s going the wrong way, but hold on.
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Theory The framed bicategory P

Bicomodules are parametric right adjoints

Garner explained2 that bicomodules m ∈ CModD, which we’ve denoted

C

. /m
D

can be identified with parametric right adjoint functors (prafunctors)

D-Set
M−→ C-Set.

From this perspective the arrow points in the expected direction.

Check: CMod0
∼= C-Set.

Prafunctors C

. / D generalize profunctors C D:

A profunctor C D is a functor C → (D-Set)op

A prafunctor C . / D is a functor C → Coco
(
(D-Set)op

)
...

...where Coco is the free coproduct completion.

I’ll explain how to think about it concretely when we get to applications.

2Garner’s HoTTEST video, https://www.youtube.com/watch?v=tW6HYnqn6eI
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Theory The framed bicategory P

The framed bicategory P

Poly comonoids, cofunctors, and bicomodules form a framed bicategory P.

It’s got a ton of structure, e.g. two monoidal structures, +,⊗.

Despite the last slide, it’s actually not that hard to think about.

Here are some facts about CModD for categories C,D.

DMod0
∼= D-Set, copresheaves on D.

1ModD
∼= Coco

(
(D-Set)op

)
.

CModD
∼= Cat(C, 1ModD).
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Applications Interacting Moore machines

Moore machines

Definition

Given sets A,B, an (A,B)-Moore machine consists of:

a set S , elements of which are called states,
a function r : S → B, called readout, and
a function u : S × A→ S , called update.

S
A B

It is initialized if it is equipped also with

an element s0 ∈ S , called the initial state.

We refer to A as the input set, B as the output set of the Moore machine.

Dynamics: an (A,B)-Moore machine (S , r , u, s0) is a “stream transducer”:

Given a list/stream [a0, a1, . . .] of A’s...

let sn+1 := u(sn, an) and bn := r(sn).

We thus have obtained a list/stream [b0, b1, . . .] of B’s.
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Applications Interacting Moore machines

Moore machines as maps in Poly

We can understand Moore machines SA B in terms of polynomials.

An uninitialized Moore machine r : S → B and u : S × A→ S is:

A map of polynomials SyS → ByA.
ϕ1 is the readout and ϕ] is the update.

Add initialization by giving a map y→ SyS .

A p-dynamical system allows different input-sets at different positions.

For arbitrary p ∈ Poly we can interpret a map ϕ : SyS → p as:

a readout: every state s ∈ S gets a position i := ϕ1(s) ∈ p(1)

an update: for every direction d ∈ p[i ], a next state ϕ]s(d) ∈ S .

Again, add initialization by giving a map y→ SyS .

Even more general: SyS 9 C for any category C.

For example, a map SyS → p can be identified with a cofunctor...

... SyS 9 cp,, where cp is the cofree comonoid on p.
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Applications Interacting Moore machines

Wiring diagrams

We can have a bunch of dynamical systems interacting in an open system.

p1

p2

p3

p4

p5

q

A

B

C

(ϕ)

Each box represents a monomial, e.g. p3 = CyAB ∈ Poly.

The whole interaction, p1 sending outputs to p2 and p3, etc....

... is captured by a map of polynomials ϕ : p1 ⊗ · · · ⊗ p5 → q. 3

Given the positions (outputs) of each pi , we get an output of q...

... and when given an input of q, each pi gets an input.
3Here p ⊗ p′ just multiplies positions and directions,

p ⊗ p′ =
∑

(i,i′)∈p(1)×p′(1)

y
p[i ]×p′[i′].
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Applications Mode-dependence

More general interaction

Supplier 1

Supplier 2

Company

W

•

Supplier 1

Supplier 2

Company

W

•

Change
supplier!

The whole picture above represents one morphism in Poly.

Let’s suppose the company chooses who it wires to; this is its mode.

Then both suppliers have interface Wy for W ∈ Set.

Company interface is 2yW : two modes, each of which is W -input.

The outer box is just y, i.e. a closed system.

So the picture represents a map Wy⊗Wy⊗ 2yW → y.

That’s a map 2W 2yW → y.

Equivalently, it’s a function 2W 2 →W . Take it to be evaluation.

In other words, the company’s choice determines which w ∈W it
receives.
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Applications Mode-dependence

Other sorts of dynamical systems

Dynamical systems are usually defined as actions of a monoid T .

Discrete: N, reversible: Z, real-time: R.

If T is a monoid and S is a set, a T -action on S is equivalently...

... a map S × T → S satisfying two laws, which is equivalently...

... a cofunctor SyS 9 yT , as in our general definition above.
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Applications Databases

Categorical databases

One view on databases is that they’re basically just copresheaves.

C :=
Employee
•

Department
•

WorksIn
Mngr

Admin

Department.Admin.WorksIn = idDepartment

A functor I : C → Set (i.e. C . /I 0) can be represented as follows:
Employee WorksIn Mngr
♥ P9 ♥

T**** bLue orca
orca bLue orca

Department Admin
bLue T****
P9 ♥

But where’s the data? What are the employees names, etc.?

More realistically, data should include attributes and look like this:

Employee FName WorksIn Mngr
♥ Alan P9 ♥

T**** Dani bLue orca
orca Sara bLue orca

Department DName Secr
bLue Sales T****
P9 IT ♥

Assign a copresheaf T : Ob(C)→ Set, e.g. T (Employee) = String.

Using the canonical cofunctor C 9 Ob(C), attributes are given by α:

C 0

Ob(C) 0

\

.

/I

⇓α

. /
T
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Applications Databases

Data migration

The framed bicategory structure of P is very useful in databases.

We hinted at this in the last slide, adding attributes via a cofunctor.

But so-called data migration functors are precisely prafunctors.

A prafunctor C . /P
D in CModD can be understood as follows.

First, it’s a functor C → 1ModD, so what’s that?

We said it’s a formal coproduct of formal limits in D.

A formal limit in D is called a conjunctive query on D.

So a prafunctor 1 . /
Q

D is a disjoint union of conjunctive queries.

Let’s call Q a duc-query on D.

Example: if D =

(
City
• in−→ State• in←−

County
•
)

, a duc-query might be...

(City×StateCity) + (City×StateCounty) + (County×StateCounty)

A general bimodule P ∈ CModD is a C-indexed duc-query on D.
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Speculations and questions Aggregation?

Database aggregation

One of the most important uses of databases is aggregation.

Setup: every employee is paid a salary and works in a department.

Problem: assign each department the sum of its employees salaries.

This is aggregation: not row-by-row; instead “rolling up a table”.

I don’t know of a nice ACT story for this anywhere.

Poly loves databases and data migration.

It’s good at dynamics, e.g. “doing something” over and over.

Isn’t there some natural way to do aggregation?

We’d start with a commutative monoid in the types; then what?

This is probably my current nomination for “#1 problem in ACT”.

It’s a crucial step in understanding the nature of summarizing.

In turn, summarizing is a huge metaphysical interest of mine.
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Speculations and questions Metaphysical questions

A Poly-oriented view on metaphysics

I’ll explain aspects of my current metaphysics using Poly.

One’s metaphysics is how they understand the fundamental principles.

How does time work? What’s up with identity? What is life?

We can point at Poly while considering some of these things.

The following is just a play of forms, a submission I make for your review.

Don’t take this as a presentation of fact.

Feel free to let me know what you think later.

First a little more math: the cofree comonoid.
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Speculations and questions Metaphysical questions

The cofree comonoid cp

Comonoids in Poly are categories, so cp is a category; which one?

It’s actually free on a graph, but the graph is very interesting.

The vertex-set cp(1) of the graph is the set of p-trees.

A p-tree is a possibly infinite tree t, where each node...

...is labeled by a position i ∈ p(1) and has p[i ]-many branches.

For each vertex t, the set cp[t] of arrows emanating from t is...

...the set of nodes n in tree t.

Identity arrow = root node; codomain of n is the subtree at n.

Example object (tree) t ∈ cp, where p ∼= 2y2 + 1:
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Speculations and questions Metaphysical questions

Intuition from cp

Suppose you (or the world) can be in p(1)-many positions, and...
...for each i ∈ p(1), there are p[i ]-many ways things might happen.

Your character is how you respond in each such case.

The character above always responds to left by turning green, etc.

The category of all “p-inhabiting characters” is cp-Set, a topos.

It’s also the category of all dynamical systems with interface p.

One can describe characters using the internal language of cp-Set.

We’ll use an informal version to talk about experience.
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Speculations and questions Metaphysical questions

What was, what’s happening, and our character

Here are some assertions for your review:

The past is irrevocably gone; it’s always now.

What we have of the past is what is left in the present.

This includes the layout of your surroundings.

It also includes the layout of your mind (memory).

The past—what was—is fossilized in the present layout.

We’re continually consolidating experience; now, now, now.

Imagine: all that remains of the past is the present position i ∈ cp(1).

What’s happening now is the present direction d ∈ p[i ].

Imagine: our job is to compress the past into the present.

We try to remember something, we write it down, etc.

Compression because we encode both i and d in cod(d).

Our character X : cp → Set is our compression scheme.

It’s the type of responses we can have as things happen to us.
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Speculations and questions Metaphysical questions

The lessons of history?

Imperative: compress the lessons of history to actualize ourselves.

DNA compresses the lessons of who died, who survived, who thrived.

History books, math books, culture: compress the lessons of history.

But what’s a lesson? What’s worth compressing?

Two senses of appreciation:

We pass on what we appreciate.

Appreciation of an asset is its growth.

How do you make math out of any of this?

Polani’s notion of Empowerment?

Channel capacity between position now and direction in future.

This may give a concrete notion of “lesson of history”.
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Speculations and questions Metaphysical questions

Factoring

Again for intuition only, imagine all of reality is embodied in p.

Imagine you are a tensor factor, p := p1 ⊗ p′, ...

...where Ego = me = p1, and Alter = environmnent=p′.

Perhaps such factoring is a strategy for discerning the character of p?

A map p1 ⊗ p′ → y can be understood via standard cybernetics.

I present an unfolding situation for the environment, and...

... the environment produces an unfolding situation for me.

We seem to pass constraints between characters in p1 and p′.

But all of it is dictated by the character inhabiting p.

Is this sort of mereological breakdown actually useful? If so, what for?

30 / 33



Speculations and questions Metaphysical questions

Moving forward

The AI transition:

Humans try to mimic intelligence they see in animals and people.

Example: “Computers” were originally people.

Turing explicitly designed machines to mimic their behavior.

We capture our understanding of life/intelligence in artifacts.

I’ll call these artifacts “AI”.

AI can be run continuously at very fast rates.

This has led to increasing complexity, already visible; more to come!

Mathematicians can enter the fray.

If we say something in constructive math, technology can be formed.

If what we say is elegant, the tech won’t be ad-hoc.

I prefer to be alongside elegant AI rather than ad-hoc AI.

Mathematicians can join our historical moment and lead.

Poly is my entry point; you join our historical moment as you see fit.
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Conclusion

Workshop on polynomial functors in March

Joachim Kock and I are organizing a Poly workshop.4

Dates: March 15 – 19

Speakers:

Thorsten Altenkirch Steve Awodey
Michael Batanin Bryce Clarke
Marcelo Fiore Richard Garner
David Gepner Helle Hvid Hansen
Rune Haugseng Bart Jacobs
André Joyal Fredrik Nordvall-Forsberg
Kristina Sojakova David Spivak
Ross Street Tarmo Uustalu

4https://topos.site/p-func-2021-workshop/
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Conclusion Summary

Summary

Poly is a category of remarkable abundance.

It’s completely combinatorial.

Calculations are concrete.

Much is already familiar, e.g. (y + 1)2 ∼= y2 + 2y + 1.

It’s theoretically beautiful.

Comonoids are categories.

Coalgebras are copresheaves.

It’s got a wide scope of applications.

Databases and data migration.

Dynamical systems and cellular automata.

A single setting for pursuing real philosophical and technological progress.

Thanks! Questions and comments welcome.
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